Epipolar Geometry

Dr. Gerhard Roth

Problem Definition

- Simple stereo configuration
- Corresponding points are on same horizontal line
- This makes correspondence search a 1D search
- Need only look for matches on same horizontal line
- if two cameras are in an arbitrary location is there a similar constraint to make search 1D?
- Yes, called epipolar constraint
- Based on epipolar geometry
- We will derive this constraint
- Consider two cameras that can see a single point P
- They are in an arbitrary positions and orientation
- One camera is rotated and translated relative to the other camera

Parameters of a Stereo System

Intrinsic Parameters

- Characterize the transformation from camera to pixel coordinate systems of each camera
- Focal length, image center, aspect ratio

Extrinsic parameters

- Describe the relative position and orientation of the two cameras
- Rotation matrix R and translation vector T

Epipolar Geometry

Epipolar Geometry

$$
\mathbf{P}_{\mathbf{r}}=\mathbf{R}\left(\mathbf{P}_{\mathbf{1}}-\mathbf{T}\right)
$$

Shape of epipolar lines

- Translating the cameras without rotation then the epipolar lines are parallel
- Translating the cameras in the direction of the camera y axis (horizontal) you get the simple stereo configuration of horizontal epipolar lines
- Translating the cameras in the z axis produces epipolar lines that emanate from the epipole (sometimes called focus of projection)

Example: motion parallel with image plane

Example: forward motion

Example: converging cameras

Epipolar Geometry

Notations

- $P_{1}=\left(X_{1}, Y_{1}, Z_{1}\right), P_{r}=\left(X_{r}, Y_{r}, Z_{r}\right)$
- Vectors of the same 3-D point P, in the left and right camera coordinate systems respectively
- Extrinsic Parameters
- Translation Vector $\mathrm{T}=\left(\mathrm{O}_{\mathrm{r}}-\mathrm{O}_{\mathrm{l}}\right)$
- Rotation Matrix R

$$
\mathbf{P}_{\mathbf{r}}=\mathbf{R}\left(\mathbf{P}_{\mathbf{1}}-\mathbf{T}\right)
$$

- $\mathrm{p}_{\mathrm{l}}=\left(\mathrm{x}_{\mathrm{l}}, \mathrm{y}_{\mathrm{l}}, \mathrm{z}_{\mathrm{l}}\right), \mathrm{p}_{\mathrm{r}}=\left(\mathrm{x}_{\mathrm{r}}, \mathrm{y}_{\mathrm{r}}, \mathrm{z}_{\mathrm{r}}\right)$
- Projections of P on the left and right image plane respectively

- For all image points, we have $z_{1}=f_{1}$, $z_{r}=f_{r}$

$$
\mathbf{p}_{l}=\frac{f_{l}}{Z_{l}} \mathbf{P}_{\mathbf{l}} \quad \mathbf{p}_{r}=\frac{f_{r}}{Z_{r}} \mathbf{P}_{r}
$$

Epipolar Geometry

Motivation: where to search correspondences?

- Epipolar Plane
- A plane going through point P and the centers of projection (COPs) of the two cameras
- Epipolar Lines
- Lines where epipolar plane intersects the image planes
- Epipoles
- The image in one camera of the COP of the other

Epipolar Constraint

- Corresponding points must lie on epipolar lines

Epipoles

- True for EVERY camera configuration!

Epipolar Geometry

Epipolar plane: plane going through point P and the centers of projection (COPs) of the two cameras
Epipolar lines: where this epipolar plane intersects the two image planes
Epipoles: The image in one camera of the COP of the other
Epipolar Constraint: Corresponding points between the two images must lie on epipolar lines

Cross product

-Consider two vectors in 3D space

- (a1,a2,a3) and (b1,b2,b3)
$\cdot \underline{\mathbf{a}} \times \underline{\mathbf{b}}=\underline{\mathbf{n}} \mathrm{ab} \sin \mathrm{q}$
-Cross product is at 90 degrees to both vectors
- Normal to the plane defined by the two vectors

Cross product

- Two possible normal directions
- We use the right hand rule to compute direction
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=$

$$
(a 1 \underline{i}+a 2 \mathbf{i}+a 3 \underline{\mathbf{k}}) \times(b 1 \underline{i} \underline{i}+b 2 \underline{i}+b 3 \underline{\mathbf{k}})
$$

- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=$ (a2b3-a3b2)i + (a3b1-a1b3)i + (a1b2-a2b1)k
- Cross product can also be written as multiplication by a matrix
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=S \underline{\mathbf{b}}$

Cross product as matrix multiplication

-Define matrix S as

$$
\left[\begin{array}{ccc}
0 & -a 3 & a 2 \\
a 3 & 0 & -a 1 \\
-a 2 & a 1 & 0
\end{array}\right]
$$

$\cdot \underline{\mathbf{a}} \times \underline{\mathbf{b}}=\boldsymbol{S} \underline{\mathbf{b}}$

- Try the program cross1.ch on the course web site

Essential Matrix

$$
\begin{gathered}
T \times P_{l}=S P_{l} \\
S=\left[\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right]
\end{gathered}
$$

Coordinate Transformation:

$$
\begin{aligned}
& P_{r}=R\left(P_{l}-T\right) \\
& \left(P_{l}-T\right)^{T} T \times P_{l}=0 \\
& \left(R^{T} P_{r}\right)^{T} T \times P_{l}=0 \\
& \left(R^{T} P_{r}\right)^{T} S P_{l}=0 \\
& P_{r}^{T} R S P_{l}=0
\end{aligned}
$$

$T, P_{l}, P_{l}-T$ are coplanar
Resolves to

Essential Matrix $E=R S$

$$
P_{r}^{T} E P_{l}=0
$$

Essential Matrix

$P_{r}^{T} E P_{l}=0 \quad \Rightarrow p_{r}^{T} E p_{l}=0$

$$
\begin{aligned}
& \mathbf{P}_{\mathrm{r}}{ }^{\mathbf{T}} \mathbf{E P}_{\mathbf{1}}=0 \\
& \mathbf{p}_{l}=\frac{f_{1}}{z_{l}} \mathbf{P}_{\mathbf{1}} \downarrow \mathbf{p}_{r}=\frac{f_{r}}{z_{r}} \mathbf{P}_{r} \\
& \mathbf{p}_{\mathbf{r}}{ }^{\mathbf{T}} \mathbf{E} \boldsymbol{p}_{\mathbf{I}}=0
\end{aligned}
$$

Essential Matrix

Essential Matrix E = RS

$$
\mathbf{P}_{\mathbf{r}}{ }^{\mathbf{T}} \mathbf{E} \mathbf{p}_{\mathbf{I}}=0
$$

- A natural link between the stereo point pair and the extrinsic parameters of the stereo system
- Can compute E from R, and T (S) but this is not always possible
- Often E is computed from a set of correspondences
- One correspondence -> a linear equation of 9 entries
- Given 8 pairs of (pl, pr) -> E (will describe this process later)
- Mapping between points and epipolar lines we are looking for
- Given $p_{l}, E->p_{r}$ on the projective line in the right plane
- Equation represents the epipolar line of either pr (or pl) in the right (or left) image

Note:

- pl, pr are in the camera coordinate system, not pixel coordinates that we can measure

What does Essential Matrix Mean?

Projective Geometry

-Projective Plane - P²

- Set of equivalence classes of triplets of real numbers
- $p=[x, y, z]^{\top}$ and $p^{\prime}=\left[x^{\prime}, y^{\prime}, z^{\prime}\right]^{\top}$ are equivalent if and only if there is a real number k such that $[x, y, z]^{\top}=k\left[x^{\prime}, y^{\prime}, z^{\prime}\right]^{\top}$
- Each projective point p in P^{2} corresponds to a line through the origin in P^{3}
- So points in P^{2}, the projective plane, and lines in P^{3}, ordinary space, are in a one to one correspondence
- A line in the projective plane is called a projective line represented by u = [ux, uy, uz] ${ }^{\top}$
- Set of points p that satisfy the relation $u^{T} \bullet p=0$
- A projective line u can be represented by a 3d plane through the origin, that is the line defined by the equation $u^{T} \bullet p=0$
- p is either a point lying on the line u, or a line going through the point u

Projective Line

-If we have a point in one image then this means the 3D point P is on the line from the origin through that point in the image plane

- So in the other image the corresponding point must be on the epipolar line
\cdot What is the meaning of $E p_{l}$?
- the line in the right plane that goes through p_{r} and the epipole e_{r}
-Therefore the essential matrix is a mapping between points and epipolar lines
- $E p_{l}$ defines the equation of the epipolar line in the right image plane through point p_{r} in the right image
- $E^{T} p_{r}$ defines the equation of the epipolar line in the left image through point p_{l} in the left image

Fundamental Matrix

Same as Essential Matrix but points are in pixel coordinates and not camera coordinates

Fundamental Matrix

Mapping between points and epipolar lines in the pixel coordinate systems

- With no prior knowledge of the stereo system parameters

From Camera to Pixels: Matrices of intrinsic parameters

$$
\mathbf{M}_{\text {int }}=\left[\begin{array}{ccc}
-f_{x} & 0 & o_{x} \\
0 & -f_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]
$$

$\operatorname{Rank}\left(\mathrm{M}_{\text {int }}\right)=3$

$$
\mathbf{p}_{\mathbf{r}}{ }^{\mathbf{T}} \mathbf{E} \boldsymbol{p}_{\mathbf{I}}=0
$$

$$
\mathbf{p}_{\mathbf{I}}=\mathbf{M}_{\mathbf{I}}^{-\mathbf{1}} \overline{\mathbf{p}}_{\mathbf{I}} \rrbracket \mathbf{p}_{r}=\mathbf{M}_{r}^{-\mathbf{1}} \overline{\mathbf{p}}_{r}
$$

$$
\overline{\mathbf{p}}_{\mathbf{r}}{ }^{\mathbf{T}} \mathbf{F} \overline{\mathbf{p}}_{\mathbf{I}}=0
$$

$$
\mathbf{F}=\mathbf{M}_{r}^{-\mathbf{T}} \mathbf{E} \mathbf{M}_{l}^{-1}
$$

Essential/Fundamental Matrix

- Essential and fundamental matrix differ
- Relate different quantities
- Essential matrix is defined in terms of camera co-ordinates
- Fundamental matrix defined in terms of pixel co-ordinates
- Need different things to calculate them
- Essential matrix requires camera calibration and knowledge of correspondences
- known intrinsic parameters, unknown extrinsic parameters
- Fundamental matrix does not require any camera calibration, just knowledge of correspondences
- Unknown intrinsic and unknown extrinsic
- Essential and fundamental matrix are related by the camera calibration parameters

Essential/Fundamental Matrix

- We can compute the fundamental matrix from the 2 d pixel co-ordinates of correspondences between the left and right image
- If we have the fundamental matrix it is possible to compute the essential matrix if we know the camera calibration
- But we can still compute the epipolar lines using only the fundamental matrix
- We can use the fundamental matrix to limit correspondence to s 1D search for general stereo camera positions in the same way as is possible for simple stereo

Essential Matrix

Essential Matrix E = RS

- 3×3 matrix constructed from R and T (extrinsic only)
- Rank (E) = 2, two equal nonzero singular values

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \quad S=\left[\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right]
$$

Rank (R) $=3$
Rank (S) =2

- E has five degrees of freedom (3 rotation, 2 translation)
- If we know R and T it is easy to compute E
- use the camera calibration method of Ch. 6 for two cameras
- We can compute E from correspondences between the two stereo cameras then (first compute F then E with calibration)

Fundamental Matrix

Fundamental Matrix

- Rank (F) = 2

$$
\mathbf{F}=\mathbf{M}_{r}^{-T} \mathbf{E} \mathbf{M}_{l}^{-1}
$$

- Encodes info on both intrinsic and extrinsic parameters
- Enables full reconstruction of the epipolar geometry
- In pixel coordinate systems without any knowledge of the intrinsic and extrinsic parameters
- Linear equation of the 9 entries of F but only 8 degrees of freedom because of homogeneous nature of equations

$$
\overline{\mathbf{p}}_{\mathbf{r}} \mathbf{T}_{\mathbf{F}}^{\mathbf{p}} \overline{\mathbf{p}}_{\mathbf{I}}=0 \longmapsto\left(x_{i m}^{(l)} \quad y_{i m}^{(l)} \quad 1\right)\left[\begin{array}{lll}
f 11 & f 12 & f 13 \\
f 21 & f 22 & f 23 \\
f 31 & f 32 & f 33
\end{array}\right]\left(\begin{array}{l}
x_{i m}^{(r)} \\
y_{i m}^{(r)} \\
1
\end{array}\right)=0
$$

Computing F: The Eight-point Algorithm

Input: n point correspondences ($n>=8$)

- Construct homogeneous system $A x=0$ from

$$
\overline{\mathbf{p}}_{\mathbf{r}}^{\mathbf{T}} \overline{\mathbf{F}}_{\mathbf{p}}=0
$$

$-x=\left(f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23} f_{31}, f_{32}, f_{33}\right)$: entries in F

- Each correspondence give one equation
- A is a nx9 matrix
- Obtain estimate F^{\wedge} by Eigenvector with smallest eigenvalue
- x (up to a scale) is column of V corresponding to the least singular value
- Enforce singularity constraint: since Rank $(F)=2$
- Compute SVD of $\mathrm{F}^{\wedge} \quad \hat{\mathbf{F}}=\mathbf{U D V}^{T}$
- Set the smallest singular value to 0: D -> D'
- Correct estimate of $\mathrm{F}: \mathbf{F}^{\prime}=\mathbf{U D}^{\prime} \mathbf{V}^{T}$

Output: the fundamental matrix, F^{\prime}
can then compute E given intrinsic parameters

Estimating Fundamental Matrix

The 8-point algorithm
$u^{T} F u^{\prime}=0$
Each point correspondence can be expressed as a linear equation
$\left[\begin{array}{lll}u & v & 1\end{array}\right]\left[\begin{array}{lll}F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33}\end{array}\right]\left[\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right]=0$

$$
\left[\begin{array}{lllllllll}
u u^{\prime} & u v^{\prime} & u & u^{\prime} v & v v^{\prime} & v & u^{\prime} & v^{\prime} & 1
\end{array}\right]\left[\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right]=0
$$

Homogeneous System

- M linear equations of form $A x=0$
- If we have a given solution x 1 , s.t. $\mathrm{Ax} 1=0$ then $c * x 1$ is also a solution $A\left(c^{*} x 1\right)=0$
- Need to add a constraint on \mathbf{x},
- Basically make x a unit vector $x^{T} x=1$
- Can prove that the solution is the eigenvector correponding to the single zero eigenvalue of that matrix
- This can be cormot ${ }^{\text {T }}$ ut using eigenvector routine
- Then finding the zero eigenvalue
- Returning the associated eigenvector
- This is how we compute first estimate of F which is called F^{\wedge}

Singular Value Decomposition

-Any m by n matrix A can be written as product of three matrices $\mathrm{A}=\mathrm{UDV}^{\top}$
-The columns of the m by matrix U are mutually orthogonal unit vectors, as are the columnś of the n by n matrix V
-The m by n matrix D is diagonal, and the diagonal elements, σ_{i} are called the singular values
-It is the case that $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n} \geq 0$
-The rank of a square matrix is the number of linearly independent rows or columns
-For a square matrix $(m=n)$ then the number of nonzero singular values equals the rank of the matrix

Locating the Epipoles from F

$$
\begin{aligned}
& \overline{\mathbf{p}}_{\mathbf{r}}{ }^{\mathbf{T}} \overline{\mathrm{F}}_{\mathbf{1}}=0 \text { e, lies on all the epipolar } \\
& \& \text { lines of the left image } \\
& \overline{\mathbf{p}}_{\mathbf{r}}^{\mathbf{T}} \mathbf{F} \overline{\mathbf{e}}_{\mathbf{l}}=0 \quad \text { For every } \mathbf{p}_{\mathrm{r}} \\
& \text { 』F is not identically zero } \\
& \mathbf{F} \overline{\mathbf{e}}_{\mathbf{1}}=0 \\
& \text { Epipoles }
\end{aligned}
$$

Input: Fundamental Matrix F

$$
\mathbf{F}=\mathbf{U D V}^{T}
$$

- Find the SVD of F
- The epipole $e_{\text {, }}$ is the column of V corresponding to the null singular value (as shown above)
- The epipole e_{r} is the column of U corresponding to the null singular value
Output: Epipole e_{r} and e_{r}

Epipolar Geometry

- Basic constraint used to help correspondence
- Makes search for matching points into a 1D search along epipolar lines
- If you have intrinsic and extrinsic parameters
- Then compute essential matrix and find epipolar lines
- If have intrinsic or extrinsic parameters but have at least 8 correct correspondences then
- Compute fundamental matrix and find epipolar lines
- If have intrinsic but not extrinsic parameters and at least 8 correct correspondences then
- Compute fundamental matrix, epipolar lines and use intrinsic parameters to compute E

