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Abstract. We investigate the notion of Long Range Contact graphs.
Roughly speaking, such a graph is defined by (1) an underlying network
topology G, and (2) one (or possibly more) extra link connecting every
node u to a “long distance” neighbor, called the long range contact of u.
This extra link represents the a priori knowledge that a node has about
far nodes and is set up randomly according to some probability distri-
butions p. To illustrate the claim that Long Range Contact graphs are
a good model for the small world phenomenon, we study greedy routing
in these graphs. Greedy routing is the distributed routing protocol in
which a node u makes use of its long range contact to progress toward
a target, if this contact is closer to the target, than the other neighbors.
We give upper and lower bounds on greedy routing on the n-node ring
Cy augmented with links chosen using the r-harmonic distributions. In
particular, we show a tight @(log2 n)-bound for the expected number of
steps required for routing in €, augmented using the 1-harmonic dis-
tribution. Hence, our study shows that the model of Kleinberg [11] can
be simplified by using the ring rather than the mesh while preserving
the main features of the model. Our study also demonstrates the signifi-
cant difference (in term of both diameter and routing) between the ring
augmented with long range contacts chosen with the harmonic distri-
bution and the ring augmented with a random matching as introduced
by Bollobas and Chung [3]. Finally, using epimorphisms of a graph onto
another, for any network GG, we show how to define a probability distribu-
tion p and study the performance of greedy routing in G augmented with
p. For appropriate embeddings (if they exist), this performance turns out

to be O(log® n).
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1 Introduction

The small-world phenomenon arises from rather anecdotal experience that has
been witnessed in many large interconnected systems: it is a phenomenon that
formalizes the paradoxical ability of an entity in the system to be only a few
“degrees” of separation away from any other entity in the system. This paradox-
ical occurrence of the small-world phenomenon has been backed by statistical
data of reachability and has several instantiations in the scientific literature from
sociology to the web. It has become the subject of investigation in popular as
well as artistic culture (see [7,8, 16]).

To understand this phenomenon studies have been made that include the in-
troduction of two graph theoretic models: relational graphs and spatial graphs.
In relational graphs the probability of the vertices becoming connected depends
only upon preexisting connections [3, 5, 16, 17]. In spatial graphs, the correspond-
ing probability is a function of the vertices [11, 16]. In recent years the web has
been the focus of investigations. Here researchers have investigated power-laws,
i.e., the probability that a node has degree k is given by k~°, for some constant
¢ > 0; this implies that nodes with low degree are the most numerous and the
probability of nodes with given degree k decreases as k increases proportionately
with £7° [1,4,6, 12]. All these studies show that random graphs G, , as defined
by Erdos and Rényi, are not good models for the small world phenomenon,
because they have a large diameter when the average degree is small [2].

In this paper, we study the notion of Long Range Contact graphs. Let G =
(V, E) be a network on n vertices. Consider a probabilistic mapping p on the
vertices of G such that - i p(u,v) = 1, for allu € V. Le., each node u € V
has an associated probability distribution p(u, -). Given G and p, the Long Range
Contact graph (G, p) is a directed graph defined on the same set of vertices, such
that every node u has degg(u) + 1 out-neighbors, that is its degq (u) neighbors
in GG, plus one additional out-neighbor chosen at random according to p. This
latter neighbor is called the long range contact of u. The probabilistic mapping
p, i.e., the probability distributions p(u, -)’s, reflect “vague knowledge” available
at the nodes about the possible status and location of a desired information
located at some node of the network.

In small world graphs, not only have the nodes a few degrees of separation,
but these nodes are able (or expected) to find reasonably short routes between
them. Therefore, the following two parameters have been the source of much
research: (1) The diameter of (G, p), i.e., the maximum distance between any
two nodes in the augmented graph; and (2) The performance of greedy routing
in (G, p), i.e., routing from a source s to a target ¢ is executed by selecting, at
each intermediate node u, the next node as the neighbor of u (including its long
range contact) which is closer (in the graph G) to the target ¢.

These two parameters depend first on the probability distribution to select a
long range contact and second on the underlying topology of the graph. To be a
good candidate to abstract small world phenomenon, a graph model must insure



that both the diameter, and the number of greedy routing steps, be small. In
this paper, we study the model in which G is the ring C,,, and p is the harmonic
distribution.

Related research Among the previously cited papers, two are strongly con-
nected to this paper. Bollobas and Chung [3] have studied the diameter of a ring
plus a random matching, selected uniformly among all possible matchings. They
have shown that the resulting augmented ring has a diameter ©(logn) with a
probability tending to 1 as n goes to infinity. However, the performance of greedy
routing can be very bad in this model. Indeed, Kleinberg [11] has shown that the
ring augmented with long range contacts chosen uniformly at random offers very
bad properties in term of routing (§2(1/n) lower bound for the expected num-
ber of steps). As an attempt to model the small world phenomenon, Kleinberg
has therefore proposed to use the 2-dimensional square grid augmented with
long range contacts chosen according to the 2-harmonic distribution. He showed
that, in this model, greedy routing performs in O(log2 n) expected number of
steps. Moreover he showed that this is optimal in the sense that for r # 2 any
distributed routing algorithm based on the r-harmonic distribution has an n?(1)
lower bound on the expected number of steps. He concluded that the grid with
the 2-harmonic distribution is a good model for the small world phenomenon.

Results of the paper Motivated by the research of Bollobas and Chung, we
have investigated the augmented ring. Motivated by the research of Kleinberg,
we have investigated r-harmonic mappings p,, r > 0, defined as follows. Given
two nodes u and v, the probability for u to have v as long range contact is given

by pr(u,v) = %, where d(-, -) is the distance function in the network.

The uniform distribution (which is obtained for » = 0), i.e., p(i,j) = 1/n, and
the Zipf distribution [18] (which is obtained for r = 1 — log .80/ log.20), are two
examples of harmonic distributions. We have performed an exhaustive study of
the performances of greedy routing in the ring augmented with harmonic long
range contacts, for all r > 0. Table 1 summarizes our results.

One important result in this table is the tight @(log2 n)-bound for the ex-
pected number of steps of greedy routing in the ring augmented with long range
contact chosen using the 1-harmonic distribution. The upper bound O(log2 n)
shows that the simple ring can perform as well as the square mesh, and hence
provides a simpler model for the small world phenomenon. The lower bound
.Q(log2 n), as well as the other lower bounds for r # 1, show that greedy routing
cannot perform faster than log® n steps in any ring augmented with an harmonic
distribution. It seems to be a challenging task to prove or disprove the existence
of a distribution allowing greedy routing to perform faster in the ring, the square
grid, or even the k-dimensional mesh, k£ > 3.

As a last contribution, we show how to extend the results of the ring to
any network G, by using epimorphisms of a graph onto another. In particular,



r-Harmonic |Lower Reference |Upper Reference
Distribution| Bound Bound

0<r<1 Q(n;:_:) Theorem 4|0(n'™") Theorem 2
r=1 2(log® n) Theorem 5|0(log®n)  Theorem 1
1<r<2 Q(n%l) Theorem 4|0(n"™") Theorem 1
r=2 22(y/n)  Theorem 4 O(“—l‘fo%g—") Theorem 3
2<r Q(n%l) Theorem 4|0(n) Trivial

Table 1. Expected number of steps of greedy routing in the ring augmented with long
range contacts chosen according to the r-harmonic distribution.

we show how to define a probabilistic mapping p and study the performance of
greedy routing in (G, p). For appropriate embeddings this performance turns out

to be O(log® n).

2 Preliminary Results

For the purpose of simplification of the presentation, all our results are formally
proven for the directed ring, i.e., the digraph in which nodes are labeled from 0
to n, and where node ¢ has node i+ 1 as out-neighbor, and ¢ — 1 as in-neighbor
(unless specified otherwise, all operations are performed modulo n + 1). In each
case, the result in the undirected ring differs by a constant factor only. We denote
by R,41 the directed ring of n + 1 nodes.

The r-harmonic random variable H,., with values in {1,..., 'n} has the prob-
ability distribution defined by Pr({H, = k}) = ;:I%n:)’ where H{") = S i s
the r-harmonic number of order n. Therefore, if R,41 is augmented using the
r-harmonic mapping p,, then, given two nodes i and j, the probability for 7 to

have j as long range contact in (R, 41, pr) is given by p. (¢, j) = ﬂu%r—r

This formula can be made more explicit by noticing that the harmonic numbers
satisfy the following identities.

Lemma 1. The r-harmonic number of order n is

ﬁnl_’" +O0()ifr<1;

H) ={logn+0(1)  ifr=1;
O(1) ifr> 1.

The next lemma shows thresholds in the behavior of the harmonic distribu-
tions. Not surprisingly, these thresholds are those appearing in Table 1.



Lemma 2. The ezxpected value of H, is

O(n) ifo<r<i
O(n/logn) ifr=1
E(H,)=<0Mn"") ifl<r<?2
O(1/logn) if r =2
o(1) if2<r.

For our analysis of greedy routing in R, 41, we will always assume that the
source node is 0, and the target node is n. It is indeed easy to observe that this
is a worst case, as far as greedy routing is concerned. Indeed, the probability
for a node to have a long range contact at distance d on the ring decreases as
d increases. Therefore the farther a source is from a target, the larger is the
expected number of steps to route from that source to that target.

A very naive interpretation of Lemma 2 would be to derive that, e.g., greedy
routing in the ring augmented with the 1-harmonic distribution performs in
O(logn) expected number of steps. This reasoning fails because the expected
gain of using long range contacts decreases as one gets closer to the destination
(as long range contacts may lead farther away from that destination than one
currently is). The following clarifies that point. Given a node s € {0,...,n —
1}, greedy routing defines a random variable J; as the length of the “jump”
performed at s toward the target n. It satisfies: J; = H,if H. <n —s, and —1
otherwise. One can easily show the following.

Lemma 3. For k <n —s, we have

v _JPr({H, =k} )+ Pr({H, >n—s}) ifk=1
Pr({J, =k} = {Pr({H,:k}) ifl<k<n—s.

And the expected value of the jump Js at node s in (Rn41,pr) 15

O((n—s)2"/nl ") ifr < 1
O((n— s)/logn) ifr=1
E(J,) = { O((n—5)*7") fl<r<?
Oflogn—s)  ifr=2
o) ifr> 2.

3 Upper Bounds

We begin with general considerations which apply to arbitrary networks. Then
we will refine these concepts for the specific case of the ring. For each vertex
u of G = (V, E), and each real number r > 0, define the ball B (u) of radius
r around u as the set of vertices at distance at most r from u. (If the graph
used is clear from the context we will omit the superscript G' from BE (u) and
write By (u).) For any set S of vertices of (G, p) and any vertex u € V define



plu— 8] =, c5Pp(u,v). Here we are trying to quantify the weight that a node
u gives to a contact in S in the sense that p[u — S] is the probability that a
node u has a long-range contact in the set S.

Definition 1. Let G be a graph, p a probabilistic mapping on G, ¢ > 1 a con-
stant, and f a function. The pair (G,p) is called an (f,c)-Long Range Contact
graph if for any pair (u,t) of vertices of G at distance at most d we have that

plu — By (t)] > ﬁ.

Lemma 4. Let G = (V, E) be a graph of diameter D. If (G, p) is an (f,¢)-Long
Range Contact graph then greedy routing in (G, p) performs in O ( Z;O:gf b f(D/cZ))

expected number of steps.

Proof. What is the probability, for a given node u at distance at most d from
the target ¢, that the long range contact selected is at a distance at most d/c
from the target? By definition, this is equal to p[u — Bgj.(t)]. Moreover, by
the geometric distribution, the expected number of trials to guarantee success is
1/plu = Bgc(t)]. When a trial fails, we make a move towards the target by going
to a neighbor along a shortest path from the current node to the target. The next
trial is therefore performed at a node still at distance at most d from ¢. It follows
from Definition 1 that the expected number of trials to get a contact in Byy.(t)
is at most W < f(d). This implies that after at most f(d) expected

U—)Bd/c
number of routing steps from u, we enter By (t). Iterating this we conclude

that the expected number of steps for routing is at most O (Ziozng f(D/cZ))
Using specific probabilistic mappings we can simplify our analysis.

Definition 2. A probabilistic mapping p on a graph G is distance-invariant if
p(u,v) depends only on the distance d(u,v). A distance-invariant mapping is
called non-increasing if it is a non-increasing function of the distance.

To simplify notation we use the same symbol to denote the resulting mapping,
namely p(u,v) = p(d(u,v)). We can prove the following result.

Lemma 5. If p is a non-increasing distant-invariant mapping on the graph G
then for all vertices u,t with d(u,t) < d and all constants ¢ > 0, we have that

plu— Bupe(t) > p((c +1)d/c) - |Buye ()]

Proof. Let v be a node in By (t). For any node u, d(u,v) < d(u,t) + d(t,v) <
d+d/ec= (c+ 1)d/c. Tt follows that

plu = Bae(] = > plu,v)

vEB4/.(t)



= Z p(d(u, v)) since p is distance invariant
vEB4/.(t)

> Z p((c + 1)d/c) since p is non increasing
vEB(t)

= pl(c+1)d/e) - |Bye(t)],

which completes the proof of the lemma.

As a direct consequence of Lemma 5, and by definition of (f, ¢)-Long Range
Contact graphs, we obtain the following result.

Lemma 6. Consider a graph G and a non-increasing distance-invariant map-
ping p. Then, for any ¢ > 1, the pair (G,p) is an (f,c)-Long Range Contact
graph where the function f(d) is defined by f(d) = 5 L

((c+1)d/c)-miniev |Bayc(t)]
Theorem 1. The expected number of steps for greedy routing on R,41 is

O(log’n) ifr=1
On™ 1) ifl<r<2.

Proof. The r-harmonic mapping p, on a graph G is a non-increasing distance-
invariant mapping. From Lemma 6, (G,p;) is a Long Range Contact graph
with f(d) ~ 1/logn. The O(log®n) bound then results from the application
of Lemma 4. Similarly, for » > 1, G(,p,) is a Long Range Contact graph with
f(d) ~d"=! (cf. Lemma 1). The result then follows by application of Lemma 4.

In order to obtain non trivial upper bounds when either r < 1 or r > 2 we can
use the method of probabilistic recurrences. First we recall the following discus-
sion from [14] (Theorem 1.3, page 15). Let g(z) be a monotone non-decreasing
function from positive reals to positive reals. Consider a particle starting from
position 0 and moving along the discrete line segment from 0 to n and whose
position changes in discrete time intervals. If the particle is currently at position
s it moves to position s + X where X is a random variable ranging over the
integers 1,...,n — s such that E[X] > g(n — s). The following result due to
Karp, Upfal and Widgerson was first stated in [10] (see also [9] for additional
information on probabilistic recurrences):

Lemma 7. (Karp, Upfal, Widgerson [10]) Let T be the random wvariable de-
noting the number of steps in which the particle reaches the position n. Then

E(T) < [ dz/a(x).

We can use Lemma 7 to analyze greedy routing when r < 1. More precisely,
we can prove the following result.

Theorem 2. The expected number of steps for greedy routing on R,y1 using
r-harmonic distributions with 0 < r < 1 is O(n1=").



Proof. Greedy routing is similar to the motion of the particle described above.
By Lemma 3, if the particle is in position s then the expected length of a jump is
O((n—s)*="/n'="). If we let g(z) = O(2?~"/n'~") then Lemma 7 is applicable
and we obtain that the expected number of steps of greedy routing is at most

/” dx _ nl=" 1
Lot el e 1=

The Lemma on probabilistic recurrences can also be used for analysing greedy
routing when using 2-harmonic distributions.

Theorem 3. The expected number of steps for greedy routing on R,y1 using

2-harmonic distribution is O(”—l'foggl—‘:lgﬂ).

Proof. Combining Lemmas 3 and 7, we can show that up to a constant the
expected number of steps of greedy routing is at most f; ljgzz. This is easily

seen to be in O(”l%gl—zgﬂ).

4 Lower Bounds

The proof of the following result is based on a proof in [11].

Lemma 8. Let p be any distance-invariant mapping on R,y1. Assume that
there exists d and D, and €, 0 < € < 1, such that such that one of the two
following conditions holds:

1.d> D and D- Y, p(i) < €
2.d-D<nand D), ,p(i) <e.

Then the expected number of steps of greedy routing is at least (1 —¢)D.

Proof. First we prove the lemma under condition 1. Let B denote the ball of
R, 41 centered at n and radius d, i.e., B={n —d,...,n— 1,n}. Recall that we
consider greedy routing from 0 to n. Consider the events:

o F: In at most D steps we reach n.

e F’: In at most D steps we reach a node that has a long range contact to a node

in B.

e El: Tn step ¢ we reach a node that has a long range contact to a node in B.
Let X be the random variable which counts the number of steps to reach n

from 0. In view of condition 1 we have that

D d
Pr(E') = Pr(UL,E) <Y Pr(E))<D-pl0 > B]<D-Y p(i) < e

i=1



It follows that
Pr(ﬁ) =1-Pr(E)>1-c (1)

Since d > D, E C E', and hence E' C E. It follows that Pr(E|E’) = 0. Using
this and Inequality 1 we can show that

=Y kPr({X =k}) > > k-Pr({X = k}nEF) = Pr(F)-E[X[E] > (1—c)D.
k

This proves the first part of the lemma. Next we prove the lemma under condi-
tion 2. Consider the events

e F: In at most D steps we reach n.

oF: In at most D steps, we reach a node ug that has a long range contact to a
node ul # n such that d(ug, ug) > d.

e E!: Tn step i, we reach a node ug that has a long range contact to a node ug # n
such that d(uo, ul) > d.

Again, let X be the random variable which counts the number of steps to
reach n from 0. For every node u, let ut be the long range contact of u. Using
Condition 2 of the lemma, we obtain

Pr(E') = Pr(UD E! <EP1 ) < D-Pr({d(u,u?) > d}) = D- > _pl(i)
i>d

Since dD < n, E C E', and hence E’ C E. Therefore, E[X] > Pr(E')-E[X|E’] >
(1 —€)D. This completes the proof of the lemma.

Theorem 4. The expected number of steps for greedy routing on R, 1under the
r-harmonic distribution is bounded from below by (up to a constant):

ni=r ifr<1
n ifl<r

Proof. The cumulative distributions of the r-harmonics random variable H, are
given (up to a multiplicative constant) by the formulas

k/n)l-Tifr < 1;
Pr({H, < k})~ {(11;31— if r > 1.

When r < 1 we apply condition 1 of Lemma 8 with d = D = n2 v and e=1/2.

When r > 1 we apply condition 2 of Lemma 8 with d = nr D =n+, and
e=1/2.

In the specific case r = 1, one can prove the optimality of Theorem 1 for the
1-harmonic distribution.



Theorem 5. The expected number of steps of greedy routing using the 1-harmonic
distribution is at least 2(log® n).

Proof. Let H be a l-harmonic random variable in {1,...,n}, i.e., Pr({H =
i}) =1/(i- H,) where H, =>_"_, 1/i = O(logn). For any s, 0 < s < n — 1, the

. . Hif H<n-—s; .
jump at node s is J; = { 1 i)ther;fi:e % Greedy routing from 0 to n constructs
a sequence sg = 0, 1, S2,...such that s;;1 = s; + J;,. From Lemma 3, we have,

for any k € {1,...,n — s},

_ _ [ Pr({H =k}) ifl<k<n-—s; .

Pr({/, = k}) = {Pr({H =1}) + Pr({H > n — s}) otherwise. (2)
and

E(JS):Pr({H>n—s})+nI;S§1+n1;5. (3)

For 0 < i < |logyn], let n; = n- (1 — 1/2") and I, = [n;,ni41). Let i > 0,
s € I,_1, and F; be the event that the long range contact of s is in [n;y1,n]
(i.e., greedy routing from s to n “jumps” over I;). We have Pr(F;) = Pr({J, >
ni+1—s}), and thus, thanks to Equation 2, Pr(E) = Y7 2° Pr({H = k}) ~

- k=n;pi1—s

L log( n—s ): 1 log(l—}-H—’“).ForsEIi_l, we have 2 — log3 <

logn Nip1—S logn Nip1—S8

n—n;
log (1 + ﬁ) < 1. As a consequence,

1
Pr(E,) =0(—). 4
r(£) =0 (o (4
Let K be the random variable defined as the number of consecutive first intervals
containing at least one node s;, while performing greedy routing from 0 to n.
More precisely, if greedy routing constructs the sequence so = 0, s1, s2, ..., then
K =min{j : s; ¢ I;,Vi} — 1. From Equation 4,

— ogn k
Pr({K = k}) = @(%).

By using In(1 + z) ~ 2 when 2 is small, easy calculations show that E(K) =
O(logn). Let us now concentrate on the time it takes to traverse an interval I;,
i < K. Let

t;i =min{s; : s; € I} and t; = max{s; : s; € I;}.
Then let A; = ¢; — n; and A} = ngyq — . If t; = s; and s;_1 € I, then
A; < Jn, = Jp(1-1/2¢) and thus, thanks to Equation 3,
n
E(4;) <E(Jy(1-1/29) < 1+ W
Similarly,

E(A) < E(J, 1_1/90) <14 —.
(43) S B(Jn-1/29) < 1+ 5




Therefore, if 1 < K, we get £ =i — 1, and thus

4 Iz’ 2 Iz’
E(4;) <1+ % and E(A]) <1+ % (5)

n n

Let D; = t;—t;. We have D; = (n;41—n;) — (A; + A}), and thus from Equation 5,
B(D:) > [LI(1 - 6/H,). (6)

In the interval /;, the long range contacts are at distance at most J,, = Jy,(1-1/2%)-
Let X() = Jn(1-1/2%), and let N; be the stopping time for X ) that is

k
N; = min{k| > X > D;}.

j=1

From Equation 6, we have E(Zj\;’l X)) > E(D;) > |I|(1-6/H,). On the other
hand, by Wald’s Equation (see [15] (Corollary 6.2.3)), we have E(Z;V:’I X)) =
E(N;) - E(X (). Therefore, from Equation 3, we get

= (1 .

To summarize, the expected number of consecutive intervals I; traversed by the
greedy routing is £2(logn), and the expected number of steps to traverse each
of these intervals is £2(log n). Therefore the expected number of steps of greedy
routing is at least £2(log” n).

It is an open problem whether or not the lower bound of Theorem 5 is valid
under any distance invariant distribution on the ring R, 1. However we note
the following general result which is an immediate corollary of Lemma 8.

Corollary 1. Let p be any non-increasing distance-invariant mapping on Ry 41and
D < n/4 an integer such that

o(D) n .
min E p(7), | ‘p(z) <0 (5) .
i=1 i=2(n/D)

Then the expected number of steps of greedy routing is in §£2(D).

5 Long Range Contact Graphs

In this section, we show how to generalize the results obtained on the ring to
arbitrary graphs. More precisely, we consider the issue of how to produce an
appropriate probabilistic mapping p on an arbitrary graph G so that routing



can be done in a small number of steps in (G, p). We begin with the class of
k-dimensional tori.

Kleinberg [11] considers the two dimensional grid. We can generalize his
result in the following manner. Consider the k-dimensional torus T;: with n = ¢*
vertices, i.e., ¢ vertices per dimension and k£ > 1. It is clear that balls of radius
d have size @(d*), and spheres of radius d have size ©(d*~!). Moreover the
diameter is D = @(nl/k). Let us consider the r-harmonic distribution on the
graph T(f. For the r-harmonic distribution we have

0= g () .

Equation (7) indicates that we should select » = k. In this case we obtain that
p(d) = ©(d~%/loggq). In particular, using Lemma 6, (Té‘,p) becomes an (f, c)-
Long Range Contact graph, where

f(d) = 1/(p(3d/2) - | Bas2(1)])
=1/(0((3d/2)™"/logq) - (d/2)7¥)

k
=0 (%logn) .

Since the diameter of the graph Té‘ is D = @(nl/k) we can use Lemma 4 to
obtain the following result.

Lemma 9. Let Té‘ be the k-dimensional torus of dimension k > 1 and n = ¢*
nodes, and let p; be the k-harmonic mapping. Then (T;,pk) is an (f,2)-Long

Range Contact graph, where f(d) = @(i—klog n). Moreover, greedy routing in

(Té‘,p) performs in O (2—; log2 n) expected number of steps.

It follows from Lemma 9 that greedy routing can be performed in O(log2 n)
expected number of steps in the k-dimensional torus T(f, where k is constant
and the probabilistic mapping is defined as before. Let us now present a tool to
extend results on a greedy routing in a graph G to other graphs G’. First, we

recall the notion of an epimorphism.

Definition 3. Consider two graphs G = (V, E) and G' = (V', E'). An epimor-
phism of G onto G’ is an onto mapping ¢ : V — V' such that {u,v} € E =
{¢(u), 0(v)} € E', for all vertices u,v € V.

Note that, if ¢ is an epimorphism, then dg/(¢(u), ¢(v)) < dg(u, v) for every
u and v. Next we define the notion of distance maintaining epimorphism.

Definition 4. Let a be a positive constant. An epimorphism ¢ from the graph
G = (V, E) onto the graph G' = (V', E') is called a-distance maintaining if for
alu,v €V, dg(u,v) < a-dg(o(u),¢(v)). The epimorphism ¢ is called distance
maintaining if it is a-distance maintaining for some positive constant «.



It is not hard to see that if p is a probabilistic mapping on the vertices of G
then p’ is a probabilistic mapping on the vertices of G’, where

P = ——— 3 p(u,0). (8)

—1 (9
A=
vegp—1(v')

Lemma 10. Assume that there is an «a-distance maintaining epimorphism ¢
from G onto G'. Let (G, p) be an (f, ac)-Long Range Contact graph. Then (G', p')
is an (f',c)-Long Range Contact graph, where p' is defined in Equation 8 and
F(d) = f(ad) - maxycv: |~ (u')].

Proof. Let ¢ be a distance maintaining epimorphism from G onto G’. First of
all observe that for any ¢,¢' such that ¢(¢) = ' we have that

BY (#) = {v/ : de(v',¥) < d'} = {6(0) : e (6 (), 6(1)) < Y.

Therefore, Bg’;l( ) é({v : dg(v,t) < d'/c'}) from the definition of epimor-
phism. Hence Bd, (t') D ¢(BY(t)). Tt follows that

BS )2 |J eBS). (9)

tep=1(t')

Let w',# € V' be vertices such that dg/(u',#') < d'. From the definition of epi-
morphism, there exist vertices ug,tg € V such that ¢(ug) = u’, #(to) = #'. Then
from the definition of distance maintaining, we have dg(ug,t0) < a-dg (v, 1) <
a-d'. We have

Pl =BG = Y p)

:|¢—11<u'>| 2 Z E

v eBG’/ (tyues— (v )vep=(v')

1
IR P SRl

v'eBS), (t) vESTI(v')

1
G

ves=1(BY, (")

v

Therefore, from Inequality 9, we get

1
Pl —>Bd'/c( 01> 61w Z p(uo, v).

”euted:—l(t’)Bf'/c(t)



If follows that

/ 1
p'lv' — B (t)] > o 1(a)] pluo — U B .(1)]
ted=1(¢)

1

2 =gy Mo = Paeltol]
1

= o 1()] pluo — B(Gad’)/(ow)(to)]
1 1

2 1071w flad)
1/ (flad') - max 1671 ()])
> 1/1(d).

v

This completes the proof of the Lemma.
Lemma 10 enables us to define new distributions on graphs.

Theorem 6. Let G = (V, E) be any graph such that there is a distance main-
taining epimorphism ¢ from a k-dimensional torus of size O(n) onto G. Further
assume that max,ecv |¢~1(v)| = O(1). Then there is a probabilistic mapping p on

G such that greedy routing in (G, p) performs in O(i—k log? n) expected number
of steps.

Proof. From Lemma 9, (T(f,pk) is an (f,2)-Long Range Contact graph, where
f(d) = @(i—k logn). By application of Lemma 8, the probability p’ defined in
Equation 8 is such that (G, p') is an (f’,2)-Long Range Contact graph where
1 (d) < B - f(ad) for some constants o and 3. That is f/'(d) = O(i—klog n). It

. . . k
follows from Lemma 4 that greedy routing in (G, p’) performs in O(% logn)
expected number of steps.

6 Conclusion and Open Problems

In this paper we have studied the performance of greedy routing in the ring
augmented with long range contacts chosen using r-harmonic distributions. We
have also shown how to extend our results to arbitrary networks via appropriate
mappings of multidimensional tori onto the network. Under certain conditions it
is shown that greedy routing performs quite efficiently, i.e., O(log2 n) expected
number of steps. In particular, the ring augmented with the 1-harmonic distri-
bution provides a simple model for the small world phenomenon.

Several interesting problems remain. For a general network, can we define
probabilistic mappings for which greedy routing has better performance? Is our



2(log? n) lower bound on the ring valid for all distance invariant mappings (not
just the r-harmonic) on the n-node ring? Similar questions apply to any mul-
tidimensional torus. We note that in this paper we emphasized greedy routing,
in the sense that nodes forward messages to their neighbors which are closer to
the destination. An interesting open problem is to study the resulting tradeoff
between memory (required at the nodes of the network) and type of routing
being used.
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