From Pixels to Features:
Review of Part 1
COMP 4900D
Winter 2006

Topics in part 1 - from pixels to features

- Introduction
- what is computer vision? It's applications.
- Linear Algebra
- vector, matrix, points, linear transformation, eigenvalue, eigenvector, least square methods, singular value decomposition.
- Image Formation
- camera lens, pinhole camera, perspective projection.
- Camera Model
- coordinate transformation, homogeneous coordinate, intrinsic and extrinsic parameters, projection matrix.
- Image Processing
- noise, convolution, filters (average, Gaussian, median).
- Image Features
- image derivatives, edge, corner, line (Hough transform), ellipse.

General Methods

- Mathematical formulation
- Camera model, noise model
- Treat images as functions

$$
I=f(x, y)
$$

- Model intensity changes as derivatives $\nabla f=\left[I_{x}, I_{y}\right]^{7}$
- Approximate derivative with finite difference.
- First-order approximation $I(i+u, j+v) \approx I(i, j)+I_{x} u+I_{y} v=I(i, j)+\left[\begin{array}{ll}u & v\end{array}\right] \nabla f$
- Parameter fitting - solving an optimization problem

Vectors and Points

We use vectors to represent points in 2 or 3 dimensions

$$
\left.\xrightarrow[\mathrm{x}]{\stackrel{\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}{\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)}} \underset{\sim}{\mathrm{y}} \underset{\sim}{x_{2}-x_{1}} \begin{array}{l}
y_{2}-y_{1}
\end{array}\right]
$$

The distance between the two points:

$$
D=\|Q-P\|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Homogeneous Coordinates

Go one dimensional higher

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right] \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \rightarrow\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

w is an arbitrary non-zero scalar, usually we choose 1 .

From homogeneous coordinates to Cartesian coordinates:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} / x_{3} \\
x_{2} / x_{3}
\end{array}\right] \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} / x_{4} \\
x_{2} / x_{4} \\
x_{3} / x_{4}
\end{array}\right]
$$

2D Transformation with Homogeneous Coordinates

2D coordinate transformation:

$$
p^{\prime \prime}=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]+\left[\begin{array}{l}
T_{x} \\
T_{y}
\end{array}\right]
$$

2D coordinate transformation using homogeneous coordinates:

$$
\left[\begin{array}{c}
p_{x}^{\prime \prime} \\
p_{y}^{\prime \prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & T_{x} \\
-\sin \phi & \cos \phi & T_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

Eigenvalue and Eigenvector

We say that x is an eigenvector of a square matrix A if

$$
A x=\lambda x
$$

λ is called eigenvalue and x is called eigenvector.
The transformation defined by A changes only the magnitude of the vector x

Example:
$\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 5\end{array}\right]=5\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{c}4 \\ -2\end{array}\right]=2\left[\begin{array}{c}2 \\ -1\end{array}\right]$
5 and 2 are eigenvalues, and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1\end{array}\right]$ are eigenvectors.

Symmetric Matrix

We say matrix A is symmetric if

$$
A^{T}=A
$$

Example: $\quad B^{T} B$ is symmetric for any B, because

$$
\left(B^{T} B\right)^{T}=B^{T}\left(B^{T}\right)^{T}=B^{T} B
$$

A symmetric matrix has to be a square matrix

[^0]
Orthogonal Matrix

A matrix A is orthogonal if

$$
A^{T} A=I \quad \text { or } \quad A^{T}=A^{-1}
$$

The columns of A are orthogonal to each other.
Example:
$A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right] \quad A^{-1}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Least Square

When $\mathrm{m}>\mathrm{n}$ for an m-by-n matrix $A, A x=b$ has no solution.
In this case, we look for an approximate solution.
We look for vector \mathcal{X} such that

$$
\|A x-b\|^{2}
$$

is as small as possible.
This is the least square solution.

Least Square

Least square solution of linear system of equations

$$
A x=b
$$

Normal equation: $\quad A^{T} A x=A^{T} b$
$A^{T} A$ is square and symmetric

The Least square solution $\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b$
makes $\|A \bar{x}-b\|^{2} \quad$ minimal.

SVD: Singular Value Decomposition

An $m \times n$ matrix A can be decomposed into:

$$
A=U D V^{T}
$$

U is $m \times m, V$ is $n \times n$, both of them have orthogonal columns:

$$
U^{T} U=I \quad V^{T} V=I
$$

D is an $m \times n$ diagonal matrix.

Example:

$$
\left[\begin{array}{cc}
2 & 0 \\
0 & -3 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Image Coordinates to Pixel Coordinates

$x=\left(o_{x}-x_{i n}\right) s_{x} \quad y=\left(o_{y}-y_{i m}\right) s_{y}$
s_{x}, s_{y} : pixel sizes

$$
\left[\begin{array}{c}
x_{i m} \\
y_{i m} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
-1 / s_{x} & 0 & o_{x} \\
0 & -1 / s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Put All Together - World to Pixel

Camera Intrinsic Parameters

$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{ccc}-1 / s_{x} & 0 & o_{x} \\ 0 & -1 / s_{y} & o_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}u \\ v \\ w\end{array}\right]$
$=\left[\begin{array}{ccc}-1 / s_{x} & 0 & o_{x} \\ 0 & -1 / s_{y} & o_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}X_{c} \\ Y_{c} \\ Z_{c} \\ 1\end{array}\right]$
$=\left[\begin{array}{ccc}-1 / s_{x} & 0 & o_{x} \\ 0 & -1 / s_{y} & o_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cc}R & T \\ 0 & 1\end{array}\right]\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right]$
$=\left[\begin{array}{ccc}-f / s_{x} & 0 & o_{x} \\ 0 & -f / s_{y} & o_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cc}R & T \\ 0 & 1\end{array}\right]\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right]=K\left[\begin{array}{ll}R & T\end{array}\right]\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w} \\ 1\end{array}\right]$
$x_{i m}=x_{1} / x_{3} \quad y_{i m}=x_{2} / x_{3}$

Put All Together - World to Pixel
$\left[\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]\left[\begin{array}{ccc} -1 / s_{x} & 0 & o_{x} \\ 0 & -1 / s_{y} & o_{y} \\ 0 & 1 \end{array}\right]\left[\begin{array}{l} u \\ x_{1} \end{array}\right]$
$=\left[\begin{array}{ccc} -1 / s_{x} & 0 & o_{x} \\ 0 & -1 / s_{x} & o_{y} \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} X_{c} \\ y_{c} \\ Z_{c} \\ 1 \end{array}\right]$
$x_{i m}=x_{1} / x_{3} \quad y_{i m}=x_{2} / x_{3}$

Extrinsic Parameters

$$
p_{i m}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=K\left[\begin{array}{ll}
R & T
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]=M\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

$[R \mid T]$ defines the extrinsic parameters. The 3×4 matrix $M=K[R \mid T]$ is called the projection matrix.

Gaussian Distribution

Gaussian Distribution

Bivariate with zero-means and variance σ^{2}

$$
G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right)
$$

Gaussian Noise

Is used to model additive random noise

Impulsive Noise

- Alters random pixels
- Makes their values very different from the true ones

Salt-and-Pepper Noise:

- Is used to model impulsive noise

$$
\begin{aligned}
& I_{s p}(h, k)=\left\{\begin{array}{cc}
I(h, k) & x<l \\
i_{\min }+y\left(i_{\max }-i_{\min }\right) & x \geq l
\end{array}\right. \\
& x, y \text { are uniformly distributed random } \\
& \text { variables } \\
& l, i_{\min ,} i_{\max } \text { are constants }
\end{aligned}
$$

Image Filtering

Modifying the pixels in an image based on some function of a local neighbourhood of the pixels

Linear Filtering - convolution

The output is the linear combination of the neighbourhood pixels

$$
I_{A}(i, j)=I * A=\sum_{h=-m / 2}^{m / 2} \sum_{k=-m / 2}^{m / 2} A(h, k) I(i-h, j-k)
$$

The coefficients come from a constant matrix A, called kernel. This process, denoted by '*', is called (discrete) convolution.

Gaussian Filter

$G_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right)$

Discrete Gaussian kernel:

$G(h, k)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{h^{2}+k^{2}}{2 \sigma^{2}}}$
where $G(h, k)$ is an element of an $\mathrm{m} \times \mathrm{m}$ array

Gaussian Kernel is Separable

$$
\begin{aligned}
I_{G} & =I * G= \\
& =\sum_{h=-m / 2}^{m / 2} \sum_{k=-m / 2}^{m / 2} G(h, k) I(i-h, j-k)= \\
& =\sum_{h=-m / 2}^{m / 2} \sum_{k=-m / 2}^{m / 2} e^{-\frac{h^{2}+k^{2}}{2 \sigma^{2}}} I(i-h, j-k)= \\
& =\sum_{h=-m / 2}^{m / 2} e^{-\frac{h^{2}}{2 \sigma^{2}}} \sum_{k=-m / 2}^{m / 2} e^{-\frac{k^{2}}{2 \sigma^{2}}} I(i-h, j-k)
\end{aligned}
$$

since $e^{-\frac{h^{2}+k^{2}}{2 \sigma^{2}}}=e^{-\frac{h^{2}}{2 \sigma^{2}}} e^{-\frac{k^{2}}{2 \sigma^{2}}}$

$\underline{\text { Nonlinear Filtering - median filter }}$

Replace each pixel value $I(i, j)$ with the median of the values found in a local neighbourhood of (i, j).

Finite Difference-2D

Finite Difference for Gradient

Discrete approximation:
Convolution kernels:

$$
\begin{array}{ll}
I_{x}(i, j)=\frac{\partial f}{\partial x} \approx f_{i+1, j}-f_{i, j} & {\left[\begin{array}{cc}
-1 & 1
\end{array}\right]} \\
I_{y}(i, j)=\frac{\partial f}{\partial y} \approx f_{i, j+1}-f_{i, j} & {\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}
\end{array}
$$

magnitude $G(i, j)=\sqrt{I_{x}^{2}(i, j)+I_{y}^{2}(i, j)}$
aprox. magnitude $\quad G(i, j) \approx\left|I_{x}\right|+\left|I_{y}\right|$
direction $\arctan \left(I_{y} / I_{x}\right)$

Edge Detection Using the Gradient

Properties of the gradient:

- The magnitude of gradient provides information about the strength of the edge
- The direction of gradient is always perpendicular to the direction of the edge

Main idea:

- Compute derivatives in x and y directions
- Find gradient magnitude
- Threshold gradient magnitude

Sobel Edge Detector

Approximate derivatives with central difference

$$
I_{x}(i, j)=\frac{\partial f}{\partial x} \approx f_{i-1, j}-f_{i+1, j}
$$

Convolution kernel

$\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]$

Smoothing by adding 3 column neighbouring differences and give more weight to the middle one
$\left[\begin{array}{lll}1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1\end{array}\right]$

Convolution kernel for $I_{y} \quad\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1\end{array}\right]$

Sobel Edge Detector	
Approximate derivatives with central difference	Convolution kernel
$I_{x}(i, j)=\frac{\partial f}{\partial x} \approx f_{i-1, j}-f_{i+1, j}$	$\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]$
Smoothing by adding 3 column neighbouring differences and give more weight to the middle one Convolution kernel for I_{y}	$\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1\end{array}\right]$
	$\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1\end{array}\right]$

Edge Detection Summary

Input: an image I and a threshold τ.

1. Noise smoothing: $\quad I_{s}=I * h$
(e.g. h is a Gaussian kernel)
2. Compute two gradient images I_{x} and I_{y} by convolving I_{s} with gradient kernels (e.g. Sobel operator).
3. Estimate the gradient magnitude at each pixel

$$
G(i, j)=\sqrt{I_{x}^{2}(i, j)+I_{y}^{2}(i, j)}
$$

4. Mark as edges all pixels (i, j) such that $G(i, j)>\tau$

Corner Feature

Corners are image locations that have large intensity changes in more than one directions.

Shifting a window in any direction should give a large change in intensity

Change of Intensity

The intensity change along some direction can be quantified by sum-of-squared-difference (SSD).

$$
D(u, v)=\sum_{i, j}(I(i+u, j+v)-I(i, j))^{2}
$$

Change Approximation

If u and v are small, by Taylor theorem:

$$
I(i+u, j+v) \approx I(i, j)+I_{x} u+I_{y} v
$$

where $\quad I_{x}=\frac{\partial I}{\partial x}$ and $I_{y}=\frac{\partial I}{\partial y}$
therefore

$$
\begin{aligned}
(I(i+u, j+v)-I(i, j))^{2} & =\left(I(i, j)+I_{x} u+I_{y} v-I(i, j)\right)^{2} \\
& =\left(I_{x} u+I_{y} v\right)^{2} \\
& =I_{x}^{2} u^{2}+2 I_{x} I_{y} u v+I_{y}^{2} v^{2} \\
& =\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

Gradient Variation Matrix

$$
D(u, v)=\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

This is a function of ellipse.

$$
C=\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]
$$

Matrix C characterizes how intensity changes in a certain direction.

Eigenvalue Analysis

$$
C=\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]=Q^{T}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] Q
$$

If either λ is close to 0 , then this is not a corner, so look for

$C=\left[\begin{array}{l}I_{x} \\ I_{y}\end{array}\right]\left[\begin{array}{ll}I_{x} & I_{y}\end{array}\right]=A^{T} A$

- C is symmetric
- C has two positive eigenvalues

Corner Detection Algorithm

Algorithm
(1) Compute the gradient over the entire image f
(2) For each image point p :
(2.1) form the matrix C over the neighborhood Q of p
(2.2) compute λ_{2}, the smaller eigenvalue of C
(2.3) if $\lambda_{2}>t$, save the coordinates of p in a list L
(3) Sort the list in decreasing order of λ_{2}
(4) Scanning the sorted list top to bottom: delete all the points that appear in the
list that are in the same neighborhood Q with p

Equations for Lines

The slope-intercept equation of line

$$
y=a x+b
$$

What happens when the line is vertical? The slope a goes to infinity.

A better representation - the polar representation
$\rho=x \cos \theta+y \sin \theta$

A line in the plane maps to a point in the $\theta-\rho$ space.

All lines passing through a point map to a sinusoidal curve in the $\theta-\rho$ (parameter) space.

$\rho=x \cos \theta+y \sin \theta$

Mapping of points on a line

Points on the same line define curves in the parameter space that pass through a single point.

Main idea: transform edge points in $x-y$ plane to curves in the parameter space. Then find the points in the parameter space that has many curves passing through.

Examples

Algorithm

Equations of Ellipse

1. Quantize the parameter space
int $\mathrm{P}\left[0, \rho_{\max }\right]\left[0, \theta_{\max }\right]$; // accumulators
2. For each edge point $(x, y)\{$

For $\left(\theta=0 ; \theta<=\theta_{\max } ; \theta=\theta+\Delta \theta\right)\{$
$\rho=x \cos \theta+y \sin \theta / /$ round off to integer $(\mathrm{P}[\rho][\theta])++;$
\}
\}
3. Find the peaks in $\mathrm{P}[\rho][\theta]$.

Compute Distance Function

Ellipse Fitting with Euclidean Distance

Given a set of N image points $\mathbf{p}_{i}=\left[x_{i}, y_{i}\right]^{T}$ find the parameter vector \mathbf{a}_{0} such that

$$
\min _{\mathbf{a}} \sum_{i=1}^{N} \frac{\left|f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right|^{2}}{\left\|\nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right\|^{2}}
$$

This problem can be solved by using a numerical nonlinear optimization system.

$$
\text { Set } \quad \frac{\partial L}{\partial x}=\frac{\partial L}{\partial y}=0 \quad \text { we have } \quad \hat{\mathbf{p}}_{i}-\mathbf{p}_{i}=\lambda \nabla f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right)
$$

[^0]: Properties of symmetric matrix:
 -has real eignvalues;

 - eigenvectors can be chosen to be orthonormal.
 - $B^{T} B$ has positive eigenvalues.

