

Linear Equations

A system of linear equations, e.g.

$$2x_1 + 4x_2 = 2$$
$$4x_1 + 11x_2 = 1$$

can be written in matrix form:

$$\begin{bmatrix} 2 & 4 \\ 4 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

or in general:

$$Ax = b$$

Vectors

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{e.g.} \quad x = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$
The length or the norm of a vector is

$$\|x\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
e.g.
$$\|x\| = \sqrt{2^2 + 3^2 + 5^2} = \sqrt{38}$$

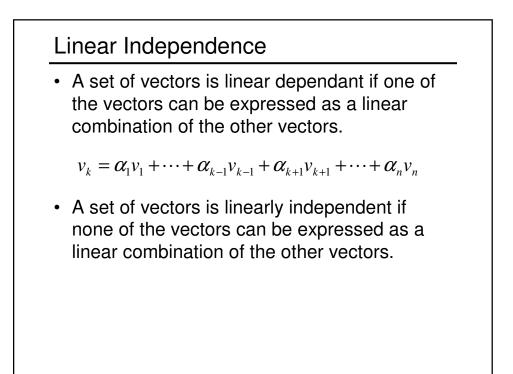
Vector Arithmetic
Vector addition

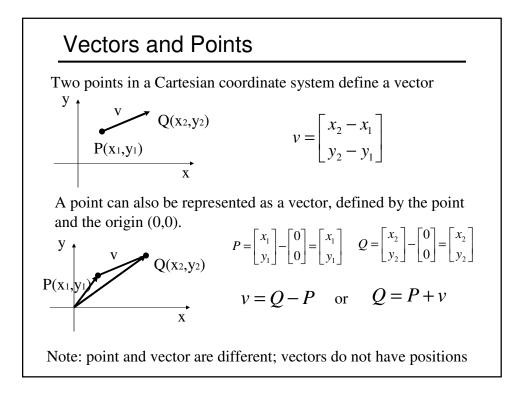
$$u + v = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$
Vector subtraction

$$u - v = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \end{bmatrix}$$
Multiplication by scalar

$$\alpha u = \alpha \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \alpha u_2 \end{bmatrix}$$

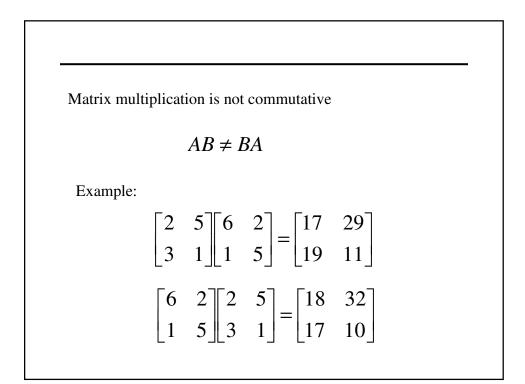
Dot Product (inner product)
$a = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \qquad b = \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix}$
$a \cdot b = a^T b = \begin{bmatrix} 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix} = 2 \cdot 4 + 3 \cdot (-3) + 5 \cdot 2 = 9$
$a \cdot b = a^T b = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$





A matrix is a		•				
Γ	a_{11}	a_{12}	•••	a_{1n}]	
A =	$a_{_{21}}$:	a ₂₂ :	••••	a_{2n} :	$\left] = \left[a_{ij} \right]$	
	a_{m1}	a_{m2}	•••	a_{mn}		
Example:		[2	3	5	4]	
	<i>A</i> =	$= \begin{bmatrix} 2\\ -4\\ 0 \end{bmatrix}$	1	3	9	
		0	7	10	11	

Matrix Arithmetic Matrix addition $A_{m \times n} + B_{m \times n} = [a_{ij} + b_{ij}]_{m \times n}$ Matrix multiplication $A_{m \times n} B_{n \times p} = C_{m \times p} \qquad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ Matrix transpose $A^{T} = [a_{ji}]$ $(A + B)^{T} = A^{T} + B^{T} \qquad (AB)^{T} = B^{T} A^{T}$



Symmetric Matrix

We say matrix A is symmetric if

$$A^T = A$$

Example:

$$A = \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix}$$

A symmetric matrix has to be a square matrix

Inverse of matrix

If A is a square matrix, the inverse of A, written A⁻¹ satisfies:

$$AA^{-1} = I \qquad A^{-1}A = I$$

Where *I*, the identity matrix, is a diagonal matrix with all 1's on the diagonal.

$$I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Trace of Matrix

The trace of a matrix:

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

Orthogonal Matrix

A matrix A is orthogonal if

$$A^T A = I$$
 or $A^T = A^{-1}$

Example:

$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

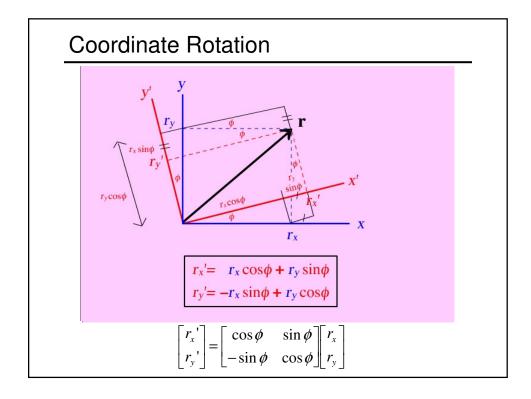
Matrix Transformation

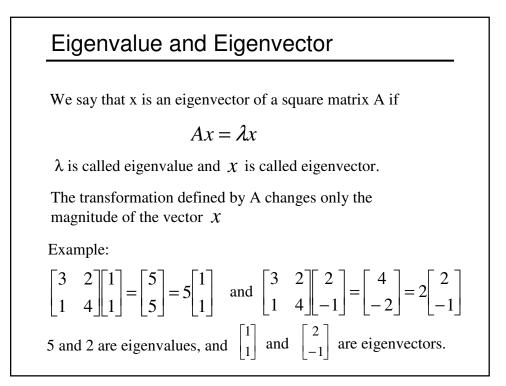
A matrix-vector multiplication transforms one vector to another

$$A_{m \times n} x_{n \times 1} = b_{m \times 1}$$

Example:

$$\begin{bmatrix} 2 & 5 \\ 3 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \end{bmatrix} = \begin{bmatrix} 41 \\ 16 \\ 26 \end{bmatrix}$$





Properties of Eigen Vectors

- If λ₁, λ₂,..., λ_q are distinct eigenvalues of a matrix, then the corresponding eigenvectors e₁,e₂,...,e_q are linearly independent.
- A real, symmetric matrix has real eigenvalues with eigenvectors that can be chosen to be orthonormal.

Least Square

When m>n for an m-by-n matrix A, Ax = b has no solution.

In this case, we look for an approximate solution. We look for vector X such that

$$\left\|Ax-b\right\|^2$$

is as small as possible.

This is the least square solution.

Least Square

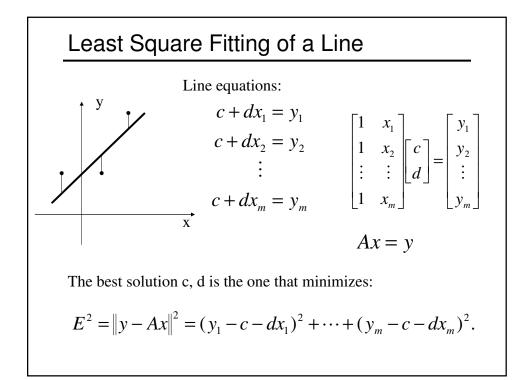
Least square solution of linear system of equations

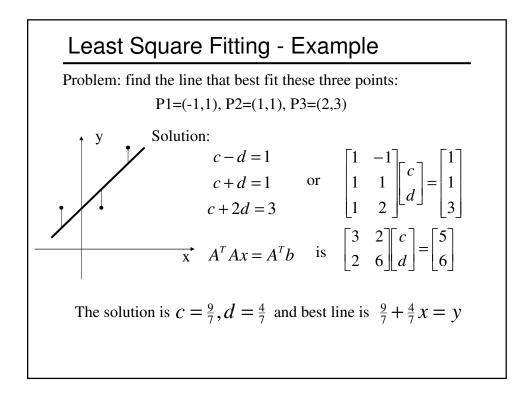
Ax = b

Normal equation: $A^T A x = A^T b$

 $A^{T}A$ is square and symmetric

The Least Square solution $\overline{x} = (A^T A)^{-1} A^T b$ makes $||A\overline{x} - b||^2$ minimal.





SVD: Singular Value Decomposition

An $m \times n$ matrix A can be decomposed into:

$$A = UDV^{T}$$

U is $m \times m$, V is $n \times n$, both of them have orthogonal columns:

$$U^T U = I \qquad V^T V = I$$

D is an $m \times n$ diagonal matrix.

Example:

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$