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Abstract: Electronic Product Code (EPC) is the basis of a pervasive infrastructure for the automatic
identification of objects on supply chain applications (e.g., pharmaceutical or military applications).
This infrastructure relies on the use of the (1) Radio Frequency Identification (RFID) technology to
tag objects in motion and (2) distributed services providing information about objects via the Internet.
A lookup service, called the Object Name Service (ONS) and based on the use of the Domain Name
System (DNS), can be publicly accessed by EPC applications looking for information associated with
tagged objects. Privacy issues may affect corporate infrastructures based on EPC technologies if their
lookup service is not properly protected. A possible solution to mitigate these issues is the use of online
anonymity. We present an evaluation experiment that compares the of use of Tor (The second generation
Onion Router) on a global ONS/DNS setup, with respect to benefits, limitations, and latency.

Keywords: Radio Frequency Identification (RFID), Domain Name System (DNS), Network Security,
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1 Introduction
Electronic Product Code (EPC) is a low-cost technology, based on passive Radio Frequency IDen-
tification (RFID), and acclaimed as the successor of today’somnipresent bar codes. The EPC
technology, originated at the MIT’s Auto-ID Center (now called the Auto-ID Labs). It has been
further developed by different working groups at EPCglobalInc [EPC07]. It represents the basis
of an ubiquitous architecture, called the EPCglobal Network (or EPC network for short), for the
automatic identification of objects in motion on supply chains and industrial production applica-
tions. Using RFID, a globally unique number is assigned to every tagged object. This number is
used to get further information through Internet services.The information about an object is not
stored on a given RFID tag, but instead supplied by distributed services on the Internet.

Before deploying an infrastructure based on EPC networks, asecurity system must be designed
and evaluated. This system must follow security policies. These policies must be determined by
the organization executives and senior managers. They decide the scope of their security, incident
plans, and assets that must be protected according to laws and regulation issues — not only within
their own country, but also with their trading partners in other countries [Mye07]. Threats to the
EPC network must be examined for every underlying technology. At the lowest level, threats to
the RFID service are well addressed in the literature. In [CR08], for example, a complete review of
available mechanisms, such as lightweight authenticationprotocols and anti-forgery procedures,
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can be found. These solutions can be included in current EPC networks to countermeasure ex-
isting security and privacy weaknesses of RFID devices. Similarly, at the highest level, threats
to the Information Service based on Web technologies are also well addressed in the literature
(e.g., threats and countermeasures for e-commerce Web services [DJPJ04]). To the best of our
knowledge, threats to the lookup service of the EPC network have not been deeply analyzed and
discussed in the literature. We believe that the current specification of the Object Name Service
(ONS) of EPCglobal Inc. [EPC07], based on the use of underlying Domain Name System (DNS)
queries, introduces clear risks on corporate infrastructures based on EPC networks if such a ser-
vice is not properly secured. We outlined in [ABK08] these threats and reviewed security and
privacy issues of the ONS service of the EPC network architecture. In this paper, we extend this
work by evaluating the benefits and limitations when managing privacy invasions on the ONS us-
ing the anonymity infrastructure of Tor [DMS04]. We presenta practical experiment based on a
real ONS setup. Through this experiment, we analyze the overhead causing service latency in a
Tor network. We demonstrate that the use of the infrastructure-based anonymity of Tor decreases
the risk of a privacy threat while holding the performance ofa service, such as the ONS, at an
acceptable level. However, Tor cannot guarantee strong privacy. Existing attacks in the literature
show how the anonymity offered by Tor can be compromised by anattacker controlling network
nodes. We analyze the amount of anonymity that we should expect for our experimental scenario.

Paper Organization. Section 2 introduces the EPC network architecture and its lookup service.
Section 3 outlines the privacy invasion of such a lookup service and presents our experimental
results. Section 4 reviews related works. Section 5 concludes the paper.

2 The EPC Network Architecture and the ONS Service

The EPC network is a highly layered service oriented architecture specified by EPCglobal [EPC07]
that provides a pervasive infrastructure to link objects, information, and organizations via Internet
technologies. At the lowest layer of this architecture, an Identification System based on passive
RFID tags and readers provides the means to access and identify objects in motion. On a differ-
ent layer, a middleware composed of several services (such as filtering, fusion, aggregation, and
correlation of events) performs real time processing of tagevent data and collects the identifier of
objects interrogated by associated RFID readers at different time points and locations. Informa-
tion gathered by other sensors, such as temperature and humidity, can also be aggregated at the
middleware layer within these events. The middleware forwards the complete set of events to a
local repository where they are persistently stored (e.g.,into a relational or XML database). At the
highest layer of the architecture, EPC Information Services (EPCISs) offer the means to access the
data stored on each EPC network’s repositories. These EPCISs are intended to be implemented
using standard Web technologies like the Simple Object Access Protocol (SOAP) and Web Ser-
vices Description Language (WSDL). Two additional services are necessary before accessing the
EPC Information Service of a given EPC network from externalapplications: a lookup service to
bind object identifiers and EPCIS, called the Object Name Service (ONS); and a discovery service
(EPCDS) to perform searches with high semantics (i.e., similar to Web engines when looking for
Web pages). We discuss more in detail the use of the ONS service in the sequel. We do not cover
however the EPCDS service since it has not yet been disclosedby EPCglobal.
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2.1 Lookup of EPC Information Services via ONS
The Object Name Service (ONS) provides a lookup service for EPC networks. EPCglobal aims
at implementing the ONS service through Domain Name Service(DNS) technologies. The ONS,
as defined in [EPC07], is in fact a convention for the translation of EPC numbers into domain
names; and then, using traditional DNS tools, to retrieve lists of EPCISs associated with a given
tag. More specifically, EPCglobal uses a particular type of DNS records, called Naming Authority
Pointer (NAPTR) (cf. RFC 2915). Instead of resolving host orservice names into IP addresses, the
ONS service translates EPCs into Uniform Resource Locators(URLs) embedded within NAPTR
records. These URLs are the locators of EPC Information Services (EPCISs) that contain in-
formation about EPC tagged objects. An ONS service does not contain actual data related to a
given EPC. It is intended for the resolution of EPCs into lists of authoritative EPCIS services.
By authoritative, we mean that the entity that controls the information about the EPC stored in
an ONS record is the entity that assigned the EPC to the item. This implies that URLs returned
by ONS only point to manufacturer EPCISs. The EPC structure supports codes widely-used to-
day (e.g., EAN.UCC barcode system) or even self defined conventions. The Tag Data Standard
(TDS) [EPC07] defines encoding of an EPC on a tag and encoding for use in the layers of the
architecture. For our example, we use a representation based on the 96 bit binary encoding of the
serialized version of the EAN/UCC Global Trade Item Number (SGTIN-96). Let us show below
the EPC tag used in our examples:

Header Filter Partition Company Prefix Item Reference Serial Number
00110000 000 101 0x6A1FF 0x12855 0x3FFFFFFFFF

TheHeadervalue00110000 indicates that the tag is encoded using the SGTIN-96 (Serialized
Global Trade Item Number) format. TheFilter value is additional data used for fast filtering and
pre-selection of basic logistics types. The value000 means that the tagged object does not match
any of the logistic types defined in TDS [EPC07]. ThePartition value is an indicator of the length
of the subsequentCompany PrefixandItem Referencenumbers. Company Prefix may vary from
40 to 20 bits (12 to 6 decimal digits); and the Item Reference number may vary from 24 to 4 bits
(1 to 7 decimal digits). The value101 indicates that Company Prefix number is encoded using 24
bits (7 decimal digits); and the Item Reference number is encoded using 20 bits (6 decimal digits).
Finally, the Serial Number value is encoded using the last 38bits (12 decimal digits).

The Data Translation Standard (TDTS) shows how a specific representation of an EPC tag
can be automatically validated and translated into a different representation. In order to translate
the 96 bit representation of the EPC shown above, an ONS resolver based on TDTS performs the
following operations. First of all, the EPC in binary form isconverted into a Uniform Resource
Identifier (URI) which is in turn represented as a Uniform Reference Name (URN) (cf. RFC
2141), using the URN Namespaceepc. The URI of asgtin representation is encoded in ASCII
as follows:urn:epc:id:sgtin:CompanyPrefix.ItemReference.SerialNumber. The EPC shown above
is encoded asurn:epc:id:sgtin:0434687.075861.274877906943. To generate the ONS query, the
ONS resolver needs to transform such an URI into a domain name. To do so, EPCglobal has
reserved the subdomainonsepc.comfor ONS resolution. The procedure to construct the complete
query is the following: (1) removeurn:epcfrom URI; (2) removeserial number; (3) invert order of
the fields; (4) replace":" with "." ; (5) append subdomainonsepc.com. In the above example, the
result of translating the EPC tagurn:epc:id:sgtin:0434687.075861.274877906943into an ONS
query is therefore encoded as075861.0434687.sgtin.id.onsepc.com. We can finally run an ONS
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resolution using DNS tools likenslookupor dig. For example, if we perform an ONS resolution
by querying the service withdig -t NAPTR 075861.0434687.sgtin.id.onsepc.com, we can obtain
as a result the following NAPTR records [EPC07]:

Order Pref. Flags Service Regexp. Replacement
0 0 u EPC+html !̂ .*$!http://www.example.com/products/example.asp! .
0 0 u EPC+xmlrpc !̂ .*$!http://gateway1.xmlrpc.com/servlet/example! .
0 1 u EPC+xmlrpc !̂ .*$!http://gateway2.xmlrpc.com/servlet/example! .

Let us analyze the response returned bydig. NAPTR records (cf. RFC 2915) support the use of
regular expression pattern matching. In case a series of regular expressions from distinct NAPTR
records need to be applied consecutively to an input, the field Ordershould be used. However, the
mechanism of regular expressions is not currently used in ONS. For this reason, theOrder value
of each NAPTR record returned bydig is set to zero. Similarly, the fieldFlag is set to the valueu
to indicate that the fieldRegexpcontains the URI associated to the requested EPC tag; and thefield
Replacementcontains the operator’.’ to indicate to the ONS client that the final URL is indeed the
string placed between the markers’! .̂*$!’ and’!’ . The fieldServiceindicates the kind of EPCIS
that can be found in such an URI. This field must contain the string ’EPC+’ followed by the name
of a service, such as xmlrpc and html. If there are different URIs for the same service, the field
Pref. can be used by the ONS resolver to choose the preferred one (i.e., the service with lowest
value).

3 Privacy Invasion Due to the ONS Service
The lookup service of the EPC network architecture is the target of a wide range of security and
privacy threats due to inherited underlying DNS mechanisms[FG07]. Main threats reported in the
literature are to the integrity of the security policies of an EPC system resulting from DNS vulner-
abilities. Exploitation of vulnerabilities of DNS-based procedures is a clear way of attacking the
ONS service of the EPC network architecture. We can find in RFC3833 a good analysis of threats
to the DNS. The most important threats to DNS technologies can be grouped as follows: (1) au-
thenticity and integrity threats to the trustworthy communication between resolvers and servers;
(2) availability threats by means of already existing denial of service attacks; (3) escalation of priv-
ilege due to software vulnerabilities in server implementations. Moreover, the DNS protocol uses
clear text operations, which means that either a passive attack, such as eavesdropping, or an active
attack, such as man-in-the-middle, can be carried out by unauthorized users to capture queries and
answers. Although this can be considered as acceptable for the resolution of host names, it is crit-
ical when using the ONS service for the resolution of information queries about physical objects.
The information stored on an EPC label is an identification number for a specific object in motion
in the supply chain. No additional information beyond the number itself is conveyed in the EPC.
Any additional piece of information must be retrieved by an EPC Information Service (EPCIS).
Unauthorized users may access this data. They may associateproducts with organizations. The
motivation for doing such an attack is high. It might result in financial gains if the collected infor-
mation can be offered to competitors or thieves interested in performing unauthorized inventories
of products associated with the organization [ABK08]. For retailers, the impact of this threat can
be considered as minor or medium if clandestine inventorying is not a concern. However, for the
supply chain of organizations that manage trade secrets, itmust be considered as high. It may have
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serious consequences for them if the unauthorized inventory is offered to competitors or thieves,
i.e., threats to the privacy of their lookup service can result in financial losses, loss of reputation,
or loss of trust to the organization. Finally, the impact of this threat to health care and military
scenarios (e.g., medical materiel or munition supply chain) must also be ranked as high.

We present in Figure 1 the simulation of a data interception attack that shows how an unau-
thorized party can obtain private data associated with an organization. The simulation represents
the EPC network of an organizationO (cf. Figure 1) composed of the following elements: (1) a
setE of RFID based EPC tags; (2) a setR of RFID readers; (3) a filtering middlewareM ; and
(4) an EPC query applicationQ which is composed of an URI converter, an ONS resolver, and an
information query interface. We show in Figure 1 a flow of interactions in which a readerr ∈ R

interrogates an EPC tage ∈ E. The EPC codee in its binary form is sent to the middlewareM
which in turn forwards it to the local applicationQ. The URI converter inQ convertse from its
binary form into a URI form. The ONS resolver inQ queries the local ONS serviceL with the
URI. If the associated domain name toe is not found in the local cache ofL, then a recursive
NAPTR query is sent to the global DNS serviceG which finally returns a list of NAPTR records
containing the URLs of the EPCIS of the manufacturer’s EPC network associated toe. These
URLs are forwarded from local ONS serviceL to the ONS resolver inQ. The service with high-
est preference is selected. The information query interface inQ finally contacts the manufacturer’s
EPCIS to retrieve information aboute.
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Fig. 1: Example of a supply chain setup based on the EPC network architecture.

Let us also define the threat model. We first assume that organizationO holds a privacy pol-
icy P which specifies the set of permissions and prohibitions regarding the disclosure of data
related with objects in motion in its supply chain (among them, manufacturer and product class
data) to unauthorized partners. Let us assume that data disclosure associated with EPCe (cf.
Figure 1) is specified inP with a prohibition. On the other hand, we define a privacy threat T

where the objective of an attackerA is to violate the privacy rules inP . We define in turn the
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attackerA as the specific agent that tries to exploit vulnerabilities in the ONS service to success-
fully manage the objective ofT . We assume that the power of attackerA is limited to remote
operations. However, these remote operations allow attacker A to operate from a shared media
associated with the organization’s network (e.g., via an open access on a wired or wireless net-
work in organizationO) and so performing passive eavesdropping of traffic. Attacker A obtains
information about the classes of products that are in motionin the supply chain of organization
O. We presume that security mechanisms such as physical access control and surveillance of
workers are already deployed. Taking into account the scenario shown in Figure 1 and these pre-
vious assumptions, let us finally show with the following example how attackerA, by collecting
URI queries from the local ONS serviceL going towards the global DNS serviceG, can achieve
the objective of threatT . Let 0x30141A87FC4A157FFFFFFFFF be the binary form ofe. Let
075861.0434687.sgtin.id.onsepc.combe the result of translatinge into its URI form (cf. Section
2.1) and sent as a NAPTR query towards the global serviceG. AttackerA can then isolate from
such a query manufacturer0434687 and product class075861 which, according to the set of rules
in P defined above, must not be disclosed to unauthorized parties. AttackerA violates policyP .

3.1 Enhancement of Privacy through Anonymized Queries

Several anonymity designs have been proposed in the literature with the objective of hiding senders’
identities. From simple proxies to complex systems, anonymity networks can offer either strong
anonymity with high latency (useful for high latency services, such as email and usenet mes-
sages) or weak anonymity with low-latency (useful, for instance, for Web browsing). The most
widely-used low latency solution is based on anonymous mixes and onion routing [SGR97]. It is
distributed as a free software implementation known asThe second generation Onion Router(Tor)
[DMS04]. It can be installed as an end-user application on a wide range of operating systems to
redirect the traffic of low-latency services with a very acceptable overhead. Tor’s objective is the
protection of privacy of a sender as well as the contents of its messages. To do so, it transforms
cryptographically those messages and mixes them via a circuit of routers. The circuit routes the
message in an unpredictable way. The content of each messageis re-encrypted within each router
with the objective of achieving anonymous communication even if a set of routers are compro-
mised by an attacker. Upon reception, a router decrypts the message using a private key to obtain
the following hop and encryption key of the following routeron the path. This path is initially de-
fined at the beginning of the process. Only the entity that creates the circuit — and which remains
at the sender’s side during all the process — knows the complete path to deliver a given mes-
sage. The last router of the path, theexit node, decrypts the last layer and delivers an unencrypted
version of the message to its target.

Tor provides an excellent way of establishing anonymous channels for a low latency service
like the ONS. However, it might still impact its performance. We performed a practical experiment
to assess the cause of latency. We review in Section 3.2 a complete set of experiments we did and
their results. These tests were intended to measure the latency penalty as well as to estimate
the amount of anonymity obtained using Tor. The dynamic disconnection of routers from the
Tor network caused some problems during the experiments andforced to repeat some queries.
We recall that Tor is a server-based system whose operators are volunteers. Its service is not
guaranteed in any way. Although we experienced such a dynamic disconnection of servers, we
did not suffer loss of service on the resolution of queries ofour experiments. We measured in
our experiments the rate of reliability of nodes and tunnels(cf. Section 3.2). We obtained a rate
of reliability of nodes of about 88%. This disconnection of nodes does not seem predictable.
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However, given the possibility of launching multiple DNS/ONE queries in parallel, we consider
this reliability acceptable.

To obtain the low impact over the performance of the servicestunneled by Tor, it relies on
a very pragmatic threat model. Such a model assumes that adversaries can compromise some
fraction of the onion routers in the network. If so, adversaries can not only observe but also
manipulate some fraction of the network traffic of Tor. A firstimplication of this assumption
is that the exit node has a complete view of the sender’s messages. Therefore, without other
countermeasures, it could perform a Man-in-the-Middle attack to forge answers. As a result, a
malicious onion router acting as the exit router could try toredirect the client to malicious EPCISs
or to perform denial of existence. A proper solution for avoiding this problem is to combine
the use of Tor with the integrity and authenticity offered bythe security extensions of DNS —
often referred in the literature as DNSSEC. In this manner, we can guarantee the legitimity of the
answers while maintaining an acceptable performance. As weshow in Section 3.2, the impact
on the latency of the service when using DNSSEC for our experiments is minimal. We therefore
consider that this drawback is equally minimal if we can combine the use of Tor with secure DNS
queries based on DNSSEC.

A second implication of the threat model of Tor is the possibility of suffering traffic analysis
attacks with the objective of tracing back the sender’s origin or to degrade Tor’s anonymity. Sev-
eral traffic analysis attacks against Tor have been reportedin the literature. The attack discussed
in [WALS02, WALS08], often referred in the literature aspredecessor-attack, assumes that an at-
tacker is controlling routers in the network of Tor to keep track of user’s sessions tunneled by Tor.
This attack is specially effective to degrade the anonymityof Tor’s hidden services. Apart of pro-
viding anonymity to its users, Tor can provide its anonymityto host servers to guarantee that their
network location is unknown. Resources that are reachable through these hidden services provided
by Tor are susceptible to correlation attacks. Apredecessor-attackis intended to perform such a
correlation. We consider that the communications of our motivation scenario cannot be linked so
easily as those reported in [WALS02], mainly based on Web services with long-term cookies or
ssh-like applications. Hence, we do not consider relevant to evaluate this attack for our work, as
well as some other attacks presented in [OS06, Mur06] which are specially targeted at degrading
the anonymity of Tor’s hidden services. The attack presented in [MD05] uses the bandwidth limits
of nodes to traceback Tor’s circuits without necessity of compromising Tor nodes. It is intended
to discover entrance routers rather than sender’s identities. The authors assume that the adversary
must have complete control over the destination service to which the sender is trying to connect.
The attack was presented when the size of the Tor network was still considerably low and it does
not seem to be still effective given the current status of Tor[WALS08]. Furthermore, the authors
propose in their work a proper defense to stop their attack. Amore appropriate technique that
could affect the anonymity of our motivation scenario has recently been presented in [BMG+07].
The authors propose a traffic analysis attack based on low-cost resources to trace back a sender’s
origin . They assume that an adversary is gaining control of asufficient number of entry and exit
routers to trace back a sender’s origin. When entry and exit routers cooperate, the adversary can
try to link communications over the same tunnel. Every router in the network of Tor is indeed
connected to a directory service to which they report information such as their available band-
width. Moreover, the directory service maintains some statistics about the uptime of each router.
The attack reported in [BMG+07] relies mainly on the the injection of false routing data to the
directory service of the Tor network in order to increase thechances of being selected. We analyze
in Section 3.2 what could the impact of their proposal be overour experimental setup.
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3.2 Evaluation and Results
This section shows the outcome of our evaluation steered towards measuring the latency penalty
due to the use of Tor, as well as an estimation of the average amount of anonymity obtained during
our experiments. Our setup simulates the EPC network scenario presented in Figure 1. An EPC
Query Application (Q) runs on an Intel Core 2 Duo 2 GHz and 1 GB of memory. It is based on the
AccadaEPC prototyping framework (cf.http://www.accada.org/). The translation of EPCs
into ONS domain names is based on the Accada’s Tag Data Translation (TDT) implementation.
Like in the examples shown in Section 2, the EPC representation that we use in our tests is based
on the SGTIN-96 encoding [EPC07]. The Local ONS service (L) runs on an Intel Core 2 Duo 1.8
GHz and 512 GB of memory. It is implemented in thePerl language. The management of DNS
and DNSSEC queries atL is based on the moduleNET::DNS(cf. http://www.net-dns.org/).
Each query is implemented as a single process forked fromQ or L in a pipelined fashion. The
execution ofn queries relies on the execution ofn independent processes that forked fromQ and
L. Processes forked fromQ communicate withL using TLS/SSL connections that protect their
traffic against unauthorized access and eavesdropping. Theconnection mechanism is implemented
using the OpenSSL library (cf.http://www.openssl.org/). X.509 certificates and key pairs
are generated by theopenssltoolkit.

The Global DNS service (G) is simulated by means of three different hosts:S1, that runs on an
AMD Duron 1 GHz with 256 MB of memory;S2, that runs on an Intel PIII 1 GHz with 512 MB
of memory; andS3, that runs on an Intel Xeon 2.4 GHz with 1 GB of memory. Serversin G are
located on different networks and on different countries: serverS1 is located in North America;
and serversS2 andS3 are located in Europe. DNS and DNSSEC services configured on each
one of these hosts are based on BIND 9.4.2 (cf.http://www.isc.org/products/BIND/).
Four different testbed configurations are implemented to simulate the exchange of data between
L andG: (1) DNS queries/replies; (2) DNSSEC queries/replies; (3)Tor based (torified for short)
DNS queries/replies; and (4) torified DNSSEC queries/replies. For the exchange of messages
betweenL andG, a direct link is used on the two first testbeds. We label them as Direct DNS
and DNSSEC tests. An indirect link based on SOCKS4A messages and the Tor network is used
on the two last testbeds. For these last testbeds, an onion proxy based on Tor v0.1.2.18 (cf.
http://torproject.org) runs onL and redirects the traffic received via SOCKS4a messages
to the set of servers configured inG. We label them asTorified DNS and DNSSEC tests.

The configuration of each server inG, for direct and torified DNS tests, consists of three differ-
ent database record sets. ServerS1 is configured with setA; S2 with setB; andS3 with setC. Table
1 summarizes the main properties of each database, i.e., domain names and number of NAPTR
RRs. We can see that setA contains three manufacturers (from0000000.sgtin.id.onsepc.com

to 0000002.sgtin.id.onsepc.com) and fifty item references per zone (item000170 to 000219). It
thus contains one hundred fifty Fully Qualified Domain Names (FQDNs). In turn, each FQDN in
A contains a minimum of one NAPTR RR, and a maximum of five NAPTR RRs. The distribution
of NAPTR RRs on each FQDN is generated at random. The last column of Table 1 shows the exact
number of NAPTR RRs inA, i.e., four hundred fifty NAPTR RRs. Similarly, we can see in Table
1 that setB contains ten zones, one hundred item references per zone, and four thousand NAPTR
RRs. Finally, setC contains fifty zones, five hundred items per zone, and one hundred thousand
NAPTR RRs. On the other hand, the configuration of each serverin G for the DNSSEC tests relies
on the signature of the database sets of Table 1. We use for this purpose thednssec-keygenand
dnssec-signzonetools that come with BIND 9.4.2. The key sizes are 1200 bits for the generation
of Key Signing Keys (KSKs) and 1024 bits for Zone Signing Keys(ZSKs). The generation of
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Set Starting domain name Ending domain name # of RRs
A 000170.0000000.sgtin.id.onsepc.com 000219.0000002.sgtin.id.onsepc.com 450
B 001123.0004160.sgtin.id.onsepc.com 001222.0004169.sgtin.id.onsepc.com 4,000
C 022365.0068760.sgtin.id.onsepc.com 022864.0068809.sgtin.id.onsepc.com 100,000

Tab. 1: Zones, names, and NAPTR Resource Records (RRs) configured inG.

Set DNS DB size DNSSEC DB size Time to sign the DB
A 42KB 143KB 1.8s
B 281KB 922KB 13.8s
C 6MB 22MB 5m16s

Tab. 2: Storage size and signing time associated to each database record set.

keys is based on the RSA implementation ofdnssec-keygen. Although the use of ECC signatures
seems to reduce the storage space of signed zones [ADF06], the algorithm we use is RSA instead
of ECC since the latter is not yet implemented in BIND 9.4.2. Table 2 summarizes the storage size
and the time needed to sign the resources of each database record set.

We monitored the status of the Tor network during the execution of the tests in order to mea-
sure some values such as the bandwidth classes and reliability of its nodes. To do so, we based
part of our monitoring process on TorFlow, a set of python scripts written for such a purpose (cf.
http://torproject.org/svn/torflow/). Table 3 shows a summary of bandwidth classes
associated to the onion routers available in the Tor networkduring the evaluations. We can appre-
ciate that more than one thousand four hundred onion routerswere online during our experiments.
The instance of Tor installed atL was set up to be client only (it does not act as another onion
router in the Tor network) and configured as default. It therefore chooses best bandwidth routes of
length three. The average failure of nodes with a standard deviation of 8% was 12%. According
to [BDMT07], the reliability of circuits on the network of Tor can be easily determined as follows.
Let l be the path length of every circuit (i.e., three onion routers per circuit in our case). Letf
be the probability of an onion router being reliable (i.e., 88% of reliability per onion router). We
can then calculate the probability of reliability of every circuit asf l. We thus assumed a 68% of
reliability for every circuit during our experiments.

Bandwidth class
996KB/s 621KB/s 362KB/s 111KB/s 59KB/s 29KB/s 20KB/s 19KB/s 10KB/s 5KB/s

131 63 67 338 315 406 72 68 11 7

Tab. 3: Number of onion routers in the Tor network during the tests.

We show in Figure 2 the results of executing our set of tests. Figure 2(a) shows the execution
of direct and torified DNS tests. Figure 2(b) shows the execution of direct and torified DNSSEC
tests. Each test is executed multiple times towards cumulative series of fifteen queries generated
at random fromA, B, andC. Each series is created at random during the execution of thefirst
test (direct DNS test), and persistently stored. It is then loaded into the rest of tests — to allow
comparison of results. We can see by looking at the lowest curve of Figures 2(a) and 2(b) that the
differences in resolution times using direct DNS or DNSSEC is minimal. During the execution
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of torified DNS and DNSSEC tests, a different circuit is generated for the resolution of each
group of queries in every series. As stated above, the dynamic disconnection of routers from
the Tor network caused some problems during the resolution of queries on the torified tests and
forced to repeat some queries. This explains the wide confidence intervals in the highest curves
shown in Figures 2(a) and 2(b). However, even if we take into account these extreme cases,
we can notice that the differences in resolution times are reasonable. Moreover, we confirmed
that the reliability of circuits constructed during the experiments was satisfactory and even higher
than expected (according to the values measured above). Allseries of queries were successfully
processed and we did not suffer loss of service on the torifiedtests. We see these results as
satisfactory and consider that tunneling of a DNS-like service through the network of Tor has an
acceptable impact on its latency. The combination of Tor with DNSSEC has equally an acceptable
impact, and it allows us to guarantee security properties not covered by either Tor or DNS like
integrity, authenticity, and non-existence proofs. Such properties are essential to detect and prevent
man-in-the-middle attacks performed by exit nodes of the network of Tor. We did not experience
during our experiments any alteration of signatures from the databases depicted in Table 1.
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Fig. 2: DNS and DNSSEC tests with and without Tor.

In order to estimate the degree of anonymity offered by the Tor network to our tests, we adopt
the same strategy as [BMG+07] and calculate the degree of anonymity offered by Tor by taking
into account the probability distribution over the nodes ofthe Tor network [DSCP02, SD02]. Let
N be the number of nodes in the Tor network. Letp(xi) be the probability for a node to be selected
for a circuit. Then, we can calculate an entropy based metricas:

H(N) = −
∑

xi∈N

p(xi) log2 (p(xi));

If we assume that each node in the Tor network has an equal probability of being included on
a path and we normalizeH(N) by dividing it by log2(|N |) we then obtain an ideal entropy of
1. However, the path creation algorithm of Tor chooses onion routers taking into account their
bandwidth capacity, among other performance information.It is hence not possible for us to
measure the proper value ofH(N) since we do not have control over the complete set of nodes of
the Tor infrastructure. We approximated such a value using the set of tools included in TorFlow

10 Submitted to SETOP 2008



Evaluation of Anonymized ONS Queries

to sort the nodes by their bandwidth capacity, dividing theminto different segments, and creating
with them several set of circuits in order to estimate their probability distribution. The entropy
obtained through TorFlow was approximately0.89. We consider that this is a very acceptable
degree of anonymity. The existence of traffic analysis attacks against Tor degrades however this
degree of anonymity. We recall that the threat model of Tor assumes the possibility of adversaries
running malicious routers on the network of Tor. They can degrade the anonymity of the system
by correlating the traffic that is flowing through them. The main issue for an adversary is to ensure
that these nodes are going to be included on a high number of circuits.

According to [DMS04], if an adversary controlsm > 1 of N nodes, he can correlate at most
(m

N
)
2 of the traffic. This model assumes again that each node has an equal probability of being se-

lected to be on a path. The authors in [BMG+07] demonstrate in their work that by injecting false
performance information to the directory services of Tor, it is possible to increase the odds of ma-
licious servers being used. Using their attack, they reportan improvement of almost seventy times
the analytical expectation calculated with the previous model when the number of compromised
nodes introduced in the network goes from 5% to 10%. The same number of compromised nodes
means a rather large number of servers in the infrastructureof Tor used during our experiments
— from seventy three to more than one hundred compromised nodes. The analytical prediction of
compromised paths considering this possibility is between0.21% and 0.67%. Assuming that the
attack presented in [BMG+07] scales properly for the length of our network, and maintains the
reported improvement, we could theoretically expect from 15% to 48% of the paths compromised.
This decreases the degree of anonymity of the Tor infrastructure by almost 50%.

4 Related Work
Privacy threats to the EPC network must be examined for each one of its underlying technolo-
gies. Weaknesses and threats to its lowest and highest layers (i.e., identification services based
on RFID technologies; and information services based on Webservices standards) have received
high attention in the current literature. We refer the reader to [CR08] for a complete review of
recent literature and scientific solutions that could be studied in order to handle both critical and
major threats to the identification system level of an EPC based RFID setup; and to [DJPJ04] for a
complete analysis of threats and weaknesses of Web servicessecurity. However, to the best of our
knowledge, little research in current literature addresses the same weaknesses and threats to the
lookup service which links both previous layers. Although there exist in the literature studies on
DNS threats (cf. RFC 3833), the fact that names resolved through ONS point to physical objects
that can be of high value makes necessary a different study ofthreats and countermeasures beyond
DNS security.

Most of the studies about weaknesses at ONS level address availability issues. For example,
the use of Peer-to-Peer (P2P) to enhance its performance hasbeen addressed in [DWI+06, FG07].
In [DWI+06] the authors, analyze the study of hybrid architectures based on DNS and P2P. How-
ever, they do not address security issues further than availability. In [FG07] the authors point
out to the advantages of using P2P in order to improve the robustness of the service. The work
in [FG07] also discusses the use of existing security tools (e.g., anonymizers) to handle privacy
issues, as well as an obfuscation schema based on hashes and secret key distribution. However,
neither specific evaluations nor a specific secret distribution algorithm is presented in [FG07]. On
the other hand, the use of Privacy Information Retrieval (PIR) [OS07] approaches can also be
seen as a mechanism to handle the private distribution of information on the ONS service (e.g.,
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work presented in [ZHS07a, ZHS07b]). However, no specific evaluations or practical results are
presented in this work. Moreover, the processing and communication bandwidth requirements of
a PIR approach seem to be impractical for a low latency service like the ONS [SC07]. Another
interesting mechanism to provide private searches on public databases by using encrypted bloom
filters is discussed in [BC06]. However, no practical results have been provided yet in order to
compare this approach with ours.

5 Conclusion
The use of EPC technologies on supply chain and production applications poses a great challenge
when dealing with security and privacy requirements. We analyzed in this paper the lookup service
of EPC technologies and invasion of privacy implied by leaking the service when it is not handled
properly. We stated that the use of an anonymous communication network based on Tor can handle
the service in order to decrease the risk of a privacy threat while holding the performance of the
service at an acceptable level. This solution should not be seen however as a silver bullet solution.
It does not guarantee strong privacy and must be considered at best as a partial countermeasure.
We conclude that more research has to be done on similar directions if we want to fully guarantee
privacy requirements on EPC based applications and their lookup service.
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