From Pixels to Features: Review of Part 1

> COMP 4900D Winter 2006

Topics in part 1 - from pixels to features

Introduction

what is computer vision? It's applications.

- Linear Algebra
 - vector, matrix, points, linear transformation, eigenvalue, eigenvector, least square methods, singular value decomposition.
- Image Formation
 - camera lens, pinhole camera, perspective projection.
- Camera Model
 - coordinate transformation, homogeneous coordinate, intrinsic and extrinsic parameters, projection matrix.
- Image Processing

 noise, convolution, filters (average, Gaussian, median).
- Image Features
 - image derivatives, edge, corner, line (Hough transform), ellipse.

General Methods

- Mathematical formulation
 Camera model, noise model
- Treat images as functions I = f(x, y)

$$I = f(x, y)$$

- Model intensity changes as derivatives ∇f = [I_x, I_y]^T
 Approximate derivative with finite difference.
- First-order approximation $I(i+u, j+v) \approx I(i, j) + I_x u + I_y v = I(i, j) + [u \quad v] \nabla f$
- Parameter fitting solving an optimization problem

Vectors and Points

We use vectors to represent points in 2 or 3 dimensions

$$P(x_1, y_1) \xrightarrow{V} Q(x_2, y_2)$$

$$v = Q - P = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$$

The distance between the two points:

$$D = \|Q - P\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Eigenvalue and Eigenvector

We say that x is an eigenvector of a square matrix A if

 $Ax = \lambda x$

 λ is called <u>eigenvalue</u> and x is called <u>eigenvector</u>.

The transformation defined by A changes only the magnitude of the vector x

Example:

$$\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

5 and 2 are eigenvalues, and $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ are eigenvectors.

Symmetric MatrixWe say matrix A is symmetric if $A^T = A$ Example: $B^T B$ is symmetric for any B, because $(B^T B)^T = B^T (B^T)^T = B^T B$ A symmetric matrix has to be a square matrixProperties of symmetric matrix:
•has real eignvalues;
•eigenvectors can be chosen to be orthonormal.
• $B^T B$ has positive eigenvalues.

A matrix A is orthogonal if

$$A^T A = I$$
 or $A^T = A^{-1}$

The columns of A are orthogonal to each other.

Example:

$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \quad A^{-1} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Least Square

When m>n for an m-by-n matrix A, Ax = b has no solution.

In this case, we look for an approximate solution. We look for vector x such that

 $\|Ax-b\|^2$

is as small as possible.

This is the least square solution.

Least Square

Least square solution of linear system of equations

$$Ax = b$$

Normal equation: $A^T A x = A^T b$

 $A^T A$ is square and symmetric

The Least square solution $\overline{x} = (A^T A)^{-1} A^T b$ makes $\|A\overline{x} - b\|^2$ minimal.

SVD: Singular Value Decomposition

An $m \times n$ matrix A can be decomposed into:

 $A = UDV^T$

U is $m \times m$, *V* is $n \times n$, both of them have orthogonal columns:

$$U^T U = I \qquad V^T V = I$$

D is an $m \times n$ diagonal matrix.

Example:

 $\begin{bmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Transformation between the camera and world coordinates:

Put All Together – World to Pixel
$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1/s_x & 0 & o_x \\ 0 & -1/s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$
$= \begin{bmatrix} -1/s_x & 0 & o_x \\ 0 & -1/s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_e \\ Y_e \\ Z_e \\ 1 \end{bmatrix}$
$= \begin{bmatrix} -1/s_x & 0 & o_x \\ 0 & -1/s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \\ Z_w \\ 1 \end{bmatrix}$
$= \begin{bmatrix} -f/s_x & 0 & o_x \\ 0 & -f/s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} = K \begin{bmatrix} R & T \\ Z_w \\ 1 \end{bmatrix}$
$x_{im} = x_1 / x_3$ $y_{im} = x_2 / x_3$

Impulsive Noise

- Alters random pixels
- · Makes their values very different from the true ones

Salt-and-Pepper Noise:

· Is used to model impulsive noise

x, *y* are uniformly distributed random variables l, i_{\min}, i_{\max} are constants

Linear Filtering – convolution The output is the linear combination of the neighbourhood pixels $I_A(i, j) = I * A = \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} A(h,k)I(i-h, j-k)$ The coefficients come from a constant matrix A, called <u>kernel</u>. This process, denoted by '*', is called (discrete) <u>convolution</u>.

Gaussian Filter

$$G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^{2}} \exp\left(-\frac{(x^{2} + y^{2})}{2\sigma^{2}}\right)$$
Discrete Gaussian kernel:

$$G(h,k) = \frac{1}{2\pi\sigma^{2}} e^{\frac{h^{2}+k^{2}}{2\sigma^{2}}}$$
where $G(h,k)$ is an element of an m×m array

$$\begin{aligned} \hline Gaussian \text{ Kernel is Separable} \\ I_G &= I * G = \\ &= \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} G(h,k) I(i-h, j-k) = \\ &= \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} e^{\frac{-h^2+k^2}{2\sigma^2}} I(i-h, j-k) = \\ &= \sum_{h=-m/2}^{m/2} e^{\frac{-h^2}{2\sigma^2}} \sum_{k=-m/2}^{m/2} e^{\frac{-k^2}{2\sigma^2}} I(i-h, j-k) \\ &\text{since} \qquad e^{\frac{-h^2+k^2}{2\sigma^2}} = e^{\frac{-h^2}{2\sigma^2}} e^{\frac{-k^2}{2\sigma^2}} \end{aligned}$$

Finite Difference – 2D	
Continuous function:	
$\frac{\partial f(x, y)}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$	<u>()</u>
$\frac{\partial f(x, y)}{\partial y} = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$	<u>()</u>
Discrete approximation:	Convolution kernels:
$I_x = \frac{\partial f(x, y)}{\partial x} \approx f_{i+1,j} - f_{i,j}$	[-1 1]
$I_y = \frac{\partial f(x, y)}{\partial y} \approx f_{i,j+1} - f_{i,j}$	$\begin{bmatrix} -1\\1 \end{bmatrix}$

Finite Difference for Gradient		
Discrete approximation:	Convolution kernels:	
$I_x(i, j) = \frac{\partial f}{\partial x} \approx f_{i+1,j} - f_{i,j}$	[-1 1]	
$I_{y}(i, j) = \frac{\partial f}{\partial y} \approx f_{i,j+1} - f_{i,j}$	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$	
magnitude $G(i, j) = \sqrt{I_x^2(i, j) + I_y^2(i, j)}$		
aprox. magnitude $G(i, j) \approx I_x + I_y $		
direction $\arctan(I_y/I_x)$		

Sobel Edge Detector	
Approximate derivatives with central difference $I_x(i, j) = \frac{\partial f}{\partial x} \approx f_{i-1,j} - f_{i+1,j}$	Convolution kernel $\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$
Smoothing by adding 3 column neighbouring differences and give more weight to the middle one	$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$
Convolution kernel for I_y	$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Sobel Operator Example			
$\begin{bmatrix} a_1 & a_2 \\ a_4 & \boxed{a_5} \\ a_7 & a_8 \end{bmatrix}$	$\begin{array}{c c} a_3 \\ \hline a_6 \\ \hline a_9 \end{array} *$	$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$	
$ \begin{array}{ c c c }\hline a_1 & a_2 \\ \hline a_4 & \hline a_5 \\ \hline a_7 & a_8 \end{array} $	$\begin{array}{c c} a_3 \\ \hline a_6 \\ \hline a_9 \end{array} *$	$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$	
The approximate gradient at a_5 $I_x = (a_1 - a_3) + 2(a_4 - a_6) + (a_7 - a_9)$ $I_y = (a_1 - a_7) + 2(a_2 - a_8) + (a_3 - a_9)$			

Edge Detection Summary

Input: an image I and a threshold τ .

1. Noise smoothing: $I_s = I * h$ (e.g. *h* is a Gaussian kernel)

2. Compute two gradient images I_x and I_y by convolving I_s with gradient kernels (e.g. Sobel operator).

3. Estimate the gradient magnitude at each pixel

$$G(i, j) = \sqrt{I_x^2(i, j) + I_y^2(i, j)}$$

4. Mark as edges all pixels (i, j) such that $G(i, j) > \tau$

Corner Feature

Corners are image locations that have large intensity changes in more than one directions.

Shifting a window in *any direction* should give *a large change* in intensity

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Change of Intensity

The intensity change along some direction can be quantified by <u>sum-of-squared-difference</u> (SSD).

$$D(u,v) = \sum_{i,j} (I(i+u, j+v) - I(i, j))^2$$

Change Approximation

If u and v are small, by Taylor theorem:

$$I(i+u, j+v) \approx I(i, j) + I_x u + I_y v$$
where $I_x = \frac{\partial I}{\partial x}$ and $I_y = \frac{\partial I}{\partial y}$
therefore
 $(I(i+u, j+v) - I(i, j))^2 = (I(i, j) + I_x u + I_y v - I(i, j))^2$
 $= (I_x u + I_y v)^2$
 $= I_x^2 u^2 + 2I_x I_y u v + I_y^2 v^2$
 $= [u \quad v \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$

Gradient Variation Matrix

$$D(u,v) = \begin{bmatrix} u & v \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
This is a function of ellipse.

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$
Matrix *C* characterizes how intensity changes in a certain direction.

Line Detection

Algorithm

- 1. Quantize the parameter space int P[0, ρ_{max}][0, θ_{max}]; // accumulators
- 2. For each edge point (x, y) { For $(\theta = 0; \theta \le \theta_{max}; \theta = \theta + \Delta \theta)$ { $\rho = x \cos \theta + y \sin \theta$ // round off to integer $(P[\rho][\theta])++;$ }
- 3. Find the peaks in $P[\rho][\theta]$.

Compute Distance Function

Computing the distance function is a <u>constrained optimization</u> <u>problem</u>:

 $\min_{\hat{\mathbf{p}}_{i}} \|\hat{\mathbf{p}}_{i} - \mathbf{p}_{i}\|^{2} \qquad \text{subject to} \quad f(\hat{\mathbf{p}}_{i}, \mathbf{a}) = 0$

Using Lagrange multiplier, define:

 $L(x, y, \lambda) = \left\|\hat{\mathbf{p}}_{i} - \mathbf{p}_{i}\right\|^{2} - 2\lambda f(\hat{\mathbf{p}}_{i}, \mathbf{a})$

where $\hat{\mathbf{p}}_i = [x, y]^T$

Then the problem becomes: $\min_{\hat{n}} L(x, y, \lambda)$

Set
$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} = 0$$
 we have $\hat{\mathbf{p}}_i - \mathbf{p}_i = \lambda \nabla f(\hat{\mathbf{p}}_i, \mathbf{a})$

Given a set of *N* image points $\mathbf{p}_i = [x_i, y_i]^T$ find the parameter vector \mathbf{a}_0 such that

$$\min_{\mathbf{a}} \sum_{i=1}^{N} \frac{\left| f(\mathbf{p}_{i}, \mathbf{a}) \right|^{2}}{\left\| \nabla f(\mathbf{p}_{i}, \mathbf{a}) \right\|^{2}}$$

This problem can be solved by using a numerical nonlinear optimization system.