Corner Detection

COMP 4900D
Winter 2006

Motivation: Features for Recognition

Image search: find the book in an image.

Motivation: Build a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

How do we build panorama?

We need to match (align) images

Matching with Features

-Detect feature points in both images

Matching with Features

-Detect feature points in both images
-Find corresponding pairs

Matching with Features

-Detect feature points in both images
-Find corresponding pairs
-Use these pairs to align images

More motivation...

Feature points are used also for:

- Image alignment (homography, fundamental matrix)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

Corner Feature

Corners are image locations that have large intensity changes in more than one directions.

Shifting a window in any direction should give a large change in intensity

Examples of Corner Features

Harris Detector: Basic Idea

"flat" region:
no change in all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions
C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Change of Intensity

The intensity change along some direction can be quantified by sum-of-squared-difference (SSD).

$$
D(u, v)=\sum_{i, j}(I(i+u, j+v)-I(i, j))^{2}
$$

Change Approximation

If u and v are small, by Taylor theorem:

$$
I(i+u, j+v) \approx I(i, j)+I_{x} u+I_{y} v
$$

where $I_{x}=\frac{\partial I}{\partial x}$ and $I_{y}=\frac{\partial I}{\partial y}$
therefore

$$
\begin{aligned}
(I(i+u, j+v)-I(i, j))^{2} & =\left(I(i, j)+I_{x} u+I_{y} v-I(i, j)\right)^{2} \\
& =\left(I_{x} u+I_{y} v\right)^{2} \\
& =I_{x}^{2} u^{2}+2 I_{x} I_{y} u v+I_{y}^{2} v^{2} \\
& =\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

Gradient Variation Matrix

$$
D(u, v)=\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

This is a function of ellipse.

$$
C=\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]
$$

Matrix C characterizes how intensity changes in a certain direction.

Eigenvalue Analysis - simple case

First, consider case where:

$$
C=\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

This means dominant gradient directions align with x or y axis
If either λ is close to 0 , then this is not a corner, so look for locations where both are large.

General Case

It can be shown that since C is symmetric:

$$
C=Q^{T}\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] Q
$$

So every case is like a rotated version of the one on last slide.

Gradient Orientation

Corner Detection Summary

- if the area is a region of constant intensity, both eigenvalues will be very small.
- if it contains an edge, there will be one large and one small eigenvalue (the eigenvector associated with the large eigenvalue will be parallel to the image gradient).
- if it contains edges at two or more orientations (i.e., a corner), there will be two large eigenvalues (the eigenvectors will be parallel to the image gradients).

Corner Detection Algorithm

Algorithm
Input: image f, threshold t for λ_{2}, size of Q
(1) Compute the gradient over the entire image f
(2) For each image point p :
(2.1) form the matrix C over the neighborhood Q of p
(2.2) compute λ_{2}, the smaller eigenvalue of C
(2.3) if $\lambda_{2}>t$, save the coordinates of p in a list L
(3) Sort the list in decreasing order of λ_{2}
(4) Scanning the sorted list top to bottom: delete all the points that appear in the list that are in the same neighborhood Q with p

