Corner Detection

COMP 4900D Winter 2006

Motivation: Features for Recognition

Image search: find the book in an image.

Motivation: Build a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

How do we build panorama?

We need to match (align) images

Matching with Features

•Detect feature points in both images

Matching with Features

- •Detect feature points in both images
- •Find corresponding pairs

Matching with Features

- •Detect feature points in both images
- •Find corresponding pairs
- •Use these pairs to align images

More motivation...

Feature points are used also for:

- Image alignment (homography, fundamental matrix)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

Corners are image locations that have large intensity changes in more than one directions.

Shifting a window in *any direction* should give *a large change* in intensity

Examples of Corner Features

Harris Detector: Basic Idea

"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Change of Intensity

The intensity change along some direction can be quantified by sum-of-squared-difference (SSD).

$$D(u,v) = \sum_{i,j} (I(i+u, j+v) - I(i, j))^2$$

Change Approximation

If *u* and *v* are small, by Taylor theorem:

where
$$I_x = \frac{\partial I}{\partial x}$$
 and $I_y = \frac{\partial I}{\partial y}$

therefore

$$(I(i+u, j+v) - I(i, j))^{2} = (I(i, j) + I_{x}u + I_{y}v - I(i, j))^{2}$$
$$= (I_{x}u + I_{y}v)^{2}$$
$$= I_{x}^{2}u^{2} + 2I_{x}I_{y}uv + I_{y}^{2}v^{2}$$
$$= [u \quad v] \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$D(u,v) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

This is a function of ellipse.

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

Matrix *C* characterizes how intensity changes in a certain direction.

Eigenvalue Analysis – simple case

First, consider case where:

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means dominant gradient directions align with x or y axis

If either λ is close to 0, then this is **not** a corner, so look for locations where both are large.

Slide credit: David Jacobs

General Case

It can be shown that since C is symmetric:

$$C = Q^{T} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} Q$$

So every case is like a rotated version of the one on last slide.

Gradient Orientation

Corner Detection Summary

- if the area is a region of constant intensity, both eigenvalues will be very small.
- if it contains an edge, there will be one large and one small eigenvalue (the eigenvector associated with the large eigenvalue will be parallel to the image gradient).
- if it contains edges at two or more orientations (i.e., a corner), there will be two large eigenvalues (the eigenvectors will be parallel to the image gradients).

Corner Detection Algorithm

AlgorithmInput: image f, threshold t for λ_2 , size of Q(1) Compute the gradient over the entire image f(2) For each image point p:(2.1) form the matrix C over the neighborhood Q of p(2.2) compute λ_2 , the smaller eigenvalue of C(2.3) if $\lambda_2 > t$, save the coordinates of p in a list L(3) Sort the list in decreasing order of λ_2

(4) Scanning the sorted list top to bottom: delete all the points that appear in the list that are in the same neighborhood Q with p