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Abstract. An important technique for discovering routes between two
nodes in an ad-hoc network involves applying the face routing algorithm
on a planar spanner of the network. Face routing guarantees message de-
livery in networks that contains large holes, where greedy algorithms fail.
Existing techniques for constructing a suitable planar subgraph involve
local tests that eliminate crossings between existing links by deleting
some links. They do not test whether the deleted links actually create
some crossings and some of the links are deleted needlessly. As a result,
some of the routes found in face routing will have an unnecessarily large
number of hops from source to destination. We consider a new local test
for preprocessing a wireless network that produces a planar subgraph.
The test is relatively simple, requires low overhead and does not eliminate
existing links unless it is needed to eliminate a crossing, thus reducing
overhead associated with multiple hops.

1 Introduction

An ad-hoc network is a network consisting of transmitters, often called hosts,
that is established as needed, typically without any assistance from a fixed in-
frastructure. Using wireless broadcasts, each host can communicate with other
hosts within its transmission range. Typically, not all hosts are within the trans-
mission range of each other. Thus, communication between two hosts in the
network is in general achieved by multi-hop routing along a route where in-
termediate nodes cooperate by forwarding packets. Examples of such networks
include sensor, piconet, bluetooth, and home/office networks, and routes in these
networks have to be constructed on the fly.



In this paper we consider networks that have the following properties: 1) All
hosts know the geometric coordinates (x,y) of their location; 2) All hosts have
the same transmission range R, i.e. any two hosts at distance d < R are able
to communicate directly; and 3) Communication links are bidirectional. Ad-hoc
networks satisfying the conditions above are the most common type of ad-hoc
networks considered in literature.

A network can be represented by a geometric undirected graph, G = (V, E),
with nodes representing the hosts of the network, and an edge (link) connecting
any pair of nodes that can communicate directly.

Discovering a route between two nodes in an ad-hoc network is an important
component of current research. In such systems it is vital that route discovery
uses only local information and is adaptable to the network connectivity. An
important technique for discovering routes between any two nodes in an ad-hoc
network without the use of flooding is the face routing [2, 7] algorithm. The face
routing algorithm succeeds in discovering a route in a network providing that
the underlying graph is planar. Since in practice, the original ad-hoc wireless
network is never planar with many links crossing each other, before using the
face routing we need to extract from the original network, using a local method,
a planar connected network spanning the entire underlying network.

There are two important goals we should be concerned with in our reduction
from the original wireless network to the geometric planar graph. The first is to
keep long links and is required so that we can prevent an unnecessary large
number of hops from source to destination that require extra processing at the
nodes and may cause failures. Secondly, we must eliminate crossings of links.
This is required in order to create a planar underlying graph. From a practical
point of view, the method employed must be efficient and be based on local tests
and the resulting graph must be a connected planar spanning subgraph of the
original network.

1.1 Results of the paper

In this paper we consider a method for reducing the overhead of an unnecessarily
large number of hops from source to destination.

The Morelia test is a new local test for preprocessing a wireless network that
produces a planar spanning subgraph of the original wireless network on which
we can apply face routing. The Morelia test is a generalization of the Gabriel
test and is relatively simple, requires low overhead and does not unnecessarily
eliminate existing links if they do not create any crossing, thus reducing the
overhead associated with multiple hops. The resulting graph is planar and is a
supergraph of the Gabriel graph [5].

In addition to the theoretical justifications of the Morelia test presented in
this paper, we conducted simulations of our algorithms on randomly generated
networks so that we can quantify the improvements given by the new method.



2 Tests for Reduction to Planarity

Here we discuss existing tests for planar reduction in wireless networks. In par-
ticular we consider the Relative Neighbourhood Graph and the Gabriel Graph.

Fig. 1. Left: The RNG test for producing a planar spanner. Right: Eliminating an
unnecessary link (dashed line AB) with Gabriel Test

A planar spanner of a network can be obtained by applying the Relative
Neighbourhood Graph (RNG) [10] test to every pair of nodes which are within
the transmission range of each other. Let A, B be two nodes whose distance is
at most the transmission range R of the network. Consider the region delimited
by the intersection of the circles centered at A and B, respectively, where the
radius of the circles is R, the power of the stations at A and B, see Figure 1
(left). If there is no node in the region then the link between A and B is kept. If
however there is a node C in the region depicted in Figure 1 (left), then nodes A
and B remove their direct link. In particular, when A (respectively, B) is queried
on routing data to B (respectively, A) the routing table at A (respectively, B)
forwards the data through C (or some other similar node if more than one node
is in the specified region.) The RNG test suffers from the multiple hop effect
because the elimination of crossings is done by elimination of longer links.

One of the most important tests for eliminating crossings in a wireless net-
work is called the Gabriel test [5] which, similarly to the RNG test is applied to
every link of the network. The main difference between the Gabriel test and the
RNG test is the smaller size of the region considered for a link elimination.

Let A, B be two nodes whose distance is less than the transmission range
R of the network. In the Gabriel test, if there is no node in the circle with
diameter AB then the link between A and B is kept. If however there is a node
C in the circle with diameter AB, as depicted in Figure 1 (right), then nodes
A and B remove their direct link. In particular, when A (respectively, B) is
queried on routing data to B (respectively, A) A (respectively, B) forwards the
data through C' (or some other similar node if more than one node is in the
circle with diameter AB). The advantage of doing this rerouting of data is that



the resulting graph is a planar spanner on which we can apply the face routing
algorithm for discovering a route from source to destination.

However, the test merely shrinks the “test region” and creates a planar span-
ner that keeps some of the links that would be eliminated by the RNG test.
However, like the RNG test, it does not in any way prevent the multiple hop
effect.

Fig. 2. Multiple hop effect when eliminating a link (line segment AB) via the Gabriel
test.

For example, consider a set of nodes as depicted in the left-hand side of
Figure 2. All nodes are mutually reachable. However, when we apply the Gabriel
test the configuration in the right-hand side of Figure 2 results. We can see that
although nodes A and B could have reached each other directly in a single hop
instead they must direct their data through a sequence of many hops.

We note that the multiple hop effect arises when many nodes are clustering
in regions. We should note that while the multi-hop effect may result in slower
message delivery, it may have also a positive effect, since it can decrease the
power consumption. For example, if instead of using a direct link between A and
B an intermediate node, say C is used (see Figure 1 (right)) which lies in the
circle with diameter AB then the power consumption decreases from d(A, B)?
to d(A,C)~? 4+ d(C, B)~P, for some constant 2 < p. However, this is at the cost
of additional overhead implied by intermediate hopping.

3 Planarity and the Multiple Hop Effect

The purpose of this section is to give an algorithm that eliminates crossings
but at the same time maintains some “long” links between stations whenever
possible, thus reducing the number of hops in face-routing. We introduce the
Morelia test. The Morelia test is an extension of the Gabriel test where the
algorithm checks for the presence of a crossing before eliminating a link.

3.1 Morelia Test

As mentioned in the introduction, we are concerned with the problem of routing
in networks with complex topology and containing many holes. Both the RNG



and Gabriel tests eliminate some links not because they create crossing of links,
but merely for the potential of being involved in crossing. As indicated in the
example above, if the Gabriel or RNG test is applied to a complex network, the
spanning planar subgraph that is obtained will contain holes of even larger size.

The Morelia test attempts to preserve links whenever possible and as a con-
sequence the resulting planar graph (on which face routing is to be applied) will
most likely keep the contour very similar to the original contour and the holes in
the network would not grow much. Thus the resulting planar network will have
smaller diameter and routes from source to destination will require fewer hops.

The Morelia test is similar to the Gabriel test in that given two nodes A and B
it eliminates links based on the inspection of the circle with diameter AB. Unlike
the Gabriel test it does not necessarily eliminate the direct link AB when it finds
another node inside the circle with diameter AB. Instead, it verifies whether the
nodes inside the circle create any crossing of the line AB. If no crossing is created
the line AB is kept, otherwise it is removed. The verification of the existence of
crossing is done in most cases by inspecting only the neighborhood of nodes A
and B at the transmission distance R. In a few cases, the neighborhood of some
of the nodes in the circle around AB is inspected. In all cases it is a local test
that computes the neighborhood of nodes at distance at most two hops of each
node A and B.

In the Morelia test of a link AB we subdivide the area of the circle with
diameter AB into four regions, Xi, X2, Y1 and Y> as in Figure 3. The areas
X5 and Y3 are determined by an arc of a circle of radius R through A and B.
Furthermore, in the testing we use areas X3 and Y3 as indicated in Figure 3 that
are outside the transmission radius R of the nodes A and B and within distance
R from the link AB. For each node A let N(A) be the set of nodes Z such that
d(A,Z) <R.

KA

Fig. 3. Morelia Test



The precise specification of the Morelia test applied to a link AB is given

below (refer to Figure 3).

Morelia Test Rules.

1.

If there is at least one node in X7 U X5 and at least one node in Y7 UY5 then
the link AB is removed.

. If there is at least one node in X; and no node in X5 UY; UY5 then the

node A checks whether any node in N(A) creates a link with nodes in X3
that crosses AB. If such a crossing occurs, link AB is removed and A sends
a message to B to remove the link as well. Similarly node B performs a
check of nodes in N(B) for a crossing of the link AB and informs node A if
a crossing is found and AB is to be removed.

. If there is at least one node in Y] and no node in Y5 U X; U X5 (symmetric

to Rule 2) then the node A checks whether any node in N(A) creates a
link with nodes in Y7 that crosses AB. If such a crossing occurs, link AB is
removed and A sends a message to B to remove the link as well. Similarly
node B performs a check of nodes in N(B) for a crossing of the link AB and
informs node A if a crossing is found and AB is to be removed.

. If there is at least one node in X5 and no node in Y; UY; then the node 4

inspects the nodes in N(A) to check whether any node there creates a link
with nodes in X; U X, that crosses AB. If such a crossing occurs, link AB is
removed and A sends a message to B to remove the link as well. Furthermore
A sends a message to nodes in X, with a request to send back information
whether there is a node in the region Y3. If A receives a message that a node
exits in Y3 then AB is removed and node B is informed to remove the link
as well.

. If there is at least one node in Y5 and no node in X; U X, (symmetric to

Rule 4), the node A inspects the nodes in N(A) for a possible crossing of
AB. If such a crossing occurs, link AB is removed and A sends a message to
nodes in Y3 with a request to send back information whether there is a node
in the region X3. If A receives a message that a node exits in X3 then AB
is removed and node B is informed to remove the link as well.

Figure 4 illustrates how, unlike the Gabriel test, the Morelia test will check

for crossings prior to eliminating a link. It will eliminate link AB because it
detects crossings, but it will not eliminate it when no crossing exists.

Notice that in the Rule 1 of the Morelia test, nodes A and B look only at

nodes that are in N(A) and N(B) respectively, i.e., nodes that are one hop away.
In Rule 2, 3, and 4 node A checks nodes in N(A4), node B checks nodes in N(B)
and both A and B possibly check N (x) for nodes z in € X5 UY5. Thus A or B
are checking nodes that are at most two hops away. Therefore, the Morelia test
is a local test.

Theorem 1. If network N is connected then the application of the Morelia test
to all links of N produces network N' which is a connected planar spanner of N.
Furthermore, N' contains the Gabriel graph of N as its subgraph.
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Fig. 4. Examples of the Morelia test situations: a) AB deleted in Rule 1, b) AB deleted
in Rule 2, ¢) AB deleted in Rule 4.

Proof. Every edge in N that is kept by the Gabriel test is also kept by the
Morelia test. Thus, N’ contains the Gabriel graph of N as its subgraph. Since
the Gabriel test produces a connected spanning subgraph of N, the subnetwork
N' is connected.

Assume that there is a link e in N’ that crosses a link AB of N'. Since the
length of any link in NV is at most R, both ends of e are in N(A)UN(B)UX3UYs3.
If one of the ends of e is in the circle with diameter AB then AB would be deleted
by the Morelia test. If both ends of e are outside the circle with diameter AB
then one of the ends of the edge AB must be inside the circle with diameter e,
since the edges cross each other. However, the Morelia test applied to e would

eliminate e because of it being crossed by AB. Thus there can be no crossing in
N'.

In Figure 5 we show how the Morelia test keeps some of the long links. The
left-hand side shows a link AB and the nodes inside the circle with the diameter
AB and the right-hand side shows what edges are kept by the Morelia test.

Fig. 5. Multiple hop elimination (line segment AB) via the Morelia test.



3.2 The Overhead of the Morelia Test

In Rule 1 of the Morelia test node A or B needs to determine what nodes are in
the circle with AB as its diameter and the complexity of it is the same of that
of the Gabriel test.

Rule 2 for A involves nodes that are in N(A) and each node of the network
needs to know its neighbors anyway. To check for crossings of two line segments
involves simple geometrical computation of complexity O(1), and the same ap-
plies to node B. The exchange of messages between A and B confirming deletion
or retention of the edge is also simple.

Rule 3 and 4 of the test involves the
existence of nodes in X3 and Y3 that
are outside of N(A) U N (B). However,
all that is needed for A or B is to send
a message to the nodes in region Xs
or Ys asking the question “is there any
node in Y3 or X3?” respectively. The
region X3 or Y3 can be specified by
the three corners of the region. Thus,
although these rules involve nodes that
are two hops away from A and B, it
does not create a significant overhead
or delay. We show now that the size of
the region X» or Ys is a smaller part
of the circle with diameter AB. Since
Rule 3 and 4 are used only when X5
or Y, is the only region of the circle
Fig.6. The arc segment Y, (and its containing a node of the network, the

symmetric one Xo) used in Rule 5. probability of using these rules is also
smaller.

We can easily calculate an upper bound on the ratio of |Xs|, the area of
X, to |X1], the area of X; to get an indication on how often Rule 4 is used in
comparison to the other rules.

It is easy to see that the ratio |X3|/|X1]| is getting smaller when the angle ¢
is getting smaller. Thus we get an upper bound on | X»|/| X1 | by setting ¢ = /3.
In this case the length of AB equals R and the area of the circle determined
by the diameter AB is exactly mR?/4, and the area of the circular sector X; is

. 27—3 3 2 2w—3 3)/12
equal to TR? — \/(3)R2/4 = R?(%). Thus 7} = WR2/8_27‘53%)/12 =
L\/@) <0.3.

3r—dr—64/(3)
Thus if a node is located in the circle with diameter AB and its placement
is random, it will be in the area X5 UY5 with probability less than 0.3.




4 Experimental Results

In this section we present our simulations designed to test the Morelia Test in
comparison with the Gabriel Test. The purpose of the simulations was to give an
indication on how our algorithm actually performs in the real world. We study
the operation and performance of our algorithm on randomly generated graphs.

4.1 Goals

There were two main goals to achieve with our simulations. The first was to
compare the average link length in the planar spanning subgraph created using
the Morelia, and Gabriel tests. The second, to compare the number of hops
required to deliver messages with face routing on the planar spanning subgraph
created by the Morelia and Gabriel tests.

4.2 Network Model

A simulation was designed that allowed the creation of a special type of random
graph. Since an ad-hoc network does not assume any specific structure, we con-
sidered network models obtained as follows. A square area (called a grid) could
be defined, nodes could be created with a specific transmission range and placed
at random coordinates on the grid. We use the unit disk graph (UDG) model,
where all nodes have the same transmission range and the nodes were uniformly
distributed.

Each network simulation consisted of 50 nodes each with a transmission
range of 250 units. The test area was a square grid on which the 50 nodes were
randomly placed. This network setup allowed us to test the performance with
different link densities by simply varying the grid size (300 units square to 1300
units square).

4.3 Analysis of Morelia Graph vs. Gabriel Graph

The Gabriel Test and the Morelia Test were run on the same series of random
graphs. The following are the main metrics that were traced in the simulation:
1) Average length of link on each planar spanning subgraph; and 2) Number of
links in each planar spanning subgraph.

Scenario 1 - Uniform Random Graph The first test, was to generate a
series of 30 random networks. The grid size was the only parameter that was
altered for a series of trials. This had the effect of increasing or decreasing the
network density (the smaller the grid size, the closer together the nodes, the
greater number of links, the higher degree vertices).

Figure 7 a), shows the average link length of the Gabriel and Morelia graphs.
The Morelia graph indeed does keep slightly longer links on average. The average
increase in length was 4.86 units or 5.76%.



a) Average Length of Links in Planar Spanner (50 Nodes with 250 unit radius)
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b) Average Number of Links in Planar Spanner (50 Nodes with 250 unit radius)
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Fig. 7. Average Number and Length of Links in Morelia and Gabriel Graphs.

Figure 7 b), shows the average number of links kept in the planar spanning
subgraph for both tests. The Morelia test keeps more links on average in the
spanner than the Gabriel test. The average increase in links kept in the Morelia
graph was 6.07 or 7.49% over the Gabriel graph.

Scenario 2 - Random Graph with a Sparse Region This simulation was
designed to test the planar spanning subgraph creation when there exists an
area of the graph which has a less dense topology. A region of 500 units within
the test grid was defined to have a node density of one-half that of the rest of
the network.

Here we report, as in the first test, the resulting average link length and
number of nodes in the planar spanning subgraph. In Figure 8 a), we see the
average length of links (edges) kept in both the Gabriel and Morelia graph. The
average Morelia link length is now 5.57 units or 4.5% longer than the average
Gabriel link.

a) Average Length of Links in Planar Spanner (50 Nodes with 250 unit radius) b) Average Number of Links in Planar Spanner (50 Nodes with 250 unit radius)
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Fig. 8. Average Number and Length of Links in Morelia and Gabriel Graphs.

Finally, we show in Figure 8 b), the average number of extra links kept in
the two graphs. The average number of additional links kept increased by 7.67,
which is an increase of 10.33%.



4.4 Face Routing Performance Study

In this section we present the simulation results of the face routing algorithm
Face-2 [2] on the same series of random graphs on which the Morelia and Gabriel
tests have produced a planar spanning subgraph. The Face-2 algorithm is a
modified face routing algorithm that at each iteration of a face traversal makes
the decision to move to the next face when it determines a link is about to cross
the line from source to target, instead of traversing the whole face and keeping
track of all crossings that occur [2].

We want to show that, in a network with some sparse areas, the face rout-
ing algorithm will perform routing with fewer number of hops on average. Two
scenarios were simulated. The first was on a uniform random graph, the latter
scenario was on graphs which had a predetermined sparse region. In these sim-
ulations, the only metric studied was the average number of hops required for
the face routing algorithm.

a) Average Number Of Hops (50 Nodes with 250 unit radius) b) Average Number Of Hops (50 Nodes with 250 unit radius and 500 unit hole’)
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Fig. 9. Face routing applied to Morelia and Gabriel Graphs.

In the first scenario, a uniform random network of 50 nodes was built. Each
node had a transmission range of 250 units. As before, the grid size was the only
parameter changed to vary the network density.

We see in Figure 9 a), that in a uniformly distributed network, only minor
gains are made in terms of decreasing the number of hops. The average number
of hops saved was 0.28 per route.

In the last scenario, we define a region 500 units square and set the number
of nodes with the region to one-half that of the first test. Routes were chosen
that would traverse the region. All other parameters remained as in the previous
scenario.

In Figure 9 b) we can see that there is further improvement of the face routing
algorithm. The average number of hops saved with face routing on the Morelia
graph has increased to 2.03 hops per route or 10.6%.



5 Conclusion

We have shown that with the application of the Morelia test to the underlying
structure of a wireless ad-hoc network we can achieve face routing with a fewer
number of hops on average over the Gabriel test when the network has a sparse
region. Thus the use of the Morelia test would be beneficial in any wireless ad-hoc
network having a complex topology.

There are several open problems for future work in this area. One such prob-
lem is the extension of the algorithm to a network which is changing dynamically.
Another area to investigate would be the improvement of the application of the
Morelia test in networks which are very dense. If a network is very dense, i.e.
the number of nodes inside a circle of transmission radius R is very high, the
Morelia test introduces more overhead than the Gabriel test, the increase in the
number of long links kept is not significant, and and thus the number of hops
from source to destination remains high. Finally, a study of the Morelia test in
combination with other tests that reduce the initial density of links in a network.
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