1. (2 points) The rotation matrix in the $x-y$ plane is
$R(\phi)=\left[\begin{array}{cc}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right]$
(a) Verify $R\left(\phi_{1}\right) R\left(\phi_{2}\right)=R\left(\phi_{1}+\phi_{2}\right)$ from the identities for $\cos \left(\phi_{1}+\phi_{2}\right)$ and $\sin \left(\phi_{1}+\phi_{2}\right)$.
(b) What is $R(\phi) R(-\phi)$?
2. (4 points) Scale a vector $\left[\begin{array}{ll}x & y\end{array}\right]^{T}$ in the plane can be achieved by $x^{\prime}=s x$ and $y^{\prime}=s y$
where s is a scalar.
(a) Write out the matrix form of this transformation.
(b) Write out the transformation matrix for homogeneous coordinates.
(c) If the transformation also includes a translation

$$
x^{\prime}=s x+t_{x} \text { and } y^{\prime}=s y+t_{y}
$$

Write out the transformation matrix for homogeneous coordinates.
(d) What is the equivalent of the above matrix for three-dimensional vectors?
3. (2 points) Find the least square solution \bar{x} for $A x=b$ if
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right] \quad b=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
Verify that the error vector $b-A \bar{x}$ is orthogonal to the columns of A.
4. (2 points) A pinhole camera has focal length $f=500$, pixel sizes $s_{x}=s_{y}=1$, and its principal point is at $\left(o_{x}, o_{y}\right)=(320,240)$. The world coordinate frame and the camera coordinate frame can be related by $X_{c}=R X_{w}+T$, where
$R=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \quad T=\left[\begin{array}{c}70 \\ 95 \\ 120\end{array}\right]$
(a) Write out the 3×4 projection matrix that projects a point in the world coordinate frame onto the image plane in pixel coordinate.
(b) What are the pixel coordinates of the world point

$$
X_{w}=\left[\begin{array}{lll}
150 & 200 & 400
\end{array}\right]^{T} ?
$$

