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Abstract

This paper describes a technique for finding regular grids in the images of
calibration patterns, a crucial step in calibrating cameras. Corner features lo-
cated by a corner detector are connected using Delaunay triangulation. Pairs of
neighboring triangles are combined into quadrilaterals, which are then topolog-
ically filtered and ordered. We introduce a unique data structure for represent-
ing both triangular and quadrilateral meshes. This mesh structure allows us to
exploit the strong topological constraints in a regular grid. Experiments show
that the method is able to handle images with severe radial distortions. Im-
plemented on a conventional desktop, grid matching can be done in real time.
The method is also applicable to marker detections for augmented reality and
robot navigation.
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1 Introduction

The process of calibrating a camera involves determining the intrinsic parameters,
such as focal length, and extrinsic parameters, such as the position and orientation
of the camera with respect to a coordinate frame. This process often relies on the
use of calibration patterns with known geometry. It is possible to calibrate cameras
using only natural scenes, a process called autocalibration. However, when accuracy
and reliability are demanded, one has to resort to the use of calibration patterns.

The first stage in calibration is to extract features from the images of patterns
and match them with those of the patterns. Once the correspondences between
points in the images and points in the pattern are established, the second stage is to
solve for the intrinsic and extrinsic parameters by certain numerical procedures [6].
Published work has been concentrated on the second stage, for example [10, 12, 15].
Public domain code is also available [7, 14]. In contrast, there has been little study
on the first stage. There, manual or user assisted methods are often used to solve
the correspondence problem. With the increasing use of multiple cameras in many
applications, the importance of the automatic correspondence problem has become
evident.

The most commonly used calibration pattern is the checkerboard pattern. Its
alternating black and white squares make strong corner features. In this paper, we
use a variant of the checkerboard pattern, as shown in Figure 2. The three circles in
the pattern are used for fixing the orientations.

One usual approach to processing the checkerboard pattern is to find edges and fit
lines to them. Corners are found by intersecting lines. The drawback of this approach
is that edges are in general curved due to radial distortions. Furthermore, the subse-
quent ordering of the corners into a regular grid can be complex and unreliable. Soh
et al. [9] used a regular grid pattern. They used attributed relational graph matching
to arrange the centers of the black squares into a regular grid, though little detail
was given in the paper. The OpenCV function, cvFindChessBoardCornerGuesses,
uses a checkerboard pattern without the orientation marker, but the algorithm is not
documented.

In this paper, we propose a method that exploits the topological structure of the
checkerboard pattern. The main idea is to use Delaunay triangulation to connect
the corner points. Neighboring pairs of triangles with similar colors are merged into
quadrilaterals that match the squares in the pattern. We introduce an efficient data
structure to facilitate the manipulation and traversal of the triangular and quadrilat-
eral meshes. This mesh structure captures the topological information embedded in
the images of the pattern. Figure 1 illustrated the main steps of the method. This
approach is similar to the work of Tell and Carlsson [11] where both appearance and
topological information are used for wide baseline matching. The difference in our

4



(a) (b)

(c) (d)

Figure 1: The grid finding process

case is that the topology is clearly known.

Our objective is to provide a calibration pattern matching method that is both
robust and efficient. It should work reliably under different lighting conditions, oc-
clusions, and quality of lens. It should also be fast enough so that it can be used for
real-time applications such as robot navigation and augmented reality.

The rest of this paper is organized as follows. Section 2 discusses connecting fea-
ture points using Delaunay triangulation and its associated data structures. Section 3
discusses combining triangles into quadrilaterals. In section 4 we introduce a tech-
nique that filters out illegal quadrilaterals. In section 5 we provide details of walking
through the quadrilateral mesh to match them with the squares in the pattern. Ex-
perimental results are presented in section 6. Finally, conclusions and discussions are
presented in section 7.
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Figure 2: Checkerboard calibration pattern

2 Feature point connectivity

We begin by finding corners in the images. Here, we use Harris’ corner detector [5],
which is based on thresholding on the eigenvalues of a correlation matrix for each
pixel. The checkerboard pattern gives strong corners. The positions of these corners
can be found with subpixel accuracy.

Let the corner points in the image be denoted by {nk}, and the corner points in
the pattern be denoted by {Nk}. Our problem is to find a topologically compatible
map Φ : I → P such that Φ(nk) = Nk, where I is a subset of {nk} and P is a subset
of {Nk}. By topologically compatible, we mean that there exists a graph GI on I
and and a graph GP on P such that GI is homomorphic to GP .

An obvious choice for the graph GP is the regular grid that connects each corners
of the square. Now, our problem is reduced to finding the graph GI that matches
GP .

We start with connecting the feature points with Delaunay triangulation, and we
will show that the triangular mesh thus generated can be transformed into a regular
grid.

2.1 Delaunay triangulation

Given a set of points in the plane, Delaunay triangulation is the unique triangulation
of the point set in which the circumcircle of every triangle is empty. The dual of
Delaunay triangulation is the Voronoi diagram with the point set as the Voronoi
sites. This means that in a Delaunay triangulation triangles are always formed with
points that are close to each other.

When square tiles of a checkerboard pattern are imaged through a camera, they
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Figure 3: Empty circumcircle

become general quadrilaterals. Consider a black or a white tile in the image with
four corners A, B, C, and D, as shown in Figure 3. The circumcircle of the triangle
∆(A,B,C) does not contain other feature points. In fact, with the exception of
point D, other feature points are quite far away from the circumcircle. Similarly,
the circumcircle of triangle ∆(A,C,D) is also empty. Therefore, ∆(A,B,C) and
∆(A,C,D) are in the final Delaunay triangulation. The situation is the same in the
other tiles where Delaunay triangles are formed by joining one of the diagonals of the
tiles. Only in extreme cases, when the camera is pointed to the calibration pattern at
a very small angle, the Delaunay triangulation may make triangles with their three
corners belong to different tiles. In these cases, the corner finding is not reliable
either, and therefore these images should not be used for calibration.

Delaunay triangulation is a well studied structure in computational geometry.
Guibas et al. [3] gives an incremental algorithm which runs in (n log n) time. We use
an early algorithm by Watson [13]. Although its worst case performance is O(n2), in
practice it runs close to linear time. We choose Watson’s algorithm because its imple-
mentation is simple. For a survey of algorithms for Delaunay triangulation, see Bern
and Eppstein [2]. Shewchuk [8] compares various algorithms from an implementation
viewpoint.

2.2 Data structures

There are several ways to represent a mesh. The most commonly used data structure
is the winged-edge data structure [1] and its variant the quad-edge data structure [4].
These data structures are capable of representing general polygons. In our case, we
need only to represent meshes of uniform element type, which is either of triangle
or quadrilateral. Therefore, it is possible to design simpler and more efficient data
structures.

Our data structure is element centered. A mesh consists of a list of elements,

7



Figure 4: Data structure for element

either triangle or quadrilateral. Each element consists of an ordered lists of nodes.
The nodes of an element are stored in a counter clockwise order. Each node stores
its x and y coordinates as well as pointers to all the elements containing this node.

Our data structure should facilitate the efficient traversal of the meshes. Two
operations are important. One is to compute the edge degree of a node, that is the
number of edges incident to the node. This can be obtained from the stored elements
in the nodes.

Another important operation is to find the neighboring elements sharing an edge.
In our data structure, edge is a transient structure. We do not store edges. Instead,
we construct them on the fly. It is easy to find the edges of an element. For a triangle
element, assume its three nodes are (n0, n1, n2), its three edges are e1 = (n0, n1),
e2 = (n1, n2), and e3 = (n2, n0). Similarly, for a quadrilateral element (n0, n1, n2, n3),
its four edges are e1 = (n0, n1), e2 = (n1, n2), e3 = (n2, n3), and e4 = (n3, n0). See
Figure 4.

To find the elements sharing a common edge, all we need to do is to collect the
elements stored in the two end nodes of the edge and select the elements that contain
both end nodes.

3 Combining triangles

We wish to combine a pair of neighboring triangles to form a quadrilateral that cor-
responds to a black or a white tile. As shown in section 2, the Delaunay triangulation
will usually generate triangles by diagonalizing the tiles. From the design of the
checkerboard pattern, it is clear that among the three edge-neighbors of a triangle,
only one can have the same color (see Figure 6). In practice, we check for triangles
with similar average colors. Note that the three tiles with circles satisfy the average
color criterion.

Due to distortions, the pixels covered by a triangle may not be the same color.
Since this situation always happens near the boundary of the triangle, we can simply
ignore pixels with a small distance from the triangle edges.
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Figure 5: Topological filtering.

Figure 6: Matching triangles
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4 Topological filtering

When the pattern in an image does not fill up the whole frame, corners may be
found outside the pattern in the environment scene. These corners will be part of
the triangulation and some of the triangles may pass the color test and eventually be
merged into quads (Figure 5(a)). Occasionally, due to noise, there are mismatched
triangles inside the pattern area. These quads have to be pruned.

Notice that a proper node in a regular grid mesh has edge-degree of 2, 3, or 4. If a
node has edge-degree more than 4, it is an illegal node. A quadrilateral that has two
illegal nodes is removed from the mesh. Most of the illegal quads can be pruned by
the topological filtering, since the chance of an arbitrary scene that contains feature
points with regular grid topology is not very high.

We emphasize the importance of topological testing. Whenever possible, we per-
form topological tests ahead of geometric tests, because topological tests are noise
free. Determining topological information from geometric and appearance informa-
tion always involves the use of thresholds which are difficult to choose. Different
lighting conditions and different cameras may require different thresholds. We cannot
eliminate the use of thresholds, but we can make use of the most reliable informa-
tion, the topological information, first. This should be a general rule for any pattern
identification system.

Figure 5 shows the effect before and after topological filtering.

5 Ordering quads - topological walking

Once we have a quadrilateral mesh, and after the topological filtering, we actually
have a graph with a regular grid topology. The next step is to map nodes of the
quads to the corners of the pattern. To do this, we start from an arbitrary quad
and fix the coordinates of its nodes. Without loss of generality, we assume that the
coordinates of the pattern’s corner are integers. Then the neighbors of the first quad
can be labeled. This process is repeated in a flood-fill fashion. When all the nodes
of the quads are labeled, we can find the reference quads and transform the labeled
coordinates according to the reference orientation. Referring to Figure 2, we define
the pattern origin as the horizontally centered white circle. The y axis points toward
the other white circle. To determine orientation, however, we need only find the black
circle and one white circle.

Since every quad is visited exactly once, the algorithm is O(n), where n is the
number of the quads which is linear to the number of corners.

We illustrate the process of labeling node coordinates using an example of propa-
gating element node coordinates from left to right (Figure 7). Suppose we have fixed
the coordinates in element Ek, now we walk into its right neighbor element Ek+1
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Figure 7: Propagating node coordinates

through Ek’s second edge e = (ns, ne). Let N [j] be the node with index j in element
Ek+1. As nodes ns and ne are shared by both Ek and Ek+1, we can use them to fix
the orientation of Ek+1 with respect to that of Ek. We first find the node index i of ns
in Ek+1. Then the pattern coordinates of the nodes of Ek+1 are assigned as follows.

N [i].x = ns.x
N [i].y = ns.y
N [(i+ 1) mod 4].x = ns.x+ 1
N [(i+ 1) mod 4].y = ns.y
N [(i+ 2) mod 4].x = ns.x+ 1
N [(i+ 2) mod 4].y = ns.y + 1
N [(i+ 3) mod 4].x = ns.x
N [(i+ 3) mod 4].y = ns.y + 1

This orientation operation is equivalent to re-ordering the nodes in a quad based
on its neighbors.

Note that the coordinate labeling is done using pure topological information.
Hence, the algorithm works even if the the edges are curved due to radial distor-
tions.

6 Experiments

The technique was tested by capturing image sequences of the calibration pattern with
12 different cameras. In each sequence the camera was moved relative to the pattern
through a range of distances and orientations. The sequences were then processed
on a Pentium III desktop computer with a Windows C++ program which performed
the grid finding, with the result being a set of point correspondences for most of
the frames in the sequence. The successfully extracted point correspondences from a
sequence were then input to the OpenCV calibration function cvCalibrateCamera.

A total of 28 sequences with 12 to 52 frames, with three different resolutions
were captured. Standard video (NTSC), IEEE 1394 (Firewire) and USB cameras
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were used. The 12 cameras and the resolution modes used are: two color and two
greyscale PointGrey DragonFly firewire cameras (640 x 480), a low-cost single board
greyscale NTSC camera (416 x 484 pixels), three Intel Easycam Webcams (320 x 240
pixels) captured in greyscale, an NTSC camcorder Sharp VL-AH150U captured at
320 x 240 pixels through the NTSC input of a Intel IPro webcam, a wireless security
NTSC camera also captured at 320 x 240 pixels by the Intel IPro webcam, and the
camera input itself from the Intel IPro (320 x 240), and a Telemax webcam (320 x
240 pixels).

The calibration pattern from Figure 2 was printed out onto a small (20 x 25 cm)
and large (150 x 150 cm) sheet, and each mounted on a flat panel. 14 of the 28
sequences were filmed aiming at the smaller pattern and the rest viewed the larger
pattern.

For each frame, the vertices of the ordered quads (nodes of the mesh) were used as
point correspondences where the quad number provided a pattern space coordinate.
Table 1 details the success in finding these correspondences. For each sequence, the
grid finding success and number of extracted correspondences is reported. Table 2
provides some statistics for each frame. Table 3 gives a breakdown of average time
spent in each processing stage.

Figures 8 shows the results of grid finding on a distorted image and unwarped
image after calibration.

7 Conclusions

We have presented a method for finding regular grids from calibration patterns using
Delaunay triangulation. By triangulating the feature points, we create connectivi-
ties between the isolating feature points. Working with a mesh data structure help
exploit the topological constraints easily and greatly enhanced the robustness of the
algorithm. The mesh data structure also results in a linear time algorithm for match-
ing the grids.

The technique of triangulating feature points and combining them to form quadri-
laterals can be applied to general marker identification in augmented reality and robot
navigation. The principle of this approach is that we search for topological regulari-
ties as well as appearance patterns. We may also design markers in such a way that
their features have certain topological invariance under perspective transformation.

For future work, we plan to further improve the robustness and efficiency of the
algorithm by adding corner validation mechanisms, more sophisticated topological
filtering techniques, and optimization of the current algorithms.

12



(a) (b)

(c) (d)

Figure 8: Results of calibration and unwarped image
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Camera Frames % Located Points/
Grid

Greyscale Dragonfly A 20 50% 93
Greyscale Dragonfly B 12 100% 72

Color Dragonfly A 20 95% 93
Color Dragonfly B 20 75% 81
Color Dragonfly B 20 100% 94
Low Cost NTSC 52 83% 75
Intel EasyCam A 32 81% 69
Intel EasyCam A 32 56% 57
Intel EasyCam A 32 100% 68
Intel EasyCam A 32 91% 75
Intel EasyCam A 32 97% 49
Intel EasyCam A 32 100% 55
Intel EasyCam B 32 94% 76
Intel EasyCam B 32 84% 48
Intel EasyCam B 32 72% 58
Intel EasyCam C 32 31% 66
Intel EasyCam C 32 84% 61
Intel EasyCam C 32 19% 62
Camcorder/IPro 32 19% 68
Camcorder/IPro 32 50% 75
Camcorder/IPro 32 85% 54

Wireless/IPro 32 88% 65
Wireless/IPro 32 16% 70
Wireless/IPro 32 63% 71

Intel IPro 32 94% 56
Intel IPro 32 94% 61

Telemax Webcam 32 69% 64
Telemax Webcam 32 13% 36

Table 1: Results of Automatic Grid Finding on 28 Sequences. The % Located field
indicates how many of the frames in the sequence out of a total of Frames frames
had a grid successfully located in them. The Points/Grid field indicates the average
number of correspondences found per successfully located grid.
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Frm Cnrs ∆’s Quads Pruned Points Total
Quads Time

(ms)
0 35 48 24 24 31 52
1 36 54 25 24 31 53
2 43 65 32 30 38 65
3 43 65 32 30 38 65
4 43 66 32 30 38 63
5 46 69 34 33 40 68
6 43 65 32 30 38 64
7 43 65 33 30 38 64
8 43 65 32 30 38 66
9 44 66 32 31 39 66
10 45 67 33 32 40 67
11 45 67 33 32 40 65
12 46 68 33 33 41 67
13 53 84 38 38 45 77
14 55 88 42 40 49 81
15 56 89 43 41 50 82
16 57 94 43 41 50 83
17 57 90 44 42 50 82
18 59 97 45 43 52 87
19 61 99 46 45 53 87
20 63 107 47 45 54 92

Table 2: Processing Stages in a Sequence for Each Image Frame. Column names:
Frm – Frames, Cnrs – no. of Corners, ∆’s – no. of Triangles

Stage Average Time
per Frame (ms)

Harris Corner Detector 29.5
Delaunay Triangulation 1.6

Triangle Merging 15.9
Topological Filtering 19.2

Ordering Quads 16.9
Total 83.1

Table 3: Average Time Spent in each Processing Stage
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