Image Features (I)

Dr. Chang Shu

COMP 4900C Winter 2007

Image Features

Image features – may appear in two contexts:

- Global properties of the image (average gray level, etc) global features
- Parts of the image with special properties (line, circle, textured region) local features

Here, assume second context for image features:

• Local, meaningful, detectable parts of the image

Detection of image features

- Detection algorithms produce feature descriptors
- Example line segment descriptor: coordinates of mid-point, length, orientation

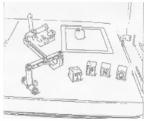
Edges in Images

Definition of edges

- Edges are significant local changes of intensity in an image.
- Edges typically occur on the boundary between two different regions in an image.

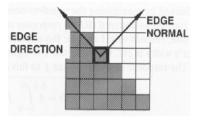
Applications of Edge Detection

- Produce a line drawing of a scene from an image of that scene.
- Important features can be extracted from the edges of an image (e.g. corners, lines, curves).
- These features are used by higher-level computer vision algorithms (e.g., segmentation, recognition).



Edge Descriptors

- Edge normal: unit vector in the direction of maximum intensity change.
- Edge direction: unit vector to perpendicular to the edge normal.
- Edge position or center: the image position at which the edge is located.
- Edge strength: related to the local image contrast along the normal.

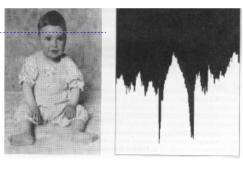


What causes intensity changes?

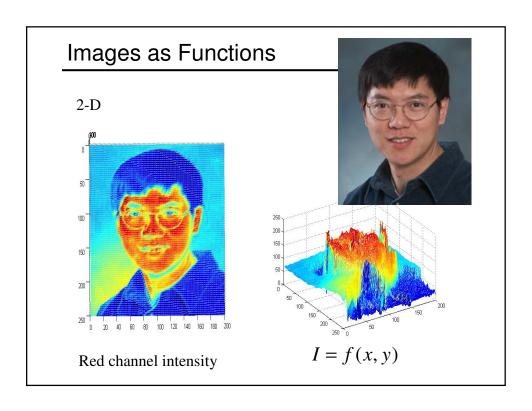
- Geometric events
 - object boundary (discontinuity in depth and/or surface color and texture)
 - surface boundary (discontinuity in surface orientation and/or surface color and texture)
- Non-geometric events
 - specularity
 - shadows (from other objects or from the same object)
 - inter-reflections

Images as Functions

1-D



$$I = f(x)$$



Edge Detection using Derivatives

- Calculus describes changes of continuous functions using *derivatives*.
- An image is a 2D function, so operators describing edges are expressed using *partial derivatives*.
- Points which lie on an edge can be detected by either:
 - detecting local maxima or minima of the first derivative
 - detecting the zero-crossing of the second derivative

image profile of a horizontal line first derivative second derivative

Finite Difference Method

We approximate derivatives with differences.

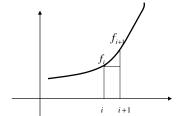
Derivative for 1-D signals:

Continuous function

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Discrete approximation

$$f'(x) \approx \frac{f_{i+1} - f_i}{i + 1 - i} = f_{i+1} - f_i$$



Finite Difference and Convolution

Finite difference on a 1-D image

$$f'(x) \approx f(x_{i+1}) - f(x_i)$$

is equivalent to convolving with kernel: $\begin{bmatrix} -1 & 1 \end{bmatrix}$

Finite Difference – 2D

Continuous function:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$\frac{\partial f(x,y)}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Discrete approximation:

Convolution kernels:

$$I_x = \frac{\partial f(x, y)}{\partial x} \approx f_{i+1, j} - f_{i, j}$$

$$\begin{bmatrix} -1 & 1 \end{bmatrix}$$

$$I_{x} = \frac{\partial f(x, y)}{\partial x} \approx f_{i+1, j} - f_{i, j}$$

$$I_{y} = \frac{\partial f(x, y)}{\partial y} \approx f_{i, j+1} - f_{i, j}$$

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

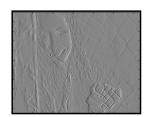
Image Derivatives

Image I

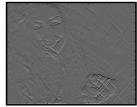
 $I_x = I * \begin{bmatrix} -1 & 1 \end{bmatrix}$

Image Derivatives

Image I



$$I_{x} = I * \begin{bmatrix} -1 & 1 \end{bmatrix}$$



$$I_{y} = I * \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$