Inapproximability of the Perimeter Defense Problem

Evangelos Kranakis* Danny Krizanc’ Lata Narayanan® Kun Xu?

Abstract

We model the problem of detecting intruders using a set of infrared beams by the perimeter defense problem:
given a polygon P, find a minimum set of edges S of the polygon such that any straight line segment crossing
the polygon intersects at least one of the edges in S. We observe that this problem is equivalent to a new hiding
problem, the Max-Hidden-Edge-Set problem. We prove the APX-hardness of the Max-Hidden-Edge-Set problem
for polygons without holes and rectilinear polygons without holes, by providing gap-preserving reductions from
the Max-5-Occurrence-2-Sat problem.

1 Introduction

Given a region of interest to be defended, we are interested in detecting the presence of an intruder inside the region
who originated from outside the region. We model the region of interest by a polygon, and the trajectory of the
intruder by a curve intersecting the interior of the polygon. For arbitrary curves, or for line segments that can
terminate inside the polygon, there is no choice but to defend the entire perimeter of the polygon. Therefore, we
consider the case when the path of the intruder is a straight line segment that crosses the polygon (intersects the
perimeter of the polygon in at least two distinct edges) and require the intruder to be detected before exiting the
polygon.

Infrared beam sensors are an increasingly popular way of achieving intruder detection. Such a device consists
of a matched transmitter-receiver pair; the transmitter emits an infrared beam to a receiver module. Usually the
beam distance can be adjusted. An intruder going across the beam would interrupt the circuit and be detected.
In several applications, it may make sense to place the beams only on the perimeter of the polygon, as allowing
beams to intersect either the interior or the exterior of the polygon may lead to false alarms. We are interested in
minimizing the number of infrared beams to be placed on the perimeter that are required to ensure that any intruder
L whose path crosses the polygon will be detected. This implies that the transmitter and receiver should be placed
on adjacent vertices of the polygon, so that the beam is aligned with the edge between them. Our intruder detection
problem can therefore be modeled as follows:

Definition 1 Minimum-Edge-Perimeter-Defense : Given a polygon P, find a minimum-sized subset S of edges of
P such that any straight line segment L crossing P intersects at least one edge in S.

It is not difficult to see that this problem can be reduced to a hiding problem, i.e. finding a maximum-sized subset
of mutually invisible edges of the polygon 1. Indeed S is a solution to the perimeter defense problem if and only if
all elements in S are mutually invisible. In what follows, we focus on the Max-Hidden-Edge-Set problem:

Definition 2 Max-Hidden-Edge-Set : Given a polygon P, find a mazimum-sized subset of mutually invisible edges
of the polygon.

Guarding and hiding problems have been studied extensively in the literature. The Mazimum Hidden Set (M HS)
problem introduced in [1] is to find a maximum-sized set of mutually invisible points in a polygon. In the Mazimum
Hidden Vertex Set (M HV S), the points are constrained to be vertices of the polygon. Hiding and guarding problems
are combined in the Minimum Hidden Guard Set (M HGS) and the Minimum Hidden Vertex Guard Set (M HV GS)
and Hidden Vertex Guard Admissibility problems. All these problems were shown to be NP-complete and lower and
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ITwo edges e1 and es are invisible from each other iff for every p1 € e1 and ps € ez such that the line connecting p1 and po lies
entirely within the polygon, at least one of p; and p2 is an endpoint of its edge.



upper bounds for their approximation ratios were given in [1]. The restriction of the problem instance to a terrain
was proved to be NP-complete in [3].

In [3, 6] it was shown that for polygons with holes or terrains, the MHS and MHVS problems cannot be
approximated by a polynomial time algorithm with an approximation ratio of n® for some ¢ > 0. For polygons
without holes, these problems were shown to be APX-hard. Recently, Eidenbenz [7] presented an inapproximability
result for the M HGS problem. He proved that for input polygons with or without holes or terrains, the M HGS
problem is also APX-hard. Notice that the M HVGS problem is a much harder problem. It is NP-hard to even
determine whether a feasible solution exists [1].

To our knowledge, the complexity of the Max-Hidden-Edge-Set problem has not been studied. Since a set
of mutually invisible edges in a polygon is an independent set of vertices in the visibility graph of the edges of
the polygon, the Max-Hidden-Edge-Set problem can be reduced to the Maximum Independent Set problem, and
therefore is approximable with an O(n(loglogn)?/log®n) approximation ratio [2]. Not every graph is a visibility
graph of a polygon (for example, K5 3), and therefore, the reduction does not go through in the other direction.

Our Results

In this paper, we prove that the Max-Hidden-Edge-Set problem is APX-hard for polygons without holes. The proof
is using a reduction from Max-5-Occurrence-2-Sat problem, which was shown to be APX-hard in [4, 5]. In fact,
we show that the Max-Hidden-Edge-Set problem is APX-hard even when restricted to rectilinear polygons without
holes. It follows that the Minimum-Edge-Perimeter-Defense problem is also APX-hard even for rectilinear polygons
without holes.

2 APX-hardness of Max-Hidden-Edge-Set for an Arbitrary Polygon

In this section, we show that the Max-5-Occurrence-2-Sat problem is transformable in polynomial time to Max-
Hidden-Edge-Set by an approximation-preserving (gap-preserving) reduction [8].

Definition 3 Let ® be a boolean formula given in conjunctive normal form, with at most two literals in each clause
and each variable appearing in at most 5 five clauses. The Max-5-Occurrence-2-Sat problem consists of finding a
truth assignment for the variables of ® such that the number of satisfied clauses is maximum.

Construction

The goal is to accept an instance of Max-5-Occurrence-2-Sat as input and in polynomial time to construct a
connected simple polygonal region P such that the difference in the number of hidden edges obtained by the optimal
and approximation algorithms preserves the gap between the optimal and approximate results (the number of satisfied
clauses) in Max-5-Occurrence-2-Sat . The construction is similar to the one proposed in [6]. As shown in Figure 1,
the main body is a convex polygon without holes inside; we refer to it as the center polygon. For each clause, a
clause pattern is built on the top right of the center polygon, and for each variable, a variable pattern is built on the
bottom left of the center polygon. Variable patterns are separated by the cb-edges and form a convex curve along
the center polygon’s bottom. A basic unit in both types of patterns is a dent: a set of continuous line segments
that form a convex shape (see Figure 2). It is clear that at most one edge from any dent can be included in the
Max-Hidden-Edge-Set . Now we show how to construct the clause and variable patterns.

Clause Patterns: The clause pattern is shown in Figure 3. Each pattern consists of 15 adjacent edges forming three
dents. Each dent has exactly five edges. Without loss of generality, we assume that all clauses contain two literals.
Then for each clause we use the left and right dents to represent the two literals and the middle dent to represent
the satisfiability of the clause.

Variable Patterns: The variable pattern is shown in Figure 4. Each variable has a TRUE-leg and a FALSE-leg, each
consisting of three components: L-dents, M-dents and E-dents. Observe that no two dents in the same component
can see each other. Five L-dents are arranged along a line, separated by g-edges, and each L-dent (L;) consists of
one t-edge (t;), one b-edge (b;) and one l-edge (I;). Each occurrence of a variable matches a pair of L-dents, one
from the variable’s TRUE-leg and the other from the variable’s FALSE-leg. Since each variable appears in at most 5
clauses, we only need five L-dents for each leg. Opposite to the L-dents are four adjacent M-dents and six adjacent
FE-dents. Each M-dent consists of three edges. We denote the middle edge for a dent M; by m;. Finally, six F-dents
form a simple zig-zag line under the M-dents. We pick up every alternate edge from this collection of dents and
denote the edge chosen from E; by e;. By choosing the length and direction of each edge appropriately, each leg of
the variable pattern can be constructed with the following properties.
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P1 For 1 <i <5, ¢;, g;, a and d can each see all the edges in component M and E, and edge g; can see d and a.

P2 For 1 <¢ <5, b; and [; see all the edges in component M and edge a, but cannot see any edge in component
FE or edge d.

P3 For 1 <17 <4, m; can see all the edges in component L and g, but no edge in component F.
P4 For 1 <i <5, if I; does not match any occurrence of a variable, [; sees only the M-dent and edge a.

P5 Components M and F are angled so that they cannot be seen by any clause pattern.

The last step of the construction is to establish the relationship between the clause and variable patterns. As
shown in Figure 5, we connect them by cones. Each cone starts at an l-edge and ends at a clause pattern and the
clause pattern’s edges inside the cone are visible to the l-edge. Consequently, if we add an I-edge (cone’s bottom) to
the hidden edge set, we cannot add any edge at the top of the cone. Further, the cones are overlapped in specific
ways, as shown in Figure 5.

Analysis

Next we show the relationship between a satisfying assignment for a Max-5-Occurrence-2-Sat instance and a hidden
edge set for the corresponding polygon. Let I be an instance of the Max-5-Occurrence-2-Sat problem with n
variables and m clauses and I’ be the instance of the corresponding Max-Hidden-Edge-Set problem. We assume
without loss of generality that every variable has more than one occurrence in I (if not, then the unique clause
containing the variable can definitely be satisfied).

Lemma 1 If I has an assignment S that satisfies at least (1 — e)m clauses, then I' has a solution S’ with at least
21n 4+ 2m + (1 — e)m edges.
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Figure 5: Relationship between Clause and Variable Patterns (Arbitrary Polygon)

Proof. For a variable with a TRUE assignment, we add all the i-edges and e-edges from its TRUE-leg and all the
m-edges and e-edges from its FALSE-leg (and vice-versa for a variable with a FALSE assignment). So no matter
what the truth value is, we can add 5 l-edges, 4 m-edges and 12 e-edges. Since there are n variable patterns, we add
21n edges to S’.

Next we add edges from the clause patterns. We show that we can always add 3 edges for each satisfied clause
and 2 edges for each unsatisfied clause. Consider a clause with two literals (z;, z;), see Figure 5.(a). We examine all
the possible assignments of ; and x; in S.

Suppose z; and x; are both TRUE. Then, all I-edges in the TRUE-legs of variable patterns corresponding to w;
and x; have already been added to S’. Therefore we cannot add any of the edges 1-4 or 12-15 from the clause
pattern to S’, because all these edges are visible to the I-edges mentioned above. On the other hand, no l-edge of
both variables” FALSE-legs belongs to S’, thus any of edges 5-11 can be added to S’. Since for each dent at most
one edge belongs to the hidden set, we can add edges 5, 11, and any of the edges 6-10 to S’. A similar analysis can
be used for all other truth value combinations for x; and z; to show each unsatisfied clause contributes 2 edges and
each satisfied clause contributes 3 edges to S’. Since S satisfies at least (1 — €)m clauses, we conclude that S’ has at
least 21n + 2(m — (1 — €)m) + 3(1 — €)m = 21n + 2m + (1 — €)m edges. O

The next two lemmas give us the relationship in the other direction.

Lemma 2 Given a solution S’ to the Maz-Hidden-Edge-Set instance I', without decreasing the number of the hidden
edges, we can transform it such that the contribution from each variable pattern leg to S’ is all its e-edges and either
some subset of its I- or all of its m-edges.

Proof. We consider two cases for each variable pattern leg: either an edge from L-dents belongs to S’ or not. If
a t;-edge of an L-dent belongs to S’, then replace it with the corresponding /;-edge. By choosing the I; edge to be
small enough and the angle of the L-dent appropriately, we can ensure that the edges visible to [;-edge and t;-edge
are exactly the same (though they see slightly different parts of these edges). Therefore, the edges in the solution
S’ belonging to the relevant clause pattern can remain in S’. If a b;-edge of an L-dent belongs to S’, we can apply
a similar replacement to it. It is easy to see that in this case, no M-dent edge could have belonged to S’. It follows



from property P1 that at most five edges from the a-, d- and g- edges can be in the solution S’, which can be replaced
by six e-edges. In the second case, there was no edge in S’ from any of the L-dents. It is easy to verify that the
largest number of hidden edges that can be chosen from the variable pattern leg without choosing any L-dent edges
is the set of all m- and e-edges, which do not see any clause pattern edges at all, and therefore maximize the number
of clause pattern edges that can be included in S’. O

Lemma 3 If the Maz-Hidden-Edge-Set instance I' has a solution S” with at least 21n + 3m — (e +v)m edges, then
the corresponding Maz-5-Occurrence-2-Sat instance I has an assignment S which satisfies at least (1 — € — y)m
clauses.

Proof. By Lemma 2, we can assume that S’ has the property that from any variable pattern leg, all e-edges and
either some subset of I-edges or all m-edges are in S’. Next, we transform S’ without decreasing its size so that
every variable pattern contributes all /- and e-edges from one leg and all m and e-edges from the other leg. The
transformation consists of the following two key steps. First, for each variable pattern, we always choose the leg
which contains more l-edges in S’. If an I-edge in this leg does not belong to S’, then we simply add it to S’; there
can be at most one clause pattern edge in S’ that can be seen by this l-edge, which now has to be removed from S’.

Second, for the other leg, we remove all its l-edges from S’ and add all its m-edges to S’. If fewer than five l-edges
were removed, then clearly, the size of the solution has not decreased. If instead we replaced five [-edges with 4
m-edges, the size of S’ is decreased by one. But since there are at least two occurrences for each variable in the
instance, at least two of the removed [-edges match the literal dents in the clause patterns, which combined with
the fact that all I-edges from the other leg are in S’ implies that one extra edge from each of the clause patterns
matching the removed I-edges can be added to S’. These extra edges could not have been in S’ before, because they
were covered by the (removed) [-edges.

Now we can easily construct a truth assignment with the required properties: if a variable pattern contributes
[-edges from its TRUE-leg, then it is assigned TRUE, and otherwise it is assigned FALSE. The maximum number
of edges in S’ contributed by variable patterns is 21n. We claim that apart from these variable pattern edges, S’
contains only clause pattern edges. This is because for 1 < i < 2n 4 1, edge cb;, cl, ¢t and cr can see each other;
at most one of these could be part of a hidden set. However, all these edges also see all edges in all the clause
patterns, therefore a solution S’ with the required size can only have clause pattern edges. It is known that 2 edges
from each clause pattern, for a total of 2m edges, can be added to S’ no matter it is satisfied or not. If S’ has
at least 21n + 2m + (1 — € — v)m edges, we must have at least (1 — ¢ — v)m satisfied clauses in the corresponding
Max-5-Occurrence-2-Sat instance I. O

Now we show the APX-hardness of the Max-Hidden-Edge-Set problem. Let I be an instance of the Max-5-
Occurrence-2-Sat problem with n variables and m clauses and I’ be the instance of the corresponding Max-Hidden-
Edge-Set problem. We denote the optimal solutions for these problems by OPT(I) and OPT(I") respectively. From
Lemma 1 and Lemma 3 we have:

1. [OPT(D)] > (1 —¢em — |OPT(I")| > 21n+2m+ (1 —e)m
2. OPT()| < (1—€e—~v)m — |OPT(I")] < 21n+3m — (e +v)m

It is known that Max-5-Occurrence-2-Sat is APX-hard. Therefore, for an instance I such that either |OPT(I)| >
(1 —€e)m or |OPT(I)| < (1 — € — v)m for some constants €,y > 0, it is NP-hard to decide which case is true. We
claim that unless P=NP, no polynomial time approximation algorithm for Max-Hidden-Edge-Set can achieve an
21n+2m+(1—e)m

Tntam—(cry)m" Suppose to the contrary, that a polynomial time approximation
21n+2m+(1—€e)m

algorithm denoted by APO has a performance ratio < ntsm—(eTym " Given an instance of Max-5-Occurrence-2-
Sat such that either |OPT(I)] > (1 — ¢)m or |OPT(I)] < (1 — ¢ — )m for some constants €,y > 0, we apply our
reduction to obtain an instance I’ of Max-Hidden-Edge-Set . If |[APO(I")| > 21n+3m — (e++~)m then |OPT(I")| >
21n + 3m — (e + v)m, which further means |OPT(I)| > (1 — ¢ — «v)m (because of (2) above). Because I can belong
only to one of the two categories, we know that |OPT(I)| > (1 — €)m. If instead |APO(I")| < 21n + 3m — (e +v)m,

oPT(I' 2In+2m+(1—e)m . . 21n+2m+(1—€e)m
then ;APOEI,;l‘ < 21ni3mf§€+vgm implies |OPT(I')| < WMPO(I’H < 21n+2m + (1 — ¢)m. Therefore
|OPT(I)] < (1—¢€)m which implies |OPT(I)| < (1—e—~)m. Consequently, it will be possible to decide in polynomial
time which category the instance I belongs to, which contradicts the APX-hardness of the Max-5-Occurrence-2-

Sat problem. We now calculate the ratio. Using the fact that n < 2m, we have

approximation ratio better than
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Theorem 4 There exists a constant € > 0 such that no polynomial time approrimation algorithm for the Max-
Hidden-Edge-Set problem on polygons without holes can have an approximation ratio of 1 + €, unless P = NP.

3 APX-hardness of Max-Hidden-Edge-Set for a Rectilinear Polygon

If we restrict the Max-Hidden-Edge-Set problem to a rectilinear polygon, we can apply a very similar reduction and
analysis. The new overall construction, clause pattern, variable pattern and the relationship are shown in Figures
6-9. In Figure 6, we add two new components UC-dents and LC-dents. Due to the fact that the center polygon is
rectilinear, ¢b- and ct-edges cannot form a convex curve as in the non-rectilinear case. Therefore we need UC- and
LC-dents to make sure cb- and ct-edges are not included in the maximal hidden set. We respectively put (m + 2)
UC-dents and (2n + 2) LC-dents on the center polygon’s top right corner and bottom right corners. Notice that
every ct-edge (cb-edge) can see the UC- (LC-) dents completely. In Figure 7, we modify the clause pattern to contain
three steps on the right side. In each step’s corner, there exists a small convex polygon. It is easy to see that from
each step we can add two edges, and a total of six edges for a clause, to the hidden edge set. In Figure 8, we change
the shape of the L-dent. As depicted in the figure, for each L-dent we can add at most two edges, I35 and I (or I3 and
l5), to the solution. On the right side of each leg, we have 9 M-dents and 11 E-dents. By choosing the appropriate
heights and lengths of edges, we make each L-dent’s {l,l3, 14,15} edges see M-dents completely and {l1,1;} edges see
E-dents completely. Figure 9 shows the relationship between the clause and variable pattern. We draw the figure for
(Xi,fj). Similar to the earlier case, if the clause is satisfied, we can add at most 6 edges to the solution; otherwise,
we can only add 5 edges. Observe that a similar construction works accordingly for other types of clauses.
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Figure 6: Overview of Construction (Rectilinear Polygon)
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Lemma 5 If the Max-5-Occurrence-2-Sat instance I with n variables and m clauses has an assignment S that
satisfies at least (1 — €)m clauses, then the corresponding Max-Hidden-Edge-Set instance I' has a solution S’ with
at least 43n 4+ 6m + 4 + (1 — e)m edges.

Proof. Similar to the proof in Lemma 1, for each variable pattern, we can include at most 41 edges (10 from the
L-dents of one leg, 9 from the M-dents of the other leg and 11 from the E-dents of each leg) to the hidden edge set.
For the center polygon we can include 2n + 2 edges from the LC-dents and m + 2 edges from the UC-dents. Finally,
5 edges from each clause pattern and (1 — €)m extra edges corresponding to the satisfied clauses can be included. O

Lemma 6 If the Maz-Hidden-Edge-Set instance I' has a solution S’ with at least 43n +6m +4+ (1 — e — y)m
edges for a constructed polygon, then the corresponding Max-5-Occurrence-2-Sat instance I with n variables and m
clauses has an assignment S which satisfies at least (1 — e — v)m clauses.

Proof. Similar to the proof in Lemma 3, without decreasing the number of hidden edge, we can convert any given
hidden edge set to one following the standard structure (one leg contains all L-dents and the other leg contains all
M-dents). Then we conclude the proof with a similar argument used in Lemma 3. O

The following theorem follows immediately from Lemma 5 and Lemma 6.

Theorem 7 Maax-Hidden-Edge-Set is APX-hard even when restricted to a rectilinear polygon without holes.
Corollary 8 Minimum-Edge-Perimeter-Defense is APX-hard, even for rectilinear polygons without holes.

The NP-hardness of Minimum-Edge-Perimeter-Defense problem follows immediately from Corollary 8.

4 Discussion

We proved the APX-hardness of the Max-Hidden-Edge-Set problem for rectilinear polygons, which implies the APX-
hardness of the Minimum-Edge-Perimeter-Defense problem. In light of the lower bound of n!~©(1/(egn)”) (where
v is a constant) for the approximation ratio for the Maximum Independent Set problem, it would be interesting to
know if a higher lower bound also applies for our problems. The complexity of Max-Hidden-Edge-Set for monotone
rectilinear problems remains an interesting open problem.
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