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Abstract

We consider true broadcast systems for the secure com-
munication of session keys. These schemes provide
for parallel rather than serial construction of broad-
cast messages, while avoiding selective broadcasting.
We begin by introducing a conceptual framework for
true broadcasting and illustrate its design with a secure
key broadcast scheme based on probabilistic encryp-
tion. The framework provides for a system requiring
user anonymity, as a result of the absence of address-
ing for the broadcast message. We also illustrate how
Shamir’s threshold scheme can be altered to allow for
parallel broadcasting. We then present a formal model
and use information theoretic techiques to establish a
lower bound on the size of the broadcast message for
a class of true broadcast schemes. Finally, we improve
upon the aforementioned threshold scheme such that it
achieves the lower bound.
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1 Introduction

Consider a system consisting of a set U of users and a
trusted center 7. Suppose that 7" wishes to share a large
message M with a subset P of privileged users. There
are two ways for this exchange to take place.

T can send M individually to each user in P. This is
known as a poini-to-point exchange. It involves sending
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multiple copies of the same message to the privileged
users. It also requires the address of the intended user
to be appended to each message. This is inefficient.
Alternatively, T" could broadcast the message M. This
is known as a point-to-multipoint exchange (see [12]).
The set P will consist of those users from U who share
a communication line with 7' (e.g. a local cable com-
pany). This method has the advantage that no address-
ing of the message is required and only a single mes-
sage is distributed. Therefore, broadcasting a message
is preferable to a point-to-point exchange.

Now suppose that T" would like to initiate a secure
communication, i.e. send a message to a subset of the
users who share a communication line with 7'. As an ex-
ample, for pay-tv, even though many users have a com-
munication line with the cable company, not all of these
users will receive the pay-tv channels.

To facilitate encryption, suppose that 7T shares a se-
cret key a priori with each user in U, where there are ¢
users in P. Implementation of a point-to-point exchange
now requires ¢ separate encryptions of M along with the
individual addressing and distribution of each of these
encrypted messages. An alternative is to concatenate
these individual encryptions and broadcast them as a
single message. However, this does not remove the need
for the individual encryptions and addressing (each user
must be able to identify his own encrypted piece to re-
cover M).

The major problem with these secure point-to-point
solutions is that if M is very large, 7' will have an enor-
mous amount of computation to perform ¢ distinct en-
cryptions of M, and will use a large amount of band-
width to distribute the t encryptions. To solve this prob-
lem, suppose 1" were to first share a session key K with
the members in P. Since K will be much smaller than
M, the amount of work performed by T to encrypt M
will be much less. Henceforth, T' can use K to encrypt
a single copy of M. Since only users in P possess K,
the broadcast of M encrypted under K is secure.

The problem now becomes one of distributing K. One
naive solution would be for T' to share a number of keys
with users in U during system setup. Each key would
correspond to a particular privileged set that a user
could belong to. However, since the number of possi-



ble sets is exponential in the number of users, each user
would be required to store a large number of keys.

A second solution would be for T to share K with
users in P using a secure point-to-point communication.
However, this solution inherits the problems encoun-
tered when attempting to securely exchange M point-
to-point. Namely, ¢ separate encryptions of K are re-
quired, along with the need for an address to be ap-
pended to each encryption. A more subtle problem with
point-to-point exchanges in general is that they do not
allow for user anonymity. In other words, the address
on the message that allows each user to decrypt the cor-
rect message, also allows others to identify this user as
a receiver of a message from 7.!

One solution suggested to us to solve the anonymity
problem using a point-to-point exchange would be to
send an individual encrypted message to each user. The
privileged users would receive K upon decryption of
their message while all other users would receive “junk”
upon decryption. This is a common solution for pro-
tecting against traffic flow analysis. However, individ-
ual encryptions and the individual addressing of each
encryption are still required for all users, rather than
just the members of the privileged set.

The broadcasting of a single encrypted version of K
avoids the problems of multiple encryptions, addressing
and anonymity. The broadcast message is created such
that all users receive the message, yet only those users
in P have the ability to recover K from this message.
Such a set-up is ideal for multimedia broadcast applica-
tions such as pay-per-view (see [10]). In this paper, we
examine methods of broadcasting a session key K.

1.1 Outline and Summary of Results

The remainder of this Section introduces the terms and
notation used throughout the paper, and summarizes
previous work in key broadcasting. Section 2 presents
a general conceptual framework for the broadcasting of
session keys, and discusses its advantages over previ-
ous models. In Section 3, we discuss an implementation
which satisfies the new framework with security based
on Goldwasser-Micali [11] probabilistic encryption. Sec-
tion 4 examines how the concept of a threshold scheme
can be applied to broadcasting session keys. We review
an implementation from Berkovits [1] that uses Shamir’s
threshold scheme. In Section 5, we define and formalize
a model for a general class of session key broadcast-
ing schemes. A lower bound for the number of bits
transmitted by 7" using such a model is presented. This

1If the address were encrypted along with the key, this would
introduce more work for the users as they must decrypt every
piece up to their own rather than just a search through every
piece. Also, this option is also not always available to T, e.g.
in end-to-end encryption, destination addresses are required for
intermediate nodes.

lower bound corresponds to the bandwidth required for
t copies of the session key, for a privileged set of size ¢.
We then improve upon Berkovits’ implementation, re-
sulting in an optimal scheme with respect to the lower

bound.

1.2 Definitions and Notation

We examine systems in which there is a set U of n users
Uy, Us, ..., Uy, and a trusted center T'. T wishes to send
a large message to a privileged subset P of users, where
|P| =t for some integer ¢t < n. Every U; will share a
secret s; with T where each s; is an s-bit random string.
The secure distribution of s; can be achieved when the
user subscribes with 7. Without loss of generality, we
assume that {s1,...,s;} is the set of shares for users in
P.

We present a model satisfying the definition of a true
broadcast system, for broadcasting a session key K. Ac-
cording to [1], this is a scheme “in which the broadcast
message contains the same information for each and ev-
ery listener” | yet only members in P can recover K from
this message. A true broadcast system is referred to as
a parallel construction of the broadcast message since T'
only performs one encryption of K and each user uses
the same broadcast message to recover K. On the other
hand, a serial construction would involve separate en-
cryptions of K for each user in P, followed by the gener-
ation of a broadcast message from the separate encryp-
tions. From the broadcast message, each user would
first recover his own encrypted piece and then recover
K.

1.3 Previous Work

The concept of secure broadcasting was proposed in [8].
Subsequent variations appear in [7, 16]. Associated
with each user U; is a secret key s; and an integer [;.
The sender X of messages could equally be a user or a
trusted center. Distribution of a session key assumes the
existence of a secure cryptosystem between X and each
user in P, hence U; shares s; with X. Secure broad-
casting uses a serial construction. K 1is separately en-
crypted by X with each s; to produce w; for U; € P.
A so-called sealed lock L is then constructed from these
w; and broadcast to all users. Using their /;, a user can
recover their w; and decrypt it with s;.2

One such sealed lock construction proceeds as follows.
Suppose that [; is a prime number, distinct for each U;.
Upon separately encrypting K with each s; to produce
w;, Vi : Uy € P, X will use the system of equations
y; = w; mod [; and the Chinese Remainder Theorem to
produce a unique sealed lock 0 < L < Hz’:U,eP l;. Upon

2Two variations exist. X and U; can share a common s;, or U;
can publicize a key e; and keep a secret key d;. X would encrypt
K with e; while U; would use d; to decrypt (see [8]).



receipt of L, each U; € P reduces L modulo his {; to
recover w;. Subsequently, s; is used to decrypt w; and
recover K.

As described, the term sealed lock is misleading.
Since the [; are made public, anyone can recover a user’s
piece from L (yet only U; can subsequently recover K).
The purpose of publicizing them is to allow one user to
broadcast a single message from which only the privi-
leged group of users can recover K, without having to
share an [; with each of them. The security of the system
will depend on the security of the encryption function
used.

A major shortcoming of this system arises if it is nec-
essary to update the session key for P. Updating the
session key requires re-encrypting K for each user, fol-
lowed by computing a new lock L. We present a method
using a parallel construction, which alleviates this prob-
lem.

Blundo et al. [4] consider schemes whereby a trusted
off-line server initially distributes shares to all users,
and subsequently #-subsets of users can recover a pre-
defined key as a function of their own share and the
tdentities of t — 1 other users. However, neither these
“non-interactive” schemes, nor the interactive ones from
[4] provide user anonymity.

Broadcast encryption was introduced in [9]. Subse-
quent bounds on the size of user’s shares were presented
by Blundo et al. in [5]. Each user shares a number of
keys with a trusted center 7'. The scheme 1s designed to
prevent coalitions of users from conspiring to decrypt
the broadcasted message. However, the solution uses
selective broadcasting. Rather than broadcasting the
same message for all users; they require that messages
be sent only to specific intended destinations. This is
not a characteristic of a true broadcast system. Also,
this system requires each user to store a number of keys;
the number, and the size of the broadcast message are
both dependent upon the size of the anticipated coali-
tion. OQur proposed schemes avoid these properties.

Using secret sharing to broadcast session keys was
introduced by Laih et al. [15], and subsequently by
Berkovits [1]. We examine this model in more detail,
in Section 4.

2 A Conceptual Framework for
True Broadcasting

In this Section we present a conceptual framework for
broadcasting a session key K with user anonymity.
Users have no knowledge of the other members in P,
nor do they require this knowledge.

Once the privileged set P has been defined, 7' gen-
erates a broadcast encryption key Kp using the secret

keys of the users in P as follows:

[(P:f(slaSZa"'aSt)a (1)

for an appropriate function f. T then computes
C = Egp(K), (2)

where C'is the broadcast message. £ 1s an “encryption
function” parameterized by the “key” Kp. f and F are
designed such that only knowledge of a single s; from
U; € P is required to recover K from C', i.e.

K = D, (C),VYU; € P,

for the “decryption function” D corresponding to E.
This will become more meaningful with the scheme pre-
sented in Section 3.1.

An important difference from previous methods is the
ease with which one can update K. By this general ap-
proach, one need only recalculate and broadcast (2) to
establish a new session key K, whereas [8] and others re-
quire separately re-encrypting the new K for each user,
followed by recalculation of the sealed lock. In fact, our
model could more suitably be called a sealed lock, with
master key Kp and equally effective keys s; for each
user U; € P.

3 Using Number Theory to
Achieve True Broadcasting

In Section 3.1, we will present a secure number theoretic
scheme satisfying the model of Section 2. We begin
here by motivating the setup with a preliminary, albeit
insecure scheme.

Let T share a distinct, independent prime number
p; with each of n users. The broadcast key Kp from
(1) is simply N where N = py ---p;. In this way, the
broadcast key contains information for all users in P. T’
randomly selects an integral session key K in the range
0 < K < min{py,ps,...,pt}. The broadcast message C'
from (2) is the integer C' = K~ mod N. Upon receipt
of €', each U; € P computes

K=C"" (modp) (3)

In accordance with the model of Section 2, given
only the single piece that each U; € P shares with
T, allows recovery of K. Consider that if KK~! =1
(mod N), then by the Chinese Remainder Theorem,
KK~! =1mod p; for each prime factor p; of N. There-
fore, for each p; that K < p; holds true, computation of
K from K~1 with only p; is realized. This is done by
reducing K~' modulo p;, and computing its inverse in
Zy.-

Thus, we have constructed a scheme whereby T' can
encrypt a message K using the secrets of all users in



P, yet only a single key from a user in P 1is sufficient
to recover K. However, this scheme is not secure since
coalitions of users can, over time, recover information
about the secret keys of other users. This is a result
of the fact that the equation KK~ = (mod p;) is
valid for all U; € P.

3.1 True Broadcasting With Quadratic
Residues

We now consider a secure scheme built upon the frame-
work introduced in Section 2. First, we recall some im-
portant number theoretic properties.

Given a prime number p, q is a quadratic residue mod
p (denoted ¢ € QR,) if 3z € Z; such that 2 =gq
(mod p) for ¢ € Z;. If ¢ is not a quadratic residue, then
q is a quadratic non-residue (denoted ¢ € QNR,).

Now given an integer N = pips ---p;, where each p;
is a distinct prime,

JEQRy < qEQR, N---NQR,, (4)
gEQNRy < ¢E€QNR, U---UQNR,, (5)

Notice that in (4), all of ¢ € QR,, must be true, while
in (5), only one of ¢ € QN R,, need be true.

Given an integer ¢, one can determine whether or not
q 18 a quadratic residue modulo a prime p, by performing
the following test

¢z = 1 (modp)=q¢€QR,
= —1 (modp)=>qe€QNR, (6)

We now present a secure scheme based on quadratic
residuosity.

T shares a distinct, independent prime number p;
with each of n users. Let K = kgky---ki_1 be the
binary representation of the session key. Kp is con-
structed as follows. First T calculates

N =pipz---ps (7)

where p; is the secret prime that T shares with user
U; € P. T will produce a y such that y € QN Ry . We
require that y € QN Ry, for each p; in (7), which may
be done by choosing random y; € Z; and using (6) to
determine if y; € QN R,,,. Alternatively, T' can maintain
a long-term y; for each U;. In either case, T can then use
the Chinese Remainder Theorem with each y; and p; to
solve for y such that y € QN Ry. Here, Kp = (y, N)
serves as the broadcast key.

For the encryption function E in (2), we use a vari-
ant of the method of probabilistic encrypiion from [11].
Sending one bit of K will require broadcasting a log, N
bit integer. For T' to broadcast a bit k; such that only
U; € P can recover ky, 1" selects a random « € Z3 and
computes Cy = z?y* mod N and broadcasts C} to all
users.

Now consider the following two possibilities. If k; = 0
then Cj = 2? mod N and thus Cy € QRy. From (4),
this implies C} € QR,, for each prime p;. By (6), each
U; who possesses a prime divisor p; of N can determine
that Cp € QRy and conclude that £ = 0. If ky = 1,
then Cy = 2y mod N and thus Cy € QN Ry. Since
y was chosen such that y € QN R,, for each p; in the
factorization of N, again by (6) each privileged user can
determine that C € QN Ry and conclude that k;, =
1. Users U; ¢ P cannot recover k; as they lack the
appropriate primes p;.

The size of the broadcast message is [logy, N bits,
where N is encoded with ¢log, p bits, for p = maz(p;)
and an [-bit session key K. This clearly is not a practi-
cal method of broadcasting. However, it does illustrate
a secure scheme, built upon the framework presented in
Section 2.

Once a suitable y has been selected, the amount of
work performed by the center to produce Cj is at most
2 modular multiplications in Z3;,. To broadcast all of
K, this process is repeated [ times. Each U; using only
their prime p; to recover K (in the manner described
above), requires at most 2[log,(p;)] modular multipli-
cations in Zx for each bit of C received (subsequent to
the reduction of the log, N bit C' with the modulus p;).
Since [ bits are broadcast, this operation is repeated [
times. Due to the significant degree of data expansion,
resulting from the log, N per bit expansion, we consider
the scheme to be of theoretical interest only.

The security of this scheme is based on the assump-
tion that an opponent can not determine the quadratic
residuosity of an integer ¢ mod N without knowledge of
N’s prime factors. Given an integer ¢ € Z3; and N, it is
shown in [11] that if determining quadratic residuosity
was easy to solve for some ¢, then it could be solved
easily for all ¢. The fact that N is kept secret, gives an
even stronger result.

4 Using Secret Sharing to

Achieve True Broadcasting

Recall that a (¢, n) threshold scheme implies a method
for sharing a secret key K among a finite set U of n users
such that a subset P of at least ¢ < n users from U can
recover K while no group of size less than ¢ can do so
(see [2, 17, 19]). A trusted center T randomly selects a
key K and uses a concealer function to produce n shares
or shadows on input K. The n shares are then secretly
distributed to the n users, each user receiving exactly
one share. To recover K, the users in the priviliged
set P, where |P| > t, combine their shares and input
them to a revealer function to produce K. For every set
X, where |X| < ¢, if inputting less than ¢ shares to the
revealer function will give the users in X no advantage in



obtaining K, the threshold scheme is said to be perfect.

The major obstacle to using secret sharing to directly
broadcast session keys is that it requires the shares of
all members of the set P to be input to the revealer
function. In reality, this requires either the physical
presence of each user or some way of securely commu-
nicating their shares. We proceed to alter the method
slightly to allow the broadcast of session keys.

Let each user U; continue to share a long-term secret
s; with T'. T computes a random session key K and
will share it with a privileged set P where |P| =1t¢. T
proceeds to compute the following broadcast message :

B=g(K, s1,s2,...,5¢) (8)

for an appropriate share-generating function g, where
s; 1s the shared secret of U; € P. B is a set of ¢ shares
distinct from the shares input to the function ¢, and is
broadcast to all users. Just as in Section 2, each U; € P
needs only their share s; to recover K.

Notice how this fits the framework of Section 2. If f
from (1) simply returns its parameters as output, then £
from (2) and g from (8) are equivalent. This suggests the
use of secret sharing to essentially achieve encryption.

We are broadcasting ¢ shares which were formed from
the session key K and the shares of each of the members
of P. The intent is that a perfect (¢ + 1,n) threshold
scheme for sharing the secret K is implied by g, where ¢
shares from B plus any one share s; for U; € P reaches
the threshold. Recall that in a perfect threshold scheme,
(t + 1) — 1 shares reveal no information about the in-
tended secret.

This general idea was considered by Laih et al. [15],
and subsequently by Berkovits [1]. In the following Sec-
tions, we present one of the schemes from [1] and subse-
quently show how to decrease the size of the broadcast
message and the amount of work required by each user
to recover K, while maintaining the “perfect” nature of
the threshold scheme.

4.1 Using Shamir Interpolation

Berkovits [1] uses the threshold scheme from Shamir [17]
to allow a trusted center 7" to broadcast messages to a
privileged set P as follows.? Each user U; € U shares a
secret point (z;,y;) € Z; x Z; with T, where z; # x;
for ¢ # j for a prime p. To share a session key with
members of P, T first selects a random K € Z7. 1" then
inputs ¢ points (x;,4;),Vi : U; € P and (0, K) to ¢ in
(8). The function g will first produce a polynomial of

degree t,
p(e)= K+ aze' 4+ -+ ax' (mod p). (9)

Note that ¢ + 1 points are required to uniquely define
p(x). B from (8) will be made up of ¢ points in Z; x Z;

3We simplify the scheme somewhat for our purposes.

on the polynomial, distinct from any shares of a user
U; € P. Since t distinct points are both input to and
output from ¢ and t < n, we require p > 2n + 1.

For this scheme, the size of B is 2t log, p bits. From
B and his own share, each U; € P has enough points
to reconstruct p(«), and compute p(0) = K. A user in
possession of only B does not have enough points to re-
construct p(z) and hence has no advantage in recovering
K.

The reconstruction of p(xz) by each user is relatively
expensive. Given ¢ points, O(t?) multiplications in Zy
are required.

5 A Lower Bound

In this Section, we take the general idea for broadcasting
session keys by secret sharing, as given in Section 4, and
add specific conditions to define a formal model. We
then prove a lower bound on the size of the broadcast
message required to broadcast a session key within this
model and note that the scheme given in Section 5.1
meets this bound.

Let B and K be the respective broadcast message
and session key from Section 4 and s; be the share of
U; € P. Without loss of generality, let Sp = (s1,...,5:)
be the ¢ shares of the users in P. The following are
assumptions for the model. H refers the entropy of a
given element, while I refers to the transinformation.
Refer to Appendix A.1 for background.

Al H(s;|B) = H(s;). The broadcast message does not
decrease the uncertainty in a user’s share.

A2 H(K|B) = H(K). The broadcast message does not
decrease the uncertainty in the session key.

A3 H(si|s1,...,8-1,8i41,.-.,5:) = H(s;). The share
of one user is independant of the shares of other
users.

A4 H(K|Bs;) = 0. The session key is uniquely de-

fined by the broadcast message and the share of
any member of the privileged set.

A5 H(K|Sp) = H(K). The shares of the users alone,
reveal no information about the session key.

A6 H(B|SpK) = 0. The shares of the users in P, and

the session key, define the broadcast message.

The following are two technical lemmas required for
the proof of Theorem 1.

Lemma 1 H(B) = I(B|SpK).



Proof:

I(B|SpK) = I(Bls1)+ Is,(B|s2) + I5,5,(Bls3)

+ -+ Is. (BIK)

= H(B)—- H(Bls1)+ H(B|s1)
— H(Bls1s2) + H(Bl|s1s2)
— H(Bl|s1s283) + -+ H(B|Sp)
— H(B|SpK)
—

0By A6
= H(B)

O

Lemma 2 Let D C P be a non-empty subset of priv-
ileged participants such that [D| < (t — 1), and let Sp
be the set of shares of participants in D. Also let s;
be the share of U; € P such that U; ¢ D. Given
a session key K and broadcast message B from (8),

H(SZ) - H(SZ|BSD) Z H([{)

Proof:

The term H(s;K|BSp) simplifies to either
H(SZ|BSD)—|—H([{ BSDSZ) or H([{ BSD)+H(SZ|B[{SD)
(cf. [6, Lemma 3.3]). From A4, we have

H(K|BSps;) = H(K|BSp) =0,

giving
H(SZ|BSD) = H(SZ|B[{SD) (10)
We also have,
IB(SZ' [{) = IB([(|SZ')

H(s;) by Al H(K) by A2 0by A4
—— —_—— ——
H(s:B) —H(si|BK) = H(K|B) —H(K|Bs)

H(Sl)—H(SAB[{) = H([{) (11)
And

I&K(SHSD) = H(SAB[() - H(SZ|B[{SD) Z 0

The last equality in (12) is obtained from (10). The
result follows by applying (12) to (11). a

On its own, lemma 2 implies that if the entropy (un-
certainty) of a privileged user’s share s; is equal to the
entropy of the session key K, then given the broadcast
message, any privileged user(s) have no uncertainty in
s;, as 1llustrated by the following corollary.

Corollary 1 If H(s;) = H(K), H(s;|BSp) = 0.

Proof:
Follows from lemma 2, where H(s;|BSp) < H(s;) —
H(K). O

Tt is well-known (see [19]) that in a perfect secret shar-
ing scheme, the size of the shares must be at least as
large as the secret key. The following corollary high-
lights the fact that the number of bits used to encode a
user’s secret must be at least as large as those used to
encode the session key.

Corollary 2 H(s;) > H(K).

Proof:
From lemma 2, we have

Since H(s;|BSp) > 0, the result follows. a
The following theorem implies that for the model pre-
sented in this Section, the minimum number of bits re-
quired to encode the broadcast message B is at least as
large as t copies of the session key K, where |P| = t.

Theorem 1 H(B) > tH(K).

Proof:
Recall that Sp is the set of ¢ shares of users in P.

H(B) = I1(B|SpK)
I(B|Sp) + Isp (B|K)
= I(Sp|B)+ Is,(K|B)

( by Lemmal)

H(K) by A5
—_——~—
—  H(Sp)— H(Sp|B) + H(K|Sp)
— H(K|BSp) (13)
——_———’

0 by A4
Now, H(Sp)= H(s1)+H(s2)+---+H(s)
H(Sp|B) = H(s152...5|B)
t

= H(s1B)+ Y H(sj|Bsi---55-1)
J=2
So, completing (13), we have

0by Al

——
H(B) H(s1) — H(s1|B)

DT (H () = H(si|Bsy -+ 550)) + H(K)

(t— V)H(K)+ H(K)
tH(K)

( by Lemma?2)

O

From this theorem, we obtain a lower bound for the
size of the broadcast message B from (8) in Section 4.



5.1 Meeting the Lower Bound

To improve on this technique, we employ an idea of
Krawczyk [14] (used in another context). Observe that
after constructing p(z), user U; € P recovers one of the
t + 1 polynomial coefficients, namely the constant, as
the session key K.

Define the shares created by B to be the coefficients
ay,...,a; of p(x). To recover p(x), U; € P will create
the polynomial in (9) missing only K. Using his secret
share (z;,4;) (a point on p(x)), U; can easily solve for
the constant of the polynomial, K. This can be done
with a simple substitution, followed by an application
of Horner’s rule with O(¢) multiplications.

This scheme both satisfies the conditions for the
model of Section 2 and realizes the lower bound; it is
thus optimal in this regard. Notice that the size of B
is now tlog, p bits where the session key K 1is log, p
bits. We are able to satisfy the conditions because of
the fact that the scheme i1s based on a “perfect” thresh-
old scheme. In other words, ¢t — 1 shares reveal no addi-
tional information about the key K. We satisfy A3 for
this scheme by defining the share of each user to simply
be the y-component. In this way, the shares of each user
are independent.

If only the secrecy of the y-component is maintained,
we now have H(s;) = logy,p for a randomly chosen
point (#;,y;) on p(x). Given the broadcast message
B and the point (z;,y;) on p(x) for user U; € P, we
have H(s;|BSp) = 0, where Sp need only consist of s;
(see Lemma 1). This results from the fact that user U;
has the ability to recover p(z) and the corresponding
y-component of user U;’s share, since the secrecy of the
x-component is not maintained. To solve this problem
and maintain the information theoretic security of the
scheme, one can apply the work of Blakley et al. [3] that
solves the same problem with secret sharing.

6 Conclusion and Open Prob-
lems

We have provided a conceptual model for true broad-
casting by which a trusted center can initiate a secure
point-to-multipoint communication with a set of priv-
ileged users. The center broadcasts only one message,
requiring no addressing for the message to reach the in-
tended recipients. Moreover, each user need only use a
single key to decrypt the message. An important feature
is that user anonymity is preserved, 1.e. the identities
of users in the privileged set are neither required nor re-
vealed in the broadcast message. This feature is absent
in many other schemes, yet is considered a crucial aspect
in many practical applications, such as pay-per-view.
In the model of Section 5, the shares of the users
are independent of one another. It may be possible to

achieve a tighter bound if the user’s shares are not inde-
pendent. It would also be of interest to find additional
schemes which satisfy the framework of Section 2, in
particular, more practical schemes.

The model in Section 2 creates a master key Kp as-
sociated with the privileged set P. While the message
that is “locked” by this master key can be opened by
that same key, it can also be opened using a single key
from any one of the members of P. This differs from
secret sharing where a set of user’s keys are jointly re-
quired to open the lock. This arrangement whereby a
single user (key) suffices to recover a message has many
other potential applications, including access control.

A Appendix

A.1 Information Theory Background

We recall some standard information theoretic proper-
ties that are used in Section 5. For further reference,
consult [13, 18].

Given a finite set X of size n and a probability dis-
tribution {p(z;)}s,ex, the entropy of X is defined to

be
Zp )logs (péz))

where log,($) is defined to be 0. The subscript b refers
to our base of reference. For our purposes, we will be
using b = 2 and hence computing bits of entropy.

Entropy has some useful interpretations. H(X) de-
fines one’s average uncertainty in X, i.e. uncertainty
about which element of X has been chosen, given the
probability distribution. H(X) is also useful for approx-
imating the minimum number of bits required to encode
elements of X.

The range of H(X) is 0 < H(X) < log|X]|, where
the lower bound is obtained when p(x;) = 1 for some i,
while p(xz;) = 0 ,Vj # i. The upper bound is achieved
when p(z;) = |X| , Vi

The equivocation of X given Y is defined to be

HXIY) = 3 pleon(aids) lg(zﬁ)

i=1 j=1

where Y is a finite set of size m. H(X|Y') can be thought
of as the uncertainty in X, given that Y has been ob-
served a priori. Note that H(X|Y) > 0.

The mutual information or transinformation of X and
Y is defined as

I(X|Y)=H(X)—- HX[Y)

and can be thought of as the amount of information that
Y reveals about X. Note that I(X,Y) and I(X;Y) are
also equivalent notations. If X and Y are independent,



then H(X|Y) = H(X)and I(X]|Y) = 0. In other words,
Y contributes no information about X. Similarly,

I(X|YZ)=H(X)— H(X|YZ),

for finite sets X, Y and Z. Transinformation has the
properties that

I(X]Y) = I(Y[X),
I(X]Y) > o.

From the latter statement, note that H(X) > H(X|Y).
The conditional transinformation of the pair X,V
given 7 is defined as

12(X|V) = H(X|Z) - H(X|Y 2),

and can be interpreted as the amount of information
that Y provides about X, given that Z has already been
observed. From this we obtain

I(X|YZ) = I(X|Y)+ Iy (X|2).
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