Routing and Traversal via Location Awareness

in Ad-Hoc Networks

Evangelos Kranakis* Ladislav Stacho!

August 14, 2004

Abstract

We survey some recent results that make use of location aware-
ness of the hosts of an ad-hoc network in order to provide for ef-
ficient information dissemination. We explore several new method-
ologies for constructing hop- and geometric-spanners in a distributed
manner, discuss advantages and disadvantages of preprocessing the
network topology, and outline several algorithms for efficient traversal
and route discovery in ad-hoc networks.

1 Challenges in Ad-Hoc Networking

The current rapid growth in the spread of wireless devices of ever increasing
miniaturization and computing power has greatly influenced the development
of ad-hoc networking. Ad-hoc networks are wireless, self-organizing systems
formed by co-operating nodes within communication range of each other that
form temporary networks with a dynamic decentralized topology. It is desired
to make a variety of services available (e.g., internet, GPS, service discovery)
in such environments and our expectation is for a seamless and ubiquitous
integration of the new wireless devices with the existing wired communica-
tion infrastructure. At the same time we anticipate the development of new
wireless services that will provide solutions to a variety of communication

*School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
"Department of Mathematics, Simon Fraser University, 8888 University Drive, Burn-
aby, British Columbia, Canada, V5A 1S6.

needs (e.g., sensing and reporting an event, integrating hosts in a temporary
network) among hosts without the interference of an existing infrastructure.

To comprehend the magnitude of our task and the challenges that need
to be addressed it is important to understand that currently hosts of an ad-
hoc network are energy limited and must operate in a bandwidth limited
communication environment. Providing for efficient information dissemi-
nation in such an ad-hoc network is a significant challenge. The present
paper is a survey with a threefold goal. First, to understand and propose
a reasonable abstract model of communication that integrates well with the
expected “location awareness” of the hosts, second to explain how by prepro-
cessing the underlying wireless network we can simplify the communication
infrastructure, and third propose solutions for achieving efficient information
dissemination.

A brief outline of the paper is as follows. After discussing various abstract
models in Section 2 we address how neighborhood proximity can be used to
produce geometric and hop spanners in Section 3. Finally, in Section 4 we
outline several algorithms for route discovery and traversal in undirected and
directed ad-hoc networks.

2 Modelling Ad-hoc Networks

An ad-hoc network can be modelled as a set of points, representing network
nodes (hosts), in 2-dimensional or 3-dimensional Euclidean space R? or R?,
with a relation among the nodes representing communication links (or wire-
less radio channels). One node is linked with another if the signal of the
former can reach the latter. Hosts have limited computational and commu-
nication power. The computational power corresponds to the level of coding
the host can accomplish as well as the amount of local memory accessible
to the host. The communication power reflects how far a signal can reach
and is determined by propagation characteristics of the radio channel in the
environment as well as the power control capabilities of the host.

Modelling a radio channel is a nontrivial task due to possible signal loss or
signal degeneracy caused by interference with other channels and blockages
by physical obstructions. Radio propagation and interference models based
on the physical layer have been developed in [12, 13]. These models provide
accurate information on the capacity and limitations of an ad-hoc network.
However they are too general for the design and analysis routing protocols

in higher layers. Thus, a simpler model that abstracts the wireless ad-hoc
nature of the network is being used. In this model, the wireless network
is modelled as a graph G = (V, E) where V is the set of all hosts/nodes
and E contains an edge joining u to v if the node u can directly transmit
to v. Adjacency between nodes can be determined, for example, by a pass
loss equation and a signal to noise formula [19]. If we assume that the
transmission power of all the nodes is the same and fixed, then the graph G
will be an undirected graph, called a unit disk graph. This is the standard
theoretical model of wireless ad-hoc network. On the other hand, if hosts
can adjust their transmission power and the transmission power is not the
same for all hosts, then the resulting graph G will be a directed graph. The
directed graph also models the signal loss in the wireless radio channels and
as such can be viewed as a more realistic model of a wireless ad-hoc network.

2.1 Communication and information dissemination

An essential requirement of information dissemination in communication net-
works is that the nodes be endowed with a consistent addressing scheme. IP-
addresses, so typical of traditional Internet networking, can be either setup at
initialization or else acquired by means of an address configuration protocol.
Unfortunately none of these techniques are suitable for wireless networking
where addresses have to be built “on the fly” and are usually based on the
geographic coordinates of the hosts. The latter can be acquired either di-
rectly from a participating satellite of an available GPS or via radio-location
by exchanging signals with neighbouring nodes in the wireless system. Thus,
the coordinates of the hosts form the foundation of any addressing scheme
in such infrastructure-less networks. The corresponding model is then a unit
disk graph together with an embedding (not necessarily planar) into R2
We refer to the graph with an embedding as geometric graph if we want to
emphasize the fact that nodes are aware of their coordinates.

In general, ad-hoc networks are infrastructure-less, have no central com-
ponents and the nodes may have unpredictable mobility patterns. In order
to produce dynamic solutions that take into account the changing topology
of the backbone the hosts should base their decision only on factors whose
optimality depends on geographically local conditions.

A common approach to ad-hoc wireless network design is to separate
the infrastructure design and the routing scheme design. However these
two parts are closely interlaced as the choice of a particular infrastructure

control algorithm may have a considerable impact on the choice of the routing
scheme. In Section 3, we discuss the infrastructure control techniques, and
in Section 4 we survey some well-known routing techniques in wireless ad-
hoc networks. Since hosts of a wireless ad-hoc network are embedded in
2-dimensional (or 3-dimensional) Fuclidean space, many of these techniques
borrow tools from combinatorial geometry.

3 Ad-Hoc Communication Infrastructure

Due to the host’s limited resources in a wireless ad-hoc network, an impor-
tant task is to compute and maintain a suitable topology over which high
level routing protocols are implemented. One possible approach is to retain
only a linear number of radio channels using some local topology control algo-
rithm. A fundamental requirement on the resulting sparse network topology
is that it has similar communication capabilities and power consumption as
the original network. In the unit disk graph model, this directly leads to the
problem of finding a sparse subgraph so that for each pair of nodes there
exists an efficient path in the subgraph. A path is efficient if its Euclidean
length or number of edges/hops is no more than some small constant factor
(length-stretch factor in the former case and hop-stretch factor in the latter
case) of the minimum needed to connect the nodes in the unit disk graph.

If our objective is to optimize the power consumption and the ad-hoc net-
work has hosts with variable transmission ranges, then the resulting commu-
nication infrastructure should have good (small) length-stretch factor. Con-
structions of such topologies are based on various types of proximity graphs,
and we review some of them in Subsection 3.1.

If the hosts of the wireless ad-hoc network have fixed transmission power,
then the power consumption is minimized when the routes in the communi-
cation infrastructure minimize hops. We present a technique for maintaining
communication infrastructure with optimal (up to a small constant) hop-
stretch factor in Subsection 3.3.

Fundamental criteria for evaluation of the communication infrastructure
include the following.

e Bounded Degree — each node has only a bounded number of neighbours
in the subgraph. This is crucial since nodes have limited memory and
pOwer resources.

o Localized Construction — this is one of the most important require-
ments on the infrastructure control algorithm since nodes have only
access to the information stored in nodes within a constant number of
hops away. Thus, distributed local algorithms for maintenance of the
topology are desirable.

e Planarity — this strong geometric requirement forces edges not to cross
each other in the embedding. Many routing algorithms rely on pla-
narity of the communication topology.

e Sparseness — the topology should be a sparse subgraph, i.e. the number
of links should be linear in the number of nodes of the network. Sparse-
ness enables most routing algorithms to run more efficiently. Note that
planarity as previously mentioned implies sparseness.

e Spanner — nodes in the substructure should have distance “compara-
ble” to their distance in the original network. In particular, a subgraph
S C G is a spanner of G if there is a positive constant ¢ so that for
every pair of nodes v and v, dg(u,v) < t-dg(u,v). This general defini-
tion gives rise to various types of spanners: if the distance function d
measures the Euclidean length, then the subgraph is geometric spanner
and the constant t is the length-stretch factor. On the other hand, if
d is the number of edges/hops, then the subgraph is hop spanner and
the constant t is the hop-stretch factor.

3.1 Geometric Spanners

In this section, we survey several results on constructing sparse communica-
tion topology (spanner) for ad-hoc networks with hosts of variable transmis-
sion ranges. Consequently the obtained spanners will be geometric spanners.

Suppose that P is a set of n points in the plane. Every pair (p,q) of
points is associated with a planar region S, , that specifies “the neighborhood
association” of the two points. Let S be the set of neighborhood associations
in the pointset. Formally, the neighborhood graph G s p of the planar pointset
P is determined by a property P on the neighborhood associations:

1. (p,q) — Spq CR? for p,q € P.
2. P is a property on S := {S,,:p,q € P}.

The graph Gsp = (P, E) has the pointset P as its set of nodes and the set
E of edges is defined by (p,q) € E < S, , has property P. There are several

variants on this model including Nearest Neighbor Graph, Relative Neighbor
Graph, and Gabriel Graph which we define in the sequel.

3.1.1 Nearest Neighbor Graph (NNG)

The edges of a nearest neighbor graph are determined by minimum distance.
More precisely, for two points p and ¢, (p,q) € E < p is nearest neighbor of
q. If S, is the disk with diameter determined by the points p and ¢ then

/‘p

q

Figure 1: q is the nearest neighbor of p.

it is easy to see that the NNG is the same as the graph Gsp, where the
property P is defined by S,, = (. Although the NNG incorporates a useful
notion it has the disadvantage that the resulting graph may be disconnected.
A generalization of the NNG is the k-Nearest Neighbor Graph (k-NNG), for
some k > 1. In this case, (p,q) € F < p is k-th nearest neighbor of ¢ or ¢ is
k-th nearest neigbhor of p.

3.1.2 Relative Neighbor Graph (RNG)

The neighborhood association in the Relative Neighbor Graph (RNG) is
determined by the lune. Formally, the lune L, , of p and g is the intersection
of the open disks with radius the distance d(p, ¢) between p and ¢ and centred
at p and ¢, respectively. The set of edges of the graph is defined by (p,q) €
E < the lune L, , does not contain any point in the pointset P.

3.1.3 Gabriel Graph (GG)

Gabriel graphs (also known as Least squares adjacency graphs) where intro-
duced by Gabriel and Sokal in [11] and have been used for geographic analysis
and pattern recognition. The region of association between two points p, ¢ is
specified by the disk with diameter determined by p and ¢. Formally, the set

Figure 2: The lune defined by points p and q.

Figure 3: The circle with diameter the line segment determined by p, ¢ and
centred at the point ’%.

of edges of the Gabriel Graph is defined by (p,q) € FE < the disk centred at
’% and radius @ does not contain any point in the pointset P.

3.1.4 Relation between the neighborhood graphs

We mention without proof the following theorem.

Theorem 1 (O’Rourke and Toussaint [20, 16]). Let P be a planar
pointset. Then the following inclusions are satisfied for the previously men-
tioned neighborhood graphs

NNG C MST C RNG C GG C DT,

where MST denotes the Minimum spanning tree, and DT the Delaunay tri-
angulation of the pointset P.

3.2 Tests for Preprocessing the Ad-Hoc Network

In this section, we describe two procedures for constructing a geometric span-
ner in a given ad-hoc network: the Gabriel test is due to Bose et al. [5] and
the Morelia test is due to Boone et al. [3].

3.2.1 Gabriel Test

One of the most important tests for eliminating crossings in a wireless net-
work is called Gabriel test which is applied to every link of the network.
Assume that all nodes have the same transmission range R. Let A, B be two
nodes whose distance is less than the transmission range R of the network.
In the Gabriel test, if there is no node in the circle with diameter AB then

2\,

Figure 4: Eliminating an unnecessary link (dashed line AB) with the Gabriel
test.

the link between A and B is kept. If however there is a node C' in the circle
with diameter AB, as depicted in Figure 4, then nodes A and B remove their
direct link. Formally, the Gabriel test is as follows.

Gabriel Test.
Input: Pointset
Output: Gabriel Graph of Pointset

1: for for each node v do
2: for for each u neighbor of v do

3 if circle with diameter uv contains no other points in P then
4: remove the edge uv

5: end if

6: end for

7: end for

In particular, when A (respectively, B) is queried on routing data to
B (respectively, A) the routing table at A (respectively, B) forwards the
data through C' (or some other similar node if more than one node is in the
circle with diameter AB. The advantage of doing this rerouting of data is
that the resulting graph is a planar spanner on which we can apply the face
routing algorithm (to be described later) for discovering a route from source
to destination.

Theorem 2 (Bose et al. [5]). If the original network is connected then the
Gabriel test produces a connected planar network.
3.2.2 Morelia Test

The Gabriel test suffers from the multiple hop effect. Consider a set of pair-
wise mutually reachable nodes as depicted in the left-hand side of Figure 5.
When we apply the Gabriel test the configuration in the right-hand side of

Figure 5: Multiple hop effect when eliminating a link (line segment AB) via
the Gabriel test.

Figure 5 results. We can see that although nodes A and B could have reached
each other directly in a single hop instead they must direct their data through
a sequence of hops.

The Morelia test takes into account the “distance one” neighborhood of
the nodes prior to deciding on whether it should delete an edge. It is similar
to the Gabriel test in that given two nodes A and B it eliminates links based
on the inspection of the circle with diameter AB. Unlike the Gabriel test it
does not necessarily eliminate the direct link AB when it finds another node
inside the circle with diameter AB. Instead, it verifies whether the nodes
inside the circle create any crossing of the line AB. If no crossing is created

the line AB is kept, otherwise it is removed. The verification of the existence
of crossing is done in most cases by inspecting only the neighborhood of nodes
A and B at the transmission distance R. In a few cases, the neighborhood
of some of the nodes in the circle around AB is inspected. We subdivide the
area of the circle with diameter AB into four regions X, Xs, Y7 and Y (see
Figure 6) as determined by an arc of radius R.

K

Figure 6: Morelia Test

Figure 7 depicts several scenarios being considered prior to determining
whether or not an edge should be deleted. Details of the precise specification
of the Morelia test applied to a link AB can be found in Boone et al. [3].

We can prove the following theorem.

Theorem 3 (Boone et al. [3]). If the original network is connected then
application of the Morelia test produces a connected planar spanner of the
original network which contains the Gabriel graph of the network as a sub-
graph.

3.3 Hop Spanners

In all constructions described in previous subsections, the computed topology
is a sparse geometric spanner. If the hosts of the wireless network can adjust

10

LA
SINEIIRY

T~ 7

Figure 7: Examples of the Morelia test scenarios: a) AB deleted by rule 1,
b) AB deleted by rule 2, ¢) AB deleted by rule 4.

their transmission power, then the topology will guarantee optimal power
consumption. However the communication delay is not bounded.

To bound the communication delay, one must construct a topology with
a small hop-stretch factor. Hop spanners were introduced by Peleg and Ull-
man in [18] and were used as network synchronizers. A survey of results on
(sparse) hop spanners is given in [17]. The problem of finding a sparsest hop
spanner with a given hop-stretch factor ¢ was shown to be NP-complete for
most values of ¢ in general graphs, see [6]. In the case t = 2 (i.e., the hop
length of a shortest path in a spanner is at most twice the hop length of
a shortest path in the original graph) an approximation algorithm to con-
struct a hop spanner with hop-stretch factor 2 is given in [14]. However,
such a spanner cannot have a linear number of edges in general networks
[14]. Recently a distributed non-constant hop-stretch factor O(logn) span-
ner algorithm appeared in [10].

For unit disk graphs, various hierarchical structures, based on the con-
cepts of dominating sets and coverings, have been proposed. Although hop
spanners in unit disk graphs can be made sparse, they cannot have every
node of constant degree. This follows from a more general result in [2] where
the following generalization of a hop spanner has been introduced.

Let S be a subgraph of G. We say that v and v are quasi-connected
(in) if there exists a path (u,uy,...,ugv) in G with all but the last edge
in £(S). Such a path will be referred to as a quasi-path in S. Given two
quasi-connected nodes u and v, their quasi-distance qds(u,v) is the number
of edges of a shortest u — v quasi-path in S. A subgraph S C G is a hop
quasi-spanner of G if there is a positive constant ¢ so that for every pair of

11

nodes u and v, qdg(u,v) < t(dg(u,v) — 1) + 1. Notice that according to
this definition every hop spanner is also a hop quasi-spanner with the same
hop-stretch factor. Thus, the notion of quasi-spanner generalizes the notion
of hop spanner. Furthermore, in a wireless ad-hoc network it completely
suffices to route a message to a host that is in the transmission range of the
destination host. Indeed, if a host receives a message that is destined for it,
it can accept the message, disregarding the fact that the sender may not be
in its routing table based on the communication topology.

Now the following result shows that hop spanners must contain some
nodes of large degree.

Theorem 4 (Berenbrink et al. [2]). Let u be a node of a unit disk graph
G. Let d and D be the number of nodes at distance 1 and 2 from u in G,

respectively. Let H be a hop quasi-spanner of G with hop-stretch factor two.

D

Then some node in G has degree at least |/ 7.

In the remainder of this section, we survey some known results on comput-
ing hop spanners with small hop-stretch factor. The most common approach
is to first compute a dominating set of the wireless network G, then to add
some connector nodes to transform the dominating set into a connected sub-
graph CDS of GG, and finally to connect all remaining nodes to the nodes of
CDS. The best result using this technique is the following.

Theorem 5 (Alzoubi et al. [1]). There exists a local distributed algorithm
that will compute a hop spanner of a unit disk graph with the hop-stretch
factor 5. Moreover, the hop spanner is planar.

From the practical point of view, the hop-stretch factor of the spanner
from Theorem 5 is large. Another approach was taken in [2] where the hop
quasi-spanner was proposed as the communication topology for wireless ad-
hoc networks. The quasi-spanner is build on the concept of coverings: Every
node selects a constant number of nodes covering all other nodes in the circle
with radius 2 centered at the node. Since the algorithm is simple, we present
it in detail.

The k-neighbourhood of a node v, denoted as N¥,(v), is the set of all nodes
at distance k from v. Similarly, we denote the set of all nodes at distance at
most k from v as N§"(v). A subset C of a set S is called a covering of S if
for every point s € S there is a point ¢ € C' such that the distance between s
and c is at most 1. Given a unit disk graph G and a node u € V', a covering

12

of NZ,(u) will be denoted as T'(u). A covering T'(u) is minimal if no other
covering of NZ(u) is a subset of T'(u).

The following is a simple greedy procedure constructing a minimal cov-
ering.

Min-Covering(u, G).
Output: minimal covering T'(u) of NZ(u)
1: N :=NZ(u)
2: T(u) =
3: while N # () do
4: choose v € N
5. T(u):=T(u)U{v}
6: for every 2 € Ng(v) N N do
7: N :=N —{z}
8: end for
9: end while

The algorithm for constructing a hop quasi-spanner follows. The algo-
rithm is very simple — every node will build a minimal covering around
it.

Hop Quasi-Spanner.

Input: Unit disk graph G = (V, E(G))

Output: Spanning subgraph K = (V, E(K)) of G
1: for each node v do

2: E(u) =10

3: T(u) :=Min-Covering(u,G)

4: for every v € T'(u) do

5: find a w € N§(u) N Ng(v)

6: E(u) = E(u) U{(u,w), (w,v)}
7. end for

8: end for

9: E(H) = UuEVE(U)

The hop quasi-spanner algorithm produces a sparse hop quasi-spanner.
This is stated in the following theorem.

Theorem 6 (Berenbrink et al. [2]). The graph K produced by the hop
quasi-spanner algorithm is a hop quasi-spanner with the hop-stretch factor 2
and has at most 36|V| edges, i.e., the average degree of K is at most 72.

13

4 Information Dissemination

After producing an underlying communication topology, an important task
is how to disseminate information efficiently. For example, in routing we
want to guarantee real-time message delivery and at the same time (1) avoid
flooding the network, (2) discover an optimal path (the existence of such a
path strongly depends on our choice of communication topology), (3) use
only geographically local information. It is inevitable that we may not be
able to satisfy all three goals at the same time. Traditional methods discover
routes using a greedy approach in which the “next-hop” is determined by
iteratively (hop-to-hop) reducing the value of a given function of a distance
and /or angle determined by the source and destination hosts. Unfortunately
this does not always work either because of loops (return to the source host
without finding the destination) or voids (hosts with no neighbors closer to
the destination). In this section, we look at the problem of determining
in which networks it is possible to attain geographically local routing with
guaranteed delivery.

4.1 Routing in Undirected Planar Graphs

In this section, we will consider planar geometric graphs as the communica-
tion topology and will describe several routing algorithms for them. Let G
be a planar geometric graph. Recall that V' denotes the set of nodes, and F
the set of edges in G. We denote the set of faces of G by F'. We will assume
that nodes of G are in general position, i.e., no three are colinear.

4.1.1 Compass Routing

The first routing algorithm we consider is greedy in the sense that it always
selects its next edge/hop on the basis of the smallest angle between the
“current edge” and the “straight line” formed by the current node and the
target node. More precisely the compass routing is achieved by the following
algorithm.

Compass Routing Algorithm.

Input: connected planar graph G = (V, E)
Source node: s

Destination node: ¢

1: Start at source node ¢ := s.

14

N

repeat

3: Choose an edge incident to current node ¢ forming the smallest angle
with straight line ¢ — ¢ connecting ¢ to t.

4: Traverse the chosen edge.

Go back to 3
: until target ¢ is found

> o

In a deterministic setting, compass routing guarantees delivery if the pla-
nar graph is, for example, a Delaunay Triangulation (see Kranakis et al. [15]).
It is easy to show that in a random setting, whereby the points of the set
P are uniformly distributed over a given convex region, compass routing can
reach the destination with high probability. In general, however, compass
routing cannot guarantee delivery. This is not only due to possible voids
(i.e., hosts with no neighbors closer to the destination) along the way but
also inherent loops in the network (see Figure 8).

Figure 8: An example of a planar graph over which compass routing fails to
find the destination.

In the next subsection, we describe a routing algorithm with guaranteed
delivery on geometric planar graphs.

4.1.2 Face Routing Algorithm

Failure of compass routing to guarantee delivery is due to its “greedy” nature
in order to minimize memory storage. Face routing overcomes this problem

15

by remembering the straight line connecting the source s to the target node
t.

Face Routing Algorithm.

Input: Connected Geometric Planar Network G = (V, E)
Source node: s

Destination node: ¢

1: Start at source node ¢ := s.

2: repeat

3: repeat

4: Determine face f incident to current node ¢ and intersected by the
straight line s — ¢ connecting s to .

5: Select any of the two edges of f incident to ¢ and traverse the edges

of f in the chosen direction.
6: until we find the second edge, say zy, of f intersected by s — ¢.
7: Update the face f to the new face of the graph GG that is “on the other
side” of the edge xy.
8: Update current node ¢ to either of the nodes x or y.
9: until target ¢ is found.

An example of the application of face routing is depicted in Figure 9.
Face routing always advances to a new face. We never traverse the same face

Figure 9: Face routing on a planar graph.

twice. Since each link is traversed a constant number of times we can prove
the following theorem.

16

Theorem 7 (Kranakis et al. [15]). Face routing in a geometric planar
graph always guarantees delivery and traverses at most O(n) edges.

The reader may wish to consult [5] for additional variants of the face
routing algorithm.

4.2 Routing in Directed Planar Graphs

As discussed earlier the unit disk graph is the graph of choice used in mod-
elling ad-hoc networks when the communication links are bidirectional. How-
ever, bidirectionality cannot be assured in a system consisting of diverse hosts
having variable power ranges, and nodes facing obstructions that may atten-
uate the signals. This gives rise to the “directed link model” which provides
a natural direction between links as follows. If a node A can reach a node
B (but it is not necessarily the case that B can also reach A) then we say
that there is a directed link from A to B in the graph. This gives rise to an
orientation in the network.

An orientation ~ of a graph G is an assignment of a direction to every
edge e of G. For an edge e with endpoints u and v, we write e = (u,v)
if its direction is from u to v. A graph G together with its orientation is
denoted by G. In this subsection, we will consider two classes of directed
planar geometric graphs: Eulerian and Outerplanar. For both classes, we
present a simple routing algorithm.

4.2.1 FEulerian Networks

Consider a connected planar geometric graph G = (V, E). If G is oriented,
then the face routing algorithm will not necessarily work since some edges
may be directed in an opposite direction while traversing a face. We de-
scribe a simple method from [7] for routing a message to the other end of an
oppositely directed edge in Eulerian geometric networks. The idea is sim-
ple: imitate the face routing algorithm but when an edge that needs to be
traversed is misdirected find a way to circumvent it using only “constant”
memory and geographically local information.

We say that G is Eulerian if for every node u € V', the number of edges
outgoing from u equals the number of edges ingoing into wu, i.e., the size of
N*t(u) = {z, (u,z) € E} equals the size of N~ (u) = {y, (y,u) € E}. Now
suppose that G is an Eulerian planar geometric graph. For a given node u of

17

G, we order edges (u, z) where 2 € N*(u) clockwise around u starting with
the edge closest to the vertical line passing through w. Similarly we order
edges (y,u) where y € N~ (u) clockwise around u (see Figure 10).

Figure 10: Circled numbers represent the ordering on outgoing edges, squared
numbers on ingoing ones.

Let e = (y,u) be the i-th ingoing edge to u in G. The function succ(e)
will return a pointer to the edge (u,z) so that (u,z) is the i-th outgoing
edge from u. For an illustration of the function see Figure 11. Again, this
function is easy to implement using only local information. Obviously, the
function succ() is injective, and thus, for every edge e = (u,v) of G, we can
define a closed walk by starting from e = (u, v) and then repeatedly applying
the function suce() until we arrive at the same edge e = (u,v). Since G is
Eulerian, the walk is well defined and finite. We call such a walk a quasi-face
of G.

We modify the face routing algorithm from [15] so that it will work on
Eulerian planar geometric graphs. This requires extending the face traversal
routine so that whenever the face traversal routine wants to traverse an edge
e = (u,v) that is oppositely directed, we traverse the following edges in this
order: succ(e),succ(e)?, ... succ(e)¥, so that succ(e)*t! = (u,v). After
traversing succ(e)¥, the routine resumes to the original traversal of the face.
Formally the algorithm is as follows.

Eulerian Directed Graph Algorithm.
Input: Connected Eulerian geometric graph G' = (V| E)

18

Figure 11: In this example the ingoing edge (y,u) is third, so the chosen
outgoing edge (u, z) is also third. Both these edges are depicted bold.

Source node: s
Destination node: t
1: v« s {Current node = source node.}
2: repeat
3: Let f be a face of G with v on its boundary that intersects the line v-t
at a point (not necessarily a node) closest to ¢.

4: for all edges xy of f do

5: if zy Nwv-t = p and |pt| < |vt| then
6: V< p

7 end if

8: end for

9: Traverse f until reaching the edge xy containing the point p.
10: until v =¢

We can prove the following theorem.
Theorem 8 (Chavez et al. [8]). The Eulerian Directed Graph Algorithm
will reach t from s in at most O(n?) steps.
4.2.2 Outerplanar Networks
If G is not Eulerian, then the routing algorithm above will fail. It is an

important open problem to design routing algorithms for general directed

19

geometric graphs. A fundamental question is whether such an algorithm
exists for directed planar geometric graphs. In all cases, the directed graphs
must be strongly connected so that we have a directed path guaranteed.

In this subsection, we describe a routing algorithm from [8] that works
on outerplanar graphs. A planar geometric graph G is outerplanar if a single
face (called outer-face) contains all the nodes. We will assume that this face is
a convex polygon in R2. For a given triple of nodes ., y, and z, let V~(z,y, 2)
(respectively, VA (z,y, z)) denote the ordered set of nodes distinct from x and
z that are encountered while moving from y counterclockwise (respectively,
clockwise) around the outer-face of G until either x or z is reached; see Figure
12.

Figure 12: The dashed part of the outer face represents the nodes in
VA(x,y, z) and the bold solid part represents nodes in V- (z,v, z), respec-
tively. Note that y belongs to both these sets and is in fact the first element
of those sets.

Now consider an orientation G of the geometric graph G and let
NA(z,y,2) = VA(z,y,2) "N NT(z) and NA(z,y,2) = Va(z,y,2) N NT(z).

If NAa(z,y,2) # 0, let v~(z,y,2) denote the first node in N(z,y,). Sim-
ilarly we define v~ (z,y, 2) as the first node in N~ (z,y, 2), if it exists. A
geometric network with fixed orientation is strongly connected if for every
ordered pair of its nodes, there is a (directed) path joining them.

The intuitive idea of the algorithm is to start at the source node s. It
specifies the two nodes vy, vy adjacent to the current node ¢ such that the
straight line determined by nodes ¢ and t lies within the angle vicvy. It
traverses one of the nodes and backtracks if necessary in order to update its
current position. Formally, the algorithm is as follows.

20

Outer Planar Directed Graph Algorithm.

Input: Strongly connected outerplanar geometric graph G= (V, E)
Source node: s

Destination node: ¢

1: v < s {Current node = source node.}
2: U, U — S {counterclockwise and clockwise bound = starting node. }

3: while v # ¢ do

4: if (v,t) € E then
5: V, VA, Un <t {Move to t.}
6: else if N~(v,t,v~) # 0 and N~ (v,t,v~) = 0 then {No-choice node;

greedily move to the only possible counterclockwise direction toward ¢.}

7 V, VA~ — V(0,8 0,4)

8: else if N(v,t,v,) =0 and N~ (v,t,v~) # 0 then {No-choice node;
greedily move to the only possible clockwise direction toward ¢.}

9: V, U — UA(0, 8, 0,)

10: elseif N (v,t,v-) # 0 and N~ (v,t,v~) # () then {Decision node; first
take the "counterclockwise” branch but remember the node for the backtrack
purpose. }

11: b—uv, 0,0~ v~(v,t,0-)

12 else if N.(v,t,v~) = 0 and N~ (v,t,v~) = () then {Dead-end node;
backtrack to the last node where a decision has been made. No updates to v~
and v, are necessary. }

13: if v € VA(t,0,t) then
14: while v # b do

15: v — vA(v,b,0)
16: end while

17: end if

18: if v € V~(t,0,t) then
19: while v # b do

20: v — v~ (v,b,0)
21: end while

22: end if

23: U,V — UA(v,t,0,~) {Take the "clockwise” branch toward ¢.}
24: end if

25: end while

We have the following theorem.

Theorem 9 (Chavez et al. [8]). The Outer Planar Directed Graph Algo-

21

rithm will reach t from s in at most 2n — 1 steps.

4.3 Traversal of Non-Planar Graphs

Network traversal is a technique widely used in networking for processing the
nodes, edges, etc, of a network in some order. For example it may involve
reporting each node, edge, and face of a planar graph exactly once, in order
to apply some operation to each. As such it can be used to discover network
resources, implement security policies, and report network conditions. Al-
though traversal can be used to discover routes between two hosts, in general
it will be less efficient than routing since it cannot guarantee that its “dis-
covery process” will be restricted to employing only information relevant to
routing.

DFS (Depth First Search) of the primal nodes and edges or dual faces and
edges of the graph is the usual approach followed for implementing traversal
but it cannot be implemented without using mark bits on the nodes, edges,
or faces, and a stack or queue. In this subsection we discuss a traversal
technique from [7] that is applicable to a class of non-planar networks (to be
defined below) and which is an improvement of a technique introduced by
de Berg et al. [9] and further elaborated by Bose and Morin [4].

A quasi-planar graph G = (V, E) has nodes embedded in the plane and
partitioned into V, UV, = V so that

e nodes in V, induce a connected planar graph P,

e the outer-face of P does not contain any node from V, or edge of G— P,
and

e no edge of P is crossed by any other edge of G.

An example of a quasi planar graph is depicted in Figure 13.

We will refer to the graph P as an underlying planar subgraph and to
its faces as underlying faces. The notion of nodes and edges is explicit in
the definition of quasi-planar graph, however, the notion of faces is not. To
define the notion of a face, we need to introduce some basic functions on
quasi-planar graphs.

A node u is uniquely determined by the pair [z, y], of its horizontal and
vertical coordinates. Every edge e = uw is stored as two oppositely directed
edges (u,v) and (v,u). The functions xcor(v) (respectively, ycor(v)) will
return the horizontal (respectively, vertical) coordinate of the node v and
rev(e) will return a pointer to the edge (v, u). Similarly the function succ(e)

22

Figure 13: An example of a quasi-planar graph that satisfies the Left-
Neighbor Rule. The filled nodes are in V,, and bold edges are edges of the
underlying planar subgraph P.

will return a pointer to the edge (v, z) so that (v, z) is the first edge counter-
clockwise around v starting from the edge (v,u), and the function pred(e)
will return a pointer to the edge (y,u) so that (u,y) is the first edge clockwise
around u starting from the edge (u,v). For an illustration of these functions
see Figure 14.

gface(e) pred(e)/

succ(e) e

Figure 14: Ilustration of basic functions on quasi-planar graphs.

For every edge e = (u,v) of G, we can define a closed walk by starting
from e = (u,v) and then repeatedly applying the function succ() until we
arrive at the same edge e = (u,v). Such a walk is called a quasi-face of G
and the set of all quasi-faces of G is denoted by F. The function gface(e)
will return a pointer to the quasi-face determined by edge e = (u, v).

A quasi-planar graph G satisfies the Left-Neighbor Rule if every node
v € V. has a neighbor u so that xcor(u) < xcor(v). For an example of G
that satisfies the Left-Neighbor Rule see Figure 13.

23

Figure 15: A quasi-planar graph and its six quasi-faces.

Quasi Planar Graph Traversal Algorithm

As in de Berg et al. [9], the general idea of the algorithm is to define a total
order < on all edges in E. This gives rise to a unique predecessor for every
quasi-face in F. The predecessor relationship imposes a virtual directed tree
G(F). The algorithm (due to Chavez et al. [7]) will search for the root of
G(F) and then will report quasi-faces of G in DFS order on the tree G(F).
For this, a well-known tree-traversal technique is used in order to traverse
G(F) using O(1) additional memory.

In order to define the virtual tree G(F'), we determine a unique edge,
called an entry edge, in each quasi-face. We first define a total order on all
edges in E. We write u < v if (xcor(u),ycor(u)) < (xcor(v),ycor(v))
by lexicographic comparison of the numeric values using <. For an edge
e = (u,v), let

v, ifu<Kw
u, otherwise’

u, if u < v
v, otherwise’

left(e) = { right(e) = {

and @ = [xcor(u),ycor(u) — 1|. Now let key(e) be the 5-tuple

key(e) =(xcor(left(e)), ycor(left(e)),
Lleft(e)left(e)right(e), xcor(u), ycor(u)).

By Labc we always refer to the counter-clockwise angle between rays ba and
bc with b being the apex of the angle. It follows by our assumption that
edges cannot cross vertices that if two edges e # ¢ have the same first
three values in their key(), then ¢/ = e~ and hence their last two values in
key() cannot both be the same. Hence it follows that e = ¢’ if and only if

24

key(e) = key(€’). We define the total order < by lexicographic comparison
of the numeric key() values using <. For a quasi-face f € F', we define

entry(f)=ecf :e<ée foralle #£eecf,

i.e., entry(f) is the minimum edge (with respect to the order <) on the
quasi-face f. Such an edge e will be called the entry edge of f. Note that
this function is easy to implement using the function succ(), and the total
order = using only O(1) memory.

The main algorithm for traversal from [7] is as follows.

Quasi-Planar Traversal Algorithm.
Input: e = (u,v) of G(V, E);
Output: List of nodes, edges, and quasi-faces of G.

1: repeat {find the minimum edge eq}

2: e« rev(e)

3: while e # entry(qface(e)) do

4: e « succ(e)

5. end while

6: until e =€

7. p < left(e)

8: repeat {start the traversal}

9: e« succ(e)
10: let e = (u,v) and let succ(e) = (v, w)
11: if p is contained in cone(u, v, w) then {report u if necessary}
12: report u
13: end if
14: if |up| < |vp| or (Jup| = |vp| and up < vp) then {report e if necessary}
15: report e
16: end if
17: if e = entry(qface(e)) then {report e and return to parent of gface(e) }
18: report gface(e)
19: e «— rev(e)
20: else {descend to children of gface(e) if necessary}
21: if rev(e) = entry(qface(rev(e))) then
22: e «— rev(e)
23: end if
24: end if

25

25: until e = ¢,
26: report gface(ep)

We have the following theorem.

Theorem 10 (Chavez et al. [7]). The Quasi-Planar Traversal Algorithm
reports each node, (undirected) edge, and quasi-face of a quasi-planar graph
G that satisfies the Left-Neighbor Rule exactly once in O(|F|log|E]) time.

5 Conclusion

In this paper we provided a survey of recent results on information dissemina-
tion via location awareness in ad-hoc networks. Although routing and traver-
sal may be wrongfully considered as overworked research topics we believe
that information dissemination in ad-hoc networks provides new challenges
that go beyond trivial extensions of existing or old results. We expect that
exploring tradeoffs between location awareness and reducing preprocessing
time for simplifying a wireless system is of vital importance to our under-
standing of the efficiency of information dissemination. Future studies in a
variety of graph models (oriented and otherwise) should provide better clues
to maintaining a seamless, ubiquitous and well-integrated communication
infrastructure.

Acknowledgments

Many thanks to the Morelia group (Edgar Chavez, Stefan Dobrev, Jarda
Opartny, and Jorge Urrutia) for many hours of enjoyable discussions on the
topics reviewed in this paper and to Danny Krizanc for his comments on
a draft of the paper. Research of both authors is supported in part by
NSERC (Natural Sciences and Engineering Research Council of Canada) and
MITACS (Mathematics of Information Technology and Complex Systems)
grants.

26

References

1]

[10]

K. Alzoubi, X.Y. Li, Y. Wang, P.J. Wan, and O. Frieder. Geometric
spanners for wireless ad hoc networks. IEFE Transactions on Parallel
and Distributed Systems, 14:1-14, 2003.

P. Berenbrink, T. Friedetzky, J. Manuch, and L. Stacho. (Quasi) spanner
in mobile ad hoc networks. submitted.

P. Boone, E. Chavez L., Gleitzky, E. Kranakis, J. Opartny, G. Salazar,
and J. Urrutia. Morelia test: Improving the efficiency of the gabriel test
and face routing in ad-hoc networks. In Proceedings of SIROCCO 2004,
Springer Verlag, LNCS, to appear, 2004.

P. Bose and P. Morin. An improved algorithm for subdivision traversal
without extra storage. International Journal of Computational Geome-

try and Applications, 12(4):297-308, 2002.

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaran-
teed delivery in ad hoc wireless networks. In Proc. of Discrete Algorithms
and Methods for Mobility (DIALM’99), pages 48-55, 1999.

L. Cai. NP-completeness of minimum spanner problems. Discrete Ap-
plied Mathematics, 48:187-194, 1994.

E. Chavez, S. Dobrev, E. Kranakis, J. Opartny, L. Stacho, and J. Urru-
tia. Route discovery with constant memory in oriented planar geomet-
ric networks. In In Proceedings of Algosensors 2004, Springer Verlag,
LNCS, to appear, 2004.

E. Chavez, S. Dobrev, E. Kranakis, J. Opartny, L. Stacho, and J. Ur-
rutia. Traversal of a quasi-planar subdivision without using mark bits.
In In WMAN (workshop on Wireless Mobile Adhoc Networks), IPDPS,
Santa Fe, New Mezico, April 26-30, 2004.

M. de Berg, M van Kreveld, R. van Oostrum, and M. Overmars. Simple
traversal of a subdivision without extra storage. International Journal
of Geographic Information Systems, 11:359-373, 1997.

D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srini-
vasan. Fast distributed algorithms for (weakly) connected dominating

27

sets and linear-size skeletons. In Proc. of 14/nt ACM-SIAM Symposium
on Discrete Algorithms (SODA 03), 2003.

K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic
variation analysis. Systemic Zoology, 18:259-278, 1969.

M. Grossglauser and D. Tse. Mobility increases the capacity of wireless
adhoc networks. In Proc. of IEEE Infocom, 2001.

P. Gupta and P. Kumar. Capacity of wireless networks. IEEE Transac-
tions on Information Technology, 46:388-404, 2000.

G. Kortsarz and D. Peleg. Generating sparse 2-spanners. J. of Algo-
rithms, 17:222-236, 1994.

E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geomet-
ric networks. In Proc. of 11th Canadian Conference on Computational
Geometry, pages 51-54, August 1999.

J. O’Rourke and G. T. Toussaint. Patterm recognition. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, pages 797-813. CRC Press, New York, 1997.

D. Peleg and A.A. Schaffer. Graph spanners. J. Graph Theory, 13:99—
116, 1989.

D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube.
SIAM J. Computing, 18:740-747, 19809.

T. Rappaport. Wireless communications: Principles and practices.
Prentice Hall, 1996.

G. T. Toussaint. The relative neighborhood graph of a finite planar set.
Pattern Recognition, 12(4):261-266, 1980.

28

