Hough Transform

COMP 4900D
Winter 2006

Lines

Lines

Rafael, The School of Athens (1518)

Line Detection

The problem:

- How many lines?
-Find the lines.

Equations for Lines

The slope-intercept equation of line

$$
y=a x+b
$$

What happens when the line is vertical? The slope a goes to infinity.

A better representation - the polar representation

$$
\rho=x \cos \theta+y \sin \theta
$$

Hough Transform: line-parameter mapping

A line in the plane maps to a point in the $\theta-\rho$ space.

All lines passing through a point map to a sinusoidal curve in the $\theta-\rho$ (parameter) space.

$\rho=x \cos \theta+y \sin \theta$

Mapping of points on a line

Points on the same line define curves in the parameter space that pass through a single point.

Main idea: transform edge points in $x-y$ plane to curves in the parameter space. Then find the points in the parameter space that has many curves passing through.

Quantize Parameter Space

ρ

Detecting Lines by finding maxima / clustering in parameter space.

Parameter space - 3D view

A Voting Scheme

Examples

Image

Edge detection

Hough Transform

Examples

input image

Hough space lines detected

Examples

Hough space

lines detected

Algorithm

1. Quantize the parameter space int $\mathrm{P}\left[0, \rho_{\max }\right]\left[0, \theta_{\max }\right]$; // accumulators
2. For each edge point $(x, y)\{$

For $\left(\theta=0 ; \theta<=\theta_{\max } ; \theta=\theta+\Delta \theta\right)\{$ $\rho=x \cos \theta+y \sin \theta / /$ round off to integer ($\mathrm{P}[\rho][\theta])++;$
\}
\}
3. Find the peaks in $\mathrm{P}[\rho][\theta]$.

Cell Size

Choose the parameter cell size such that the algorithm is robust to noise.

