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Abstract. Given a seP of n points in the plane, we solve the problems of con-
structing a geometric planar graph spannih@) of minimum degree 2, and 2)
which is 2-edge connected, respectively, and has max edgghléounded by a
factor of 2 times the optimal; we also show that the factort®ist possible given
appropriate connectivity conditions on the Betespectively. First, we construct
in O(nlogn) time a geometric planar graph of minimum degree 2 and max edge
length bounded by 2 times the optimal. This is then used tstcoct inO(nlogn)
time a 2-edge connected geometric planar graph spafnirith max edge length
bounded by,/5 times the optimal, assuming that the Bébrms a connected Unit
Disk Graph. Second, we prove that 2 times the optimal is aveaificient if the
set of points forms a 2 edge connected Unit Disk Graph and ajivalgorithm
that runs inO(n?) time. We also show that fdcc O(,/n), there exists a s& of

n points in the plane such that even though the Unit Disk GrggimisingP is k-
vertex connected, there is no 2-edge connected geomedriampyraph spanning
P even if the length of its edges is allowed to be up to 17/16.
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1 Introduction

Consider a set of point8 in the plane in general position, and a real number0,

the radius. The geometric graph(P,r) is the graph spanning in which two vertices
are joined by a straight line iff their (Euclidean) distariseat mostr. Note that the
geometric grapbl (P, 1) is the well known unit disk graph dp, and in factJ (P,r) is a

unit disk graph for any whenr is considered to be the unit.

* This is the extended version of a paper with the same titlewiiibappear in the proceedings
of the 10th Latin American Theoretical Informatics Sympmsi(LATIN 2012), April 16-20,
2012, Arequipa, Peru.
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The main focus of this paper is to find 2-edge connected geanieste crossing
(or planar) graphs on a set of points such that the longest edginimum. Recall
that a graphG is 2-edge connected if the removal of any edge does not digmbn
G. Several routing algorithms have been designed for plamagraphs of Unit Disk
Graphs, for example [14], which are widely accepted as nsoftel wireless ad-hoc
networks. Therefore it would be essential for the robustriggouting algorithms to
construct such geometric graphs with “stronger” connégtsharacteristics.

Observe that the optimal length of any 2-edge connected gimnplanar graph
on a set of pointd is at least the min radius to construct a 2-edge connected UDG
on P possible with crosses. Thus, we can raphase the problenlasdoFor what
connectivity assumptions doi(P, 1) and for whatr does the geometric graph(P r)
have a 2-edge connected geometric planar subgraph spaPpiGdearly,r gives an
approximation to the optimal range when the connectivity 0P, 1) is at most 2-edge
connected.

1.1 Related work

Two well-known constructions are related to this problemU[P,1) is connected,
then the well-known Gabriel Test (se€ [5] andl[13]) will riksn a planar subgraph
of U(P,1). However, 2-edge connectivity is not guaranteed. Altévebt the well-
known Delaunay Triangulation dawill result in a 2-edge connected planar subgraph
of U(P,r). However the radius (the length of the longest edge of this triangulation) is
not necessarily bounded.

Abellanas et al.[[1] give a polynomial algorithm which augrtseany geometric
planar graph to 2-vertex connected or 2-edge connected efeorplanar graph, re-
spectively, but no bounds are given on the length of the antgdesdges. Toth [12]
improves the bound on the number of necessary edges in sgateatations, and Rut-
ter and Wolff [11] prove that it is NP-hard to determine theaimmum number of edges
that have to be added in such augmentations.

Toéth and Valter[[3] characterize geometric planar graplas tan be augmented to
3-edge connected planar graphs. Later Al-Jubeh €etlal. }& gdight upper bound on
the number of added edges in such augmentations. Finaligi&et al. [[6] show how
to construct a 3-connected geometric planar graph on a geatinfs in the planar with
the minimum number of straight line edges of unbounded kengt

A related problem is studied inl[9]. The authors prove thas iNP-hard to de-

cide whethelJ (P, \/73) contains a spanning planar graph of minimum degree 2 even if
U (P,1) itself has minimum degree 2. They also posed and studiedrtidegm of find-
ing the minimum radius so thatU (P,r) has a geometric planar spanning subgraph of
minimum degree 3 provided thelt(P, 1) has a spanning subgraph of minimum degree
3.

Closely related is the research by Kranakis etlal. [8] whiobvss that ifU (P, 1)
is connected thed (P, 3) has a 2-edge connected geometric planar spanning subgraph.
The construction starts from a minimum spanning tred @ 1) which in turn is aug-
mented to a 2-edge connected geometric planar spanningagkbgfU (P, 3). In the
same paper several other constructions are given (stéirtimgmore general connected



planar subgraphs) and also bounds are given on the minimunbe&uof augmented
edges required. However, the question of providing an &lgarfor constructing the
smallest > 0 such that (P,r) has a 2-edge connected geometric planar spanning sub-
graph remained open. This question turns out to be the maursfof our current study.
Our problem is also related to the well-known bottlenecketiag salesman prob-
lem, i.e. finding a Hamiltonian cycle that minimizes the l#ngf the longest edge,
since such a cycle is 2 edge conected (but not necessaritapléParker et all [10]
gave a 2-approximation algorithm for this problem and alsmged that there is no bet-
ter algorithm unles® = NP. There is also literature on constructing 2 edge connected
subgraphs with minimum number of edges.[Ih [4] it is proveat tiven a 2-edge con-
nected graph there is an algorithm running in ti@@nn) which finds a 2-edge con-
nected spanning subgraph whose number of edges/EB21times the optimal, where
m is the number of edges amthe number of vertices of the graph. An improvement
is provided in [15] in which a 4/3 approximation algorithmd#ven. Later, Jothi et
al. [7] provided a 5/4-approximation algorithm. Howevelttlirese results the resulting
spanning subgraphs are not guaranteed to be planar.

1.2 Contributions and outline of the paper

We start with Sectiohl2, where we give the notation and pegisime concepts which
are useful for the proofs. In Sectidh 3 we prove that {{, 1) has minimum degree
2, thenU (P, 2) contains a spanning geometric planar subgraph with minirdegree

2. Note that these subgraphs are not necessarily connégtedgorithm that runs in
time O(nlogn) to find such a subgraph is presented as well. In SeCtion 4 we phat

if U(P,1) is connected and has minimum degree 2, tbéR,+/5) contains a 2-edge
connected spanning geometric planar subgraph and we giweesponding algorithm
that runs in timeD(nlogn). In sectiorib we combine results from previous sections and
prove the main theorem of the paper by showing that(iP,1) is 2-edge connected,
thenU (P,2) contains a 2-edge connected spanning geometric planaragbg\ cor-
responding algorithm that runs in tin@(n?) is presented as well. We also show that
all the bounds are tight. In Sectibh 6 we show that there ®giseP of n points in the
plane so thal (P, 1) is k-vertex connected € O(,/n), but everlJ (P,17/16) does not
contain any 2-edge connected spanning geometric plangragib.

2 Preliminaries and Notation

Let G = (V,E) be a connected graph. As usual we represent an undirectechedg
{u,v} and a directed edge with hea@nd tailv as(u,v). A vertexv € V is a cut-vertex
of G if its removal disconnect§. Similarly an edg€u,v} € E is a cut-edge or bridge
if its removal disconnect&. We denote the line segment between two poirandy
by xy and their (Euclidean) distance byx,y). LetC(x;r) denote the circle of radius
centered ax, and letD(x;r) denote the disk of radiuscentered at.

Before we proceed with the main results of the paper we initedhe concepts of
Tie and Bow that will help to distinguish various crossings in the probfthe main
results.



Definition 1. We say that four points u,v,x,y form a Tie, denoted by Tie(u;v,X,y), if
uv crosses xy, x and y are outside of D(u;d(u,v)) and u is outside of D(x;d(x,y)). The
point u is called the tip of the Tie and xy the crossing line of {u,v}. See Figurel4a

Lemma 1. Let u,v,x,y form a Tie(u;Vv,X,y). Then, 11/3 < Z(uvx) < 2m/3 and 11/3 <
Z(ywu) < 21/3.

Proof. Consider the angle(yvx). Observe that/(yvx) > 1/2 since by Definitiorf 11,
X,y ¢ D(x;d(x,y)) anduv crossesxy. Therefored(x,y) > max(d(x,v),d(v,y)). Also
from Definition[d,d(u,x) > d(x,y). Therefore/(uvx) > 11/3 since it is the largest angle
in the triangle/A (uvx). It remains to prove that' (ywu) > 11/3 and the result follows
sinceZ(yvx) < Tt For the sake of contradiction assume th&gvu) < 11/3; see Figurgll.
From Definitio1,d(u,v) < d(u,y). Hence /(uyv) < Z(vuy) and consequently (vuy)

is the largest angle if\ (vuy). Therefore Z(xuy) > Z(vuy) > Z(uyv) > Z(uyx) which
implies thatd(x,y) > d(u,x). This contradicts Definitioh1.

Fig. 1: If u,v,x,y form aTie(u;v,x,y), thenZ(yvx) > 21/3.

Lemma 2. Let u,v,x,y forma Tie(u;Vv,x,y) and U be a point.
(i) If U'v crosses ux, then U, v, u, x cannot forma Tie.
(i) If u'x crosses uv, then U, x, u, v cannot forma Tie.

Proof. (i) Arguing by contradiction, assume thaly andux form aTie(U';v,u,x); see
Figure[2&. From Lemm@l 1/ (xvu) > 2m/3. Now consider theTie(u;Vv,x,y). From
Lemmdl,/(uvx) < 21/3, a contradiction.
(if) From Lemmd1 ,/(uvx) > 1/3. Therefore/(vxu) < 21/3. However, the mini-
mum angle/ (uxv) to form aTie(u’;x,u,Vv) is at least 2/3; see Figure2b.
O

The following lemma shows that the points of &(u; v, x,y) are at distance at most
/2 of each other.

Lemma 3. Letu,v,x, andy befour pointsforming aTie(u; v, x,y) such that max{d(u,v),
d(x,y)} = 1. Then, d(u,x) and d(u,y) are bounded by /2.



(@) {U.v} and {ux} (b) {u.x} and {u,v}
cannot form dlie. cannot form alie.

Fig.2: If u,v,x,y form aTie(u;v,x,y), thenu’ cannot form arlie with eitherv or x ory
that overlapgie(u; v, x,y).

Fig. 3:d(u,x) < v2 andd(u,y) < v2in aTie(u;V,X,y).

Proof. Let p be the intersection point ofy andC(u;d(u,v)) closer toy, andl be the
tangent line ap; see Figurél3. Since the angle thgtforms withl is 11/2, Z(upx) <
/2. Therefored(u,x) < v/2, since matd(u, p),d(p,x)) < 1. Similarly, we can prove
thatd(u,y) < v/2.

O

We conclude the preliminaries by introducing the concetBdw.

Definition 2. We say that four pointsu, v, x,y form a Bow, denoted by Bow(u, v, X, y), if
uv crosses xy, d(u,y) < d(u,v) < d(u,x) and d(v,x) < d(x,y) < d(u,x). See Figurel4bl

3 Planar Subgraphs of Minimum Degree 2 of a UDG of Minimum
Degree 2

In this section we prove that [§ (P,1) has minimum degree 2, théh(P,2) always
contains a spanning geometric planar subgraph of minimyrege?. We also show that
the radius 2 is best possible. Therefore in this section werasU (P, 1) has minimum
degree 2.

The following theorem shows that the bound 2 is the best plessi



(@) Tie(u; v, x,y) with tip u. (b) Bow(u, Vv, X,y)

Fig. 4: Tie and Bow.

Theorem 1. For any real € > 0 and any integer k, there exists a set P of 4k pointsin the
plane so that U (P, 1) has minimum degree 2 but U (P,2 — €) has no geometric planar
spanning subgraph of minimum degree 2.

Proof. It is not difficult to see that the component depicted in Feg@mrequireu, v}
to create a planar graph of degree two. To create a family d6B@ith 4 vertices, it
is enough to considdrdisconnected components.

Fig. 5: UDG of minimum degree two that requires scaling faofd — €.

O

Let T = (P,E) be the minimum spanning forest (MSF) (or nearest neighlmtho
graph) ofU (P,1) formed by connecting each vertex with its neareast neiglitecall
thatU (P, 1) has minimum degree 2 but it is not guaranteed to be connextddhat any
two vertices in different components are at distance mag th Letu be a leaf ofT
andv be the second nearest neighbouofif there exist more than one, then choose any
one among them.) The directed edgev) is defined as a second nearest neighbor edge
(SNN edge). LeE’ be the set of SNN edges for all leaveslofObserve thaE NE’ = 0,
since the nearest neighborhood graph is a subgrapii@fl) and SNN edges d&’ are
considered for leaves @f.

Before giving the main theorem we provide some lemmas theateauired for the
proof. The following lemma shows that if an SNN edgey) € E’ crosses an edge
{u,v} of T, then the four vertices formBie(u; v, x,y).

Lemma 4. Let (x,y) € E’ be an SNN edge that crosses an edge {u,v} € T. Then, the
four vertices form a Tie(u; Vv, x,y) such that either {u,x} € T or {v,x} € T. Moreover,
the quadrangle uxvy is empty.



Proof. First we will show that if(x,y) crossequ,v} then eithe{u,x} € T or{v,x} € T.
For the sake of contradiction, assume that neithex} ¢ T nor {v,x} ¢ T. Observe
thatu andv are outsideD(x;d(x,y)), otherwise(x,y) would not be the SNN edge; see
Figure6&. Therefore/(vyu) > 11/2 since(x,y) crossequ,v}. Henced(u,v) is greater
thand(u,y) andd(v,y). This contradicts the minimality of MSH, since replacing
{u,Vv} by either{u,y} or {v,y} results in a spanning forest of(P, 1) of smaller weight.

To show that the four vertices formTae(u; v, X, y), assume thafv,x} € T. Observe
thatd(u,x) > d(x,y) > max{d(v,x),d(v,y)} sincey is the second nearest neighboxof
andZ(xvy) > 11/2; see Figurg@b. It is not difficult to see th{u,v) < d(u,x) (Other-
wise we can obtain a spanning forest of smaller weight bya@py{u, v} with {u,x}.)
To prove thatd(u,v) < d(u,y) assume by contradiction thdfu,v) > d(u,y). Hence,
Z(ywv) is the largest angle if\(uvy) sinced(u,v) < d(v,y) (Otherwise we can ob-
tain a spanning forest of smaller weight by replacimgv} with either{u,y} or {v,y}.)
Therefore Z(yux) > Z(yuv) which implies thatl(x,y) > d(u,X). This is a contradiction
sinced(x,y) < d(u,x).

To prove thatuxvy is empty, we consider independently(uvx) and A (uvy). First
considerA(uvx). It is known that the angle that a vertex forms with two consiee
neighbors inT is at leastrt/3 and the triangle is empty. Therefokedoes not have a
neighbor in the sectar (xvu) since by Lemmall/(uvx) < 2m/3. Therefore A (uvx)
is empty. Now we considef\ (uvy). Assume by contradiction that exists a pomin
A (uvy) as depicted in Figufe bc. Observe thdtivp) > 11/3 (Otherwise we can replace
{u,v} with either{u, p} or {v, p}.) Therefore /(xvp) < Z(xvy) andd(x, p) < d(x,y)
sinced(v, p) < d(v,y) which contradicts the SNN edge definition.

@ {uv} ¢ (b) A SNN edge that (c) uxvy is empty.
D(x;d(x,y)) crosses an edge of
forms aTie.

Fig. 6: A SNN edge crossing an edgeTof

O

As a consequence of Lemina 4, an SNN edge crosses at most anefddgince
the angle that a vertex forms with two consecutive neighbofisis at leastrt/3. The
following lemma will help to characterize crossings betw&AN edges.

Lemma 5. Let (u,v), (U,V) € E' betwo crossing SNN edges. Then {U,v} € T.



Proof. Assume thafu’,v},{u,v'} ¢ T, thenu’ andv are notinD(u;d(u,v)) as depicted
in Figure[7. Observe that if eithef or V' is in D(u;d(u,Vv)), then(u,v) would not be the
SNN edge. Thereforel(u’,Vv') > max(d(u’,v),d(v,V)) sinceZ(Vw') > 11/2 and(u, V)
crossegu’,V'). This is a contradiction sincf/,v} ¢ T.

Fig. 7: Two crossing SNN edges

Lemma 6. Let (u,v),(U,V) € E’ betwo crossing SNN edges.

@) 1f {u,v},{u,v} € T, thentheyformaBow(u,v,u’,V') such that the quadrangleuv'w/
is empty.

(i) If {u,v} € T and {u,V'} ¢ T, then they form a Tie(u;v,u’,V') such that the quad-
rangle uu'w is either empty or containsthe neighbor of uinT.

Proof. (i) Let {u,v'} € T and{u,v} € T. Clearly,d(u,u’) > d(u,v) > d(u,V), sincev

is the nearest neighbor afandv the second. Similarlyd(u,u’) > d(u,Vv) > d(U,v).
Therefore, the four vertices formBow(u,v,u’,v'). To prove that the quadrangle’vu/

is empty consideR= D(u;d(u,v))uD(u’;d(u/,V)) as depicted in Figuie Ba. Obviously
any point insideR is closer to eitheu or . ThereforeR contains onlyu,v,u’, V.

(ii) Let {Uu,v} € T and{u,v} ¢ T. From the definition of SNN edgei(u,v) <
min{d(u,u’),d(u,v)} andd(u’,Vv') < d(u,u’). Therefore, the four vertices formTae(u; v, u’, V).
To prove that the quadrangle may contain at most one pasoth that{u, p} € T, con-
siderR= D(u;d(u,v)) UD(U’;d(U,V)) as depicted in Figulle 8b. Obviously any point
insideR is closer to eithew or U'. Therefore, it contains only the nearest neighbors of
u andu’. Further,v is the nearest neighbor of. Thereforep € Rwhere{u,p} € T. It
remains to prove tha contains the quadrangle/w'. Let a be the intersection point
of {u,v} andC(u;d(u,v)). It is enough to prove tha € D(u’;d(u’,V')). However,
Z(u'va) < Z(uUw') andZ(aw') < 1/3. Therefored(u',a) < d(U,V)).

0

The following lemma will help to determine our upper bound.
Lemma 7. Let u,v,u’,V be four vertices forming a Tie(u;v,u’,v') and w be a vertex

such that d(u,w) < 1, Z(wuv) < ¢, and {U’,u} crosses {w,v}. Then, d(w,u')? < 3—

2v/2cog¢ — 1/4).



(@) (b) {U,v} € T and
_{r{u,\/},{u’,v}} € {uvieT

Fig. 8: Crossings of SNN edges

Proof. Observe thaf{u’,v'} crosses at least two points 6{u;d(u,v)). Thus, we can
assume without loss of generality that',v'} crosse<C(u;d(u,v)) in vandd(u,v) =
d(u,v) as depicted in Figurigl 9. Let = Z(vuv') andp = Z(uw'v) = Z(Vw) = 4.
Observe that & a < 11/3 since by LemmB]1/(uw/) > 11/3. By the law of cosines in
AW, d(u,u)? = d(u,V)2 +d(U, V)2 —2d(u,V)d(Uu,V) cogB) < 2—2cogp) =
2—2sin(0/2) andd(u, 1) < 2sin(8) = 2cog ).

Lety= Z(wuu') = ¢ — Z(Uuv). Since/(Vw) = B, Z(uwl') = Tt— . Therefore, if
d(u,v) <d(U,v), then/(UWuv) > T=0B) — e otherwise /(wu) > =IB) — &
FromA(w'U'), Z(Uuv) > - — % —oa =129

From the law of cosinesi(w, u’)? = d(u,w)?+d(u,u’)? — 2d(u,u’)d(u,w) cog)y) <
3-2sin(§) —4cog7%)cog ¢ — T;2). Observe that when the angles satisfy @ <
1/3 andm/3 < ¢ < m, then the three values $i%),cog %) and co$p — T79) attain
positive values. Therefore, for aye [11/3,1] the maximum value is reached when
o =0 andd(w,u')® < 3—2v2cogp — ).

Fig. 9: If Z(wuv) < ¢, thend(w,u')? < 3—2v2cogp — )

Now we are ready to prove the main theorem.

Theorem 2. Let P be a set of n pointsin the plane in general position. If U (P, 1) con-
tains a spanning subgraph of minimum degree 2, then U (P, 2) contains a geometric



planar spanning subgraph of minimum degree 2. Further, such a subgraph can be con-
structed in time O(nlogn).

Proof. Consider the Nearest Neighbor Graph= (P,E) of U(P,1). It is known that
T is a subgraph of any minimum spanning tredJqP,1). Let E’ be the set of SNN
edges from leaves of. Clearly every edge ift’ has length at most 1 sind¢(P,1)
has minimum degree two. L& = (P,EUE'). It follows thatG spansP, has minimum
degree 2, however it may not be planar. We show how to md8lify a planar graph.

Claim. Let Tie(u;v,u',V') be aTie of G whereU is a leaf ofT.

(i) {u,v} may cross at most one other edgé,v’} of G such that they form either a
Tie(v;u,u”,v') or aTie(u”;Vv’,u,v).

(i) {U,v} € E does not cross any edge @f

Proof. (i) From Lemmd# and Lemnid §u/,v} € E. Thereforey is not a leaf inT.
Hence, ifuis a leaf ofT, then from Lemmal5{u, v} may be only the crossing line of a
Tie(u”;v’,u,v) as depicted in Figufe IDa. On the other handay be the tip of another
Tie(v;u,u”,v") as depicted in Figufe IDb. However, in that cagenot a leaf ofT.

(i) Assume by contradiction thdt/, v} crosses a SNN eddg,y) € E’ wherexis a
leaf of T. Therefore, from Lemnda 4 they formrae(u'; v, x,y) where{x,v} € E sinceu’
is a leaf. Observe thdk, y) also crosse@/, V') otherwise(U',v') would not be the SNN
edge. Therefore, from Lemria 5 eithler x} € E or {U',y} € E. This is a contradiction

sinceu’ andx are leaves oT .

u U
v ‘\ ’,“
U B Us v
: l/ \t ll
u// . xU/ U/ ! XU/
(@ Tieuvu,v) and (b) Tie(uv,v',v) and
Tie(u”;v/,u,v). Tie(v;u,u”,v")

Fig.10:{u,v} is in at most twoTies (Solid lines are edges @fand dashed arrow lines
are SNN edges.)

The proof is constructive. In every step we remove at leastanssing oG by

replacing edges d¥’. First, we remove allies.
Let Tie(u;v,U',V) be aTie of G whereu' is a leaf of T. Observe that from Lemma

[2, there is no leaf of T such that eithefr,v) crossequ’,v'} or (r,V) crossequ,v}.
According to Claim, three cases can occur:



1. {u,v} does not form anothéfie. From Lemm&} and Lemnha 3 (uw') is either
empty or it has exactly one vertexsuch thafw,u} € E. If A(uw/) is empty, let
E' =B U{{uu}}\ {{U,V}}. Otherwise, leE' = E'U{{w,u'}} \ {{U,V)}; see
Figure[I1. From Lemmia 3l(u,u’) < v/2. Therefore the length of the new edge is
bounded by/2. Since{u,v} and{v,u'} do not cross, the new edge does not cross
any edge ofs.

Fig.11:{u,v} is in oneTie (Dotted lines are removed edges and dashed lines are pos-
sible new edges.)

2. {u,v} forms aTie(v;u,u”,v’) whereu” is a leaf of T. Observe that in this case
u andv are not leaves off. Therefore, from LemmAal4 the quadranglegw’
andwvu”’uv’ are empty. We consider two cases. In the first case’} does not
cross{u”,v}. Let, E' = E' U {{u,u’},{u”,v}}\ {{u,V},{u”,v'}} as depicted in
Figure[1Zh. From Lemmd 3, the new edges are boundeg¢’dyin the second
case{u,u’} crosses{u’,v}; see Figuré_ 12b. Consider the quadrangle'u”. If
it is empty, letE’ = E' U{{u,u"}}\ {{U,V},{u”,v'}}. Otherwise, letp andq
be the vertices ivu'u” such that/(uu”p) and Z(vu'q) are minimum. Lete’ =
E'U{{U,q},{u,q}}\ {{U,V},{u,v'}}. From LemmdI7d(u,u”) < 2 since
Z(Uu"uv) < 2m/3. Observe thap does not have a neighbor in the same half-space
determined by{u”, p} asu because/(uu’p) is minimum. Similarly,q does not
have a neighbor in the same half-space determingdiby} asv because’(vu'q)
is minimum. Since{v,u’} and{u,u”} do not cross any other edge afug v} only
formsTie(u;v,U',V') andTie(v;u,u”,v"), the new edges do not cross any edge of
G.

3. {u,v} forms aTie(u”;v’,u,v). {u,v} forms aTie(u”’;v’,u,v). Observe that in this
caseuis a leaf ofT. Assume without loss of generality that”, v} crossequ,u’}.
Consider the quadranglé’uvu’. If it is empty, then letE’ = E' U {{u/,u"}}\
{{U,v}}. Otherwise, letp be the vertex int"uv’ such that/(w/'p) is mini-
mum. LetE’ = E'U {{U,p}} \ {{V,V}}. From LemmdI7d(u,u”) < 2 since
Z(u"uv) < 21/3. Observe that all the neighbors pfare in the same half-plane
determined by{u’, p}. It is not difficult to see that the new edge does not cross any
edge ofG since the region”uvl is close.



(@) {u,v} isin oneTie. (b) {u,v} isintwo Ties

Fig. 12:{u,v} crosses at least one edge&®fDotted lines are removed edges and dashed
lines are possible new edges.)

After removing theTies we remove th®&ows. Consider 8ow(u,Vv,u’,v') whereu
andu’ are leaves of . LetE’ = E' U {{u,u”}} \ {{u,v},{u,v}}. Clearly,d(u,u) <2
and{u,u”} does not cross any edge Gf

The pseudocode is presented in Algorifiim 1. Regarding thmtxity, the Nearest
Neighbor Graph otJ (P, 1) can be constructed i®(nlogn). A range tree can be also
constructed irD(nlogn) where each query of proximity neighbors tak&gogn). The
removal of a crossing can be done in ti@dogn) and there exist at moshZies since
each leaf ofT can form at most twdies. Therefore, the whole construction can be
done inO(nlogn) since there are at mo@n) crossings. This complete the proofO

4 2-Edge Connected Geometric Planar Subgraphs of a UDG of
Minimum Degree 2

In this section we prove that B (P,1) is connected and has minimum degree 2, then
U (P,+/5) always contains a 2-edge connected planar spanning subgkemlso show
that the radius/5 is best possible. Therefore in this section we assuifiel) is con-
nected and has minimum degree 2.

The following theorem shows that the bouy® is best possible.

Theorem 3. For any real € > 0 and any integer n > 8, there existsa set P of n pointsin
the plane so that U (P, 1) is connected and has minimum degree 2 but U (P,+/5 — €) has
no geometric planar 2-edge connected spanning subgraph.

Proof. Consider the compone@tdespited in Figure13. The vertgxs called the entry
point and has the following properties(x) = 1, d(v,x) > /5 and{u,x} crosse<.
Observe tha€ requires at least one of the edges,w},{uz,w} be included so that
the edge{v,w} is in a 2-edge connected geometric planar spanning subgfégmmay
assume without loss of generality that the edge is added. Observe, that for any
arbitrarily smalle > 0, there exist® > 0 sufficiently close to zero such thaf5 —
d(uz1,w) < €. Observe tha€ \ x has minimum degree two and the lower bound holds.
We can construct a family of UDGs with> 8 vertices and minimum degree two having
the same lower bound by connecting the entry pototdistinct UDG components. O



Algorithm 1. Geometric planar subgraph of minimum degree 2 and longest ed
length bounded by 2.
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input : U(P,1) with minimum degree 2.
output: G: Geometric Planar spanning subgraptJg®, 2) of minimum degree 2 and

longest edge length bounded by 2.

LetT = (P, E) be the Nearest Neighbor GraphW{P, 1).
Let E’ be the set of SNN directed edges from leaves of
LetG= (PEUE).

fore

end
fore

end

ach edge {u,v} in G that formsa Tie(u;v,u,v') do
if {u,v} does not formanother Tiethen
if A(uwd) isemptythen LetE' =E U {{u,u}}\ {{U,V}}.
else
Letw € A(uw) such thafu,w} € E.
LetE' = E'U{{w u}}\ {{U,V}}.
end
nd
{u,v} formsa Tie(v;,u,u”,v') where u” isaleaf of T then
if {u,u’} crosses {u”,v} then Let
E/ = E/U{{u,U'}, {0/, v}}\ {{U.V} {u" V).
else ifthe quadrangle (uvu'u”) isempty then Let
E'=EU{{u, v\ {{u, v} {u"V'}}.
else
‘ Let p andq be the points in the quadranglevu/u”) such that/(uu” p) and

= 0D

Z(qu'v) are minimum.
LetE' = E'U{{U, p}, {a, W} }\ {{u/ .V}, {u" .V},
end
nd
{u,v} formsa Tie(u”;v’,u,v) then
if the quadrangle (uvu'u”) isempty then
LetE' = E' U{{U,u"}}\ {{U,V}}.
‘ if U isaleaf of T then LetE' = E'\ {{u",V'}}.
end
else
Let p be the point in the quadranglevu’u”) such that/ (uu” p) is minimum.
‘ LetE' = E'U{{u", p}}\ {{u .V}}.
end

= 0

end

ach edge {u, v} in G that forms a Bow(u,v,u’,V') do
Let E' = E'U{u,u'}\ {{u, v} {U/,V'}}

Theorem 4. Let P be a set of n pointsin the planein general position such that U (P, 1)
is connected and has minimum degree 2. Then U (P,/5) has a 2-edge connected geo-
metric planar spanning subgraph. Further, it can be constructed in time O(nlogn).



Fig. 13: UDG Component with minimum degree 2 that requirediisg factor ofy/5.

Proof. Let T = (P,E) be a minimum spanning tree (MST) Of(P,1). Properly color
the internal vertices of with two colors, say black and red, and then color leaves
with green. Recall that a propércoloring is an assignment of one color amadng
to vertices in such a way that vertices of the same color averregjacent. LeG =
(P,EUE’) be the spanning planar subgraptdP, 2) (which is a subgraph &f (P,+/5))
with minimum degree 2 obtained by TheorEi 2. Choose a chioriass, say black.
Consider a black vertaxand its neighbov in G. It is not difficult to see that ifu,v} €
E’, thenv is green, i.e. a leaf i, and eithemu was the tip of aTie(u,u’,v,v) and
d(u,v) < /2 or all the neighbors ofi in T are in the same half-plane determined by
{u,v}.

Suppose thafu,v} € E is a bridge ofG. Consider the immediate edde,w} of
{u,v} such that“wuv < twith the preference to edgeshand then edges ig’. We
will add a new edge (for each such bridge) i@@@and make sure these new edges do not
add any crossings. The set of added edges wilt ba/hich is empty at the beginning.

— {u,w} € E. LetE” = E” U{{v,w}}. Obviouslyd(u,w) < 2.

— {u,w} € E'. Observe that this corresponds tdi@(u,u’,w,w) as depicted in Fig-
ure[14. We consider two cases:Af(uvw) is empty, then leE” = E” U {{v,w}}.
Otherwise, letp andq be the points such that(pvu) and Z(qwu) are minimum.
LetE” =E"U{{v, p},{q,w}}. Sinceuis the tip of aTie(u,u’,v,V), from LemmaY,
d(w,v) < V5.

Observe that every vertex &= (P, EUE'UE") is in at least one cycle. Therefore,
it is two edge connected. The pseudocode is presented irritgd2. Regarding to
the complexity, each new edge can be added in @egn). Therefore, the whole
construction can be completed in tifénlogn). O

5 2-Edge Connected Planar Subgraphs of a 2-Edge Connected
UDG

In this section we prove thatlif (P, 1) is 2-edge connected, thex{P, 2) always contains
a 2-edge connected geometric planar spanning subgraphs@esheow that the radius
2 is best possible. Therefore in this section we assuiifel) is 2-edge connected.



Fig. 14: Z(wuv) < tand{u,v'} € E'.

Algorithm 2: Constructing a 2-Edge Connected Planar Graph with longlest e
lengthv/5
input : Connected UDG with minimum degree 2.
output: G: 2-Edge Connected Planar Graph with longest edge lengthdeoliby+/5.
1 LetG= (P,EUE’) be the connected planar graph of minimum degree 2 obtained fr
Algorithm[I.
2 Color internal vertices of = (P,E) with black and red.
3 foreachBridge {u,v} € E of G do
4 Let u be a black vertex.
5 Let {u,w} be the immediate ofu, v} such that“wwu < Ttwith the preference to
edges irE and then edges ig’.

6 if A(uww) isempty then LetE' = E' U {{v,w}}.

7 else

8 Let p andq be the points im\ (uww) such that/(uvp) and Z(gqwu) are minimum.
9 LetE' = E' U{{v, p},{q,w}}.

10 end

11 end

The following theorem shows that the bound 2 is best possible

Theorem 5. For any real € > 0 and any integer k, there existsa set Rof n=3k+1
points in the plane so that U (P, 1) is 2-edge connected but U (R,2 — €) has no planar
2-edge connected spanning subgraph.

Proof. The construction is based on the component depicted in &i@iGa. Observe
that the component is the same as the component of the lowedtaf planar graphs
with minimum degree two. Clearly, it requir¢s, v} to create a 2-edge connected planar
graph. A UDG withk components can be created by forming a convex path as depicte
in Figure 15b. It is not difficult to see that the lower bounsidholds for this UDG with

1+ 3k vertices. ad

We say that a vertexof a graphG is Arduousif v has degree two, is not in a cycle,
and the angle that it forms with its consecutive neighbogrésater than fi/6. Thus,
we have the following Corollary to Theordr 3.



€ €
(a) Basic component that requires (b) Components forming a convex path with-1
scaling factor of 2. 3k vertices.

Fig. 15: Two-edge connected UDG with13k vertices that requires scaling factor of 2.

Corollary 1. Let P bea set of n pointsin the planein general position such thatU (P, 1)
isconnected and hasminimumdegree 2. Let T = (P,E) bean MST of U (P, 1). Consider
a (proper) 2-coloring of vertices of T with colorsblack and red. If U (P, 1) does not have
either black or red Arduous vertices, then U (P,2) has an underlying 2-edge connected
geometric planar graph.

Proof. LetG= (P,EUE’) be the 2-edge connected geometric planar spanning subgraph
obtained by Theorefd 5. Assume tifatloes not have blackrduous vertices. For the
sake of contradiction assume thHathas an edgdv,w} € E’ such thatd(v,w) > 2.

Let u be the black vertex of that addedv,w} to G. Observe thati was the tip of a
Tie(u;u',w,w'} wherew is a leaf and the angle thatforms withu’ andw is greater

than 51/6. However,T does not have blackrduous vertices. This contradicts the as-
sumption. a0

First we prove that iU (P, 1) is 2-vertex connected, thdu(P,2) has a spanning
2-edge connected geometric planar subgraph. Then we pheveame from 2-edge
connectivity ofU (P, 1).

Theorem 6. Let P be a set of n pointsin the planein general position such that U (P, 1)
is 2-vertex connected. Then U (P, 2) has a spanning geometric planar 2-edge connected
subgraph.

Proof. LetT = (P,E) be an MST ofJ (P, 1). Consider a (proper) 2-coloring of internals
vertices ofT with red and black colors, and assign green to leaves. Chanpseolor
class, say black. [T does not have blackrduousvertices, then by Corollafy U (P,2)
has an underlying 2-edge connected planar graph. ThusnagbaiT has at least one
black Arduous vertex. We will add edges t&’ in a greedy manner to obtain a graph
G = (P EUF’) that does not have bladkduous vertices.

Consider a blaclrduous vertexv of G. Let g1 and g, be the connected compo-
nents ofT \ vand{u,w} be a shortest edge (P, 1) that connects;; and . Since
U(P,1) is 2-vertex connectedu, w} always exists. Assume thate g1 andw € G».
Observe that every vertex D(u,d(u,w)) is in g1 and every vertex ilD(w,d(u,w)) is
in G2, otherwise{u,w} is not shortest. Therefor®(u,d(u,w)) ND(w,d(u,w)) either
is empty or contains.

We will show that{u,w} does not cross an edgebf For the sake of contradiction
assume thafu,w} crosses an edges/,w'} € E. LetR= D(u,d(u,w)) "D(w,d(u,w)).
Consider first the case whan andw are not inR. Therefore, either/(U'uw) or



Z(uw') is the largest angle i\ (uwu’). Similarly, either/(wuw') or Z(wwu) is the
largest angle im\ (uww/). Observe that it/ (u'uw) andZ(wuw') are the largest angles,
then there exists a cycl#w'u whered(u',w) is the longest edge length. Therefore,
{Uu,w} is notinT. Thus, assume that(u'uw) and /(w'wu) are the largest angles in
the respective triangles as depicted in Figurg 16a. Hetfoew') > d(u,w). Therefore
d(u’,u) < d(u,w) and similarlyd(w,w) < d(u,w). This is a contradiction since there
is a cycleuwmw'u'u whered(U',w') is the largest edge length. Now consider the case
when at least one vertex aforw is in R, sayw'. Thereforey =w'. Howevery is also
incident tou andw. This contradicts the assumption sirdi@) = 2.

Now we will prove that if{u,w} crosses and edde/,w'} € E’, then{u’,w'} can
be removed fronkt’ without increasing the number of blagkduous vertices inG. As-
sume without loss of generality thaltandw’ are ing; as depicted in Figufe 16b, other-
wise,v would not be arArduous vertex. Therefored(u,w) < max(d(u’,w),d(w,w)).
Consider the previous step whef{e’,w'} was added fronG'. Let V' be the black
Arduous vertex of G’ and g’; and g’, be the components &'\ V. Hence,w was
in eitherg’; or g’, and eithed(u',w) < d(u’,w) ord(u,w) < d(w,w). Therefore,
they form aTie(w;u,u’,w') whereu € D(U;d(U',w))ND(wW;d(u,w)). Henceu = V.
Thus, if {u,w} crosses an edge/,w'} € E, then letE’ = E' U {{u,w}} \ {{U,W}}.
Otherwise, letE’ = E’ U {{u,w}}. Observe that any immediate neighbar,x} and
{w,y} of {u,w} wherex,y ¢ D(u;d(u,w)) N D(w;d(u,w)) form an angle of at least
/3.

(@) {u,w} does not (b) If {uw} € E' crosses
cross any edge of . an edge{u,w'} € E/, then
{U,w'} can be removed.

Fig. 16: Removal of blaclrduous vertices.

ClearlyG = (P,EUE’) is planar and does not have blagiduous vertices. LeE”
be the set of SNN edges &f

Claim. Let (u,v) € E” be an edge that crosses an edgev'} € E'.

@) If {u,u'},{u,v} ¢ E, then{u v} can be removed frork’ without increasing the
number of blackArduous vertices.

(i) If {u,u'},{v,V} € E, then{u,V} can be removed frorg’ without increasing the
number of blackArduous vertices.

(iii) If {u,u’} € E and{v,V'} ¢ E, then they form &ie(V;u,u,v).



Proof (Claim). Consider the step whefe/,Vv'} was added fron&'. Letw be the black
Arduous vertex of G’ and letg’; andg’, be the components resulting fro8f \ w'.
Further, let/ € g’; andV € g’,. Now we prove each case separately.

(i) Clearly d(u,v) < min(d(u,u’),d(u,V)) sincev is the second nearest neighbor of
u. Assume without loss of generality that G';. Therefored(u',v) < d(u,V') and
they form aTie(u;v,u',v'). Howevery € D(U;d(U,v)) N D(V;d(U,V')) which means
thatw = v. Thus, we can removéu’,v'} from E’ without increasing the number of
black Arduous vertices inG; see Figur€1{a.

(i) First consider tha{u’,v} ¢ E. Therefored(u,V') < d(U,v) sincev is in the
same component a& Observe that' (uu'v') and/(U'V'v) are the largest angles in the
trianglesA (uu'v') and A(U'V'v) respectively. However, sinag(u’,v) > d(u,v') and
Z(uu'v) > Z(uu'v'), d(u,v') < d(u,v). This contradicts the assumption. Now consider
that{u',v} € E, thenw/V form a cycle wherdU',v'} is the longest edge otherwi$eis
not minimum. Thereforey € D(U;d(U,V))ND(V;d(U,V)) andw = v. Thus, we can
remove{u’,v'} from E’ without increasing the number of blagkduous vertices inG.

(iii) First we will prove thatv € g’;. Assume by contradiction thatis in G’,.
Similarly to the previous casel(u',V) < d(u’,v). Thus, Z(uuV) and Z(uV'v) are
the largest angles in the triangléguu’v') and A(U'V'v) respectively. However, since
d(u,v) > d(U,v) andZ(uu'v) > Z(uu'v'), d(u,v') <d(u,v). Thereforep,ve ¢', and
d(u,Vv) < min(d(V,u),d(V,v)). Hence, they form &ie(V;u’,u,v) sinced(u,V) >
d(u,v).

U
/
U
U/
(@) If {u,u’},{u,v'} ¢ E, then (b) If
{U,v'} can be removed from {u,u},{vV} €E,
E'. then{u’,v'} can be

removed fronE’.

Fig. 17: Removal of black Arduous vertices.

Observe that the crossings between edgésiand edges ik UE’ are equivalent to
crossings between edgedtfi andE. That s, they fornTies where leaves are endpoints
of crossing lines. Thus, we can obtain a geometric plangtgodG = (P,EUE’ UE")
with minimum degree two from Theorenh 2. It remains to add daatge ofG into at
least one cycle. Let be a black vertex o6 incident to a bridggu,v} € E and{w,v}
be an edge such thatuww) < Ttwith the preference to edgeskh then inE’ and then
in E”. We have three cases:

— {w,v} € E. LetE” = E"U{{u,w}}. Clearly,d(u,w) < 2.



— {w,v} € E’. We consider two cases. First assume tas red. LetE” = E” U
{{u,w}}.d(u,w) < 2. Now assume that is black. Clearlyds(v) > 3 anddg(w) >
3. Observe that sincpw,v} € E’ andv is an internal black vertex of, there exits
a neighbow of v such that/(uw/') < tand{u,w'} crosses{v,w}. Therefore,
Z(wwu) < 21/3. Letu’ be the first neighbor ofv such that/wwu form a convex
path; see Figurle18. If eithef does not exist of ', w} € E’ or {U,w} € E”, then
letE” =E"U{{w,u}}. Otherwise{u',w} € E. Similarly, since{w,v} € E’ andwis
an internal black vertex of , there exits a neighbaf of w such that/ (Uwv) < Tt
and{u’,v'} crosses{w,v}. Therefore,/(uwv) < 2m/3. If the quadranglexwu’
is empty, then leE” = E” U {{u,u’}}. Otherwise, letp andq be the points such
that /(pu'w) and Z(quv) are minimum. LeE” = E” U {{U, p},{q,u}}. Itis not
difficult to see thatl(u,u’) < 2. To see this, consider the right triangées andu’bw
wherea andb are the points i{u’, u} such that/(vau) = /2 and/(u’bw) = 11/2.
From the Law of sined(a,u) < 1/2,d(u',b) =1/2 andd(p,q) = 1 since/(avu) <
/6 and/ (U/'wh) < 11/6.

Fig.18:{w,v} € E' andw is black.

— {w,v} € E”. We consider two cases: &\ (uww) is empty, then leE” = E" U
{{u,w}}. Otherwise, letp andq be the points such thaf(puv) and Z(gwv) are
minimum. LetE” = E” U {{u, p},{g,w}}. Sincev is the tip of aTie(v,v,w,w)
and/(vw) < 51/6, from Lemmald(u,w) < 2.

The pseudocode is presented in Algorithim 3. Regarding the tomplexity, the
dominating step is the removal éfduous vertices and can be implemented in time
O(n?). That is, given arArduous vertex, determine the components, G of G\ vin
O(n) time and look for the shortest edge lendilhw} of U(P,1) not in G such that
uc g andwe Gz in O(n) time. Therefore, the construction can be don@{n?) time.

O

Theorem 7. Let P be a set of n pointsin the planein general position such that U (P, 1)
is 2-edge connected. Then U (P,2) has a spanning geometric planar 2-edge connected
subgraph.

Proof. Consider the subse® of P such thatU (R, 1) is 2-vertex connected. Using
Theoreni 6, we can construct a spanning 2-edge connectedei@mpianar subgraph



Algorithm 3: Geometric planar 2-Edge connected subgraph with longest ed
length bounded by 2

input : 2-vertex connected (P, 1).
output: G: Geometric planar 2-edge connected planar subgraph(la2)with longest
edge length bounded by 2.
1 LetT = (PE)beaMSTolU(P,1),E' =0andG = (P,EUE’).
2 Color the internal vertices af with black and red colors.
3 Let A be the set of blaclrduous vertices ofT.
4 LetG= (PEUE').
5 while Aisempty do
6 Letvbe a vertex oA andg1, G2 be the components &\ v.
7 Let {u,w} be the shortest edge such that g1 andw € gG»
8 if {u,w} crossesan edge {U/,w'} € E' then LetE’ =E'U{{u,w}}\{{u,wW}}. else
LetE’ = E'U{{u,w}}. Remove the vertices @ that are in cycles or have degree at

least three irG.
9 end

10 LetE” be the SNN edges @ andG = (P, EUE’ UE") be the connected geometric
planar graph of minimum degree 2 obtained from Algorifim 1.
11 foreachBlack vertexu e T do

12 Let v be a black vertex anflv,u} be a bridge ofG.

13 Let {v,w} be the consecutive edge such thigtwu) < rtand given the following
priority E, E', E”.

14 if {v,w} € Ethen LetE' =E"U{{u,w}}.

15 if {v,w} € E’ then if wisred then LetE’ = E" U {{u,w}}.

16 if wisblack then

17 Let U’ be the first neighbor af such that/wvu form a convex path.

18 if U doesnot exist or {w,u'} € E' or {w,u'} € E” then LetE’' = E” U {{u,w}}.

19 else

20 if The quadrangle u'wwu isempty then LetE’' = E"” U {{u,u’}}.

21 else

22 Let p andq be the points in/wvu such that/(pu'w) and Z(quv) are

minimum;

23 LetE' =E"U{{U,p},{q,u}}.

24 end

25 end

26 end

27 if {v,w} € E” then if A(uw) isemptythen LetE’ =E’ U{{u,w}}.

28 else

29 Let p andq be the points im\ (uvw) such thatZ(vwp) andZ(quv) are minimum.

30 LetE' = E' u{{w, p},{qg,u}}.

31 end

32 end

Gi of U(R,2) since eacl (P, 2) has at least three vertices. It is not difficult to see that
UG is 2-edge connected and planar. a0



6 UDG of High Connectivity without 2-Edge Connected
Geometric Planar Subgraphs

One may ask: for whick > 1, ak-edge (ork-vertex) connectet (P, 1) with n points
has a spanning 2-edge connected geometric planar subghgiil show that even
for k € O(y/n) this is not always true.

Theorem 8. There exist a set P of n pointsin the plane so that U (P, 1) is k-vertex con-
nected, k € O(+/n), but U (P,17/16) does not contain any 2-edge connected geometric
planar spanning subgraph.

Proof. Assumek = 2m. Consider theCk and the wire components depicted in Fig-
ure[19a and Figufe IBb withk2- 2 vertices and Rvertices respectively. It is easy to see
thatCX is a valid two-vertex connected UDGs and the wire is a viehertex connected
UDGs. Observe that* does not have a 2-edge connected planar subgraph since the
inclusion of{u, u } and{uj,uc} leaves/ andv with degree one respectively. Hence,
we callv andV the isolated vertices d@*. Observe that we can emb€&H in such a
way that the distance{(v, ux), d(ux, ux—1),d(uz,u1) andd(V, uy ), d(uy, U_1),d(us, up)

aref —e. Henced(uy,v) = d(uj, up) = d(ug,V) = d(ug, Uy) = 17/16— 8. LetCF bem
consecutiveCk components in such a way that they are at distance greated #a6
from each other. We can connect the upper and lower peﬂif ofith C,"+1 with a con-
stant number of wires, i.e. creatifigndependent paths that connect the upper and the
lower part ofCk andCK ; in such a way that the isolated vertices of e@ffare far from

the wires as depicted in Figure 19a. It is easy to see thaetheting graph ik-vertex
connected and ha3(k?) vertices.

v Uk .y Uy - Uk
u

/ /

u v /

Ly o

(a) CX component. (b) Wire. (c) Upper connection between
CKandCk ;.

Fig. 19:k-vertex connected UDG that does not have 2-edge conne@erdmdubgraph.



7 Conclusion

In this paper, we have shown that for any given poinFsetthe plane forming a 2-edge
connected unit disk graph, the geometric gr&p, 2) contains a 2-edge connected
geometric planar graph that spaPdt is an open problem to determine necessary and
sufficient conditions for constructingvertex (ork-edge) connected planar straight line
edge graphs with bounded edge length on a set of points<€ok 3 4.
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