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Abstract

We consider the rendezvous problem for identical mobile agents (i.e., running the same
deterministic algorithm) with tokens in a synchronous torus with a sense of direction and show
that there is a striking computational difference between one and more tokens. More specifically,
we show that 1) two agents with a constant number of unmovable tokens or with one movable
token each cannot rendezvous if they have less than o(log n) memory, while they can perform
rendezvous with detection as long as they have one unmovable token and O(log n) memory;
in contrast, 2) when two agents have two movable tokens each then rendezvous (respectively,
rendezvous with detection) is possible with constant memory in an arbitrary n×m (respectively,
n×n) torus; and finally, 3) two agents with three movable tokens each and constant memory can
perform rendezvous with detection in a n×m torus. This is the first publication in the literature
that studies tradeoffs between the number of tokens, memory and knowledge the agents need in
order to meet in such a network.
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1 Introduction

We study the following problem: how should two mobile agents move along the nodes of a network
so as to ensure that they meet or rendezvous?

The problem is well studied for several settings. When the nodes of the network are uniquely
numbered, solving the rendezvous problem is easy (the two agents can move to a node with a
specific label). However even in that case the agents need enough memory in order to remember
and distinguish node labels. Symmetry in the rendezvous problem is usually broken by using
randomized algorithms or by having the mobile agents use different deterministic algorithms. (See
the surveys by Alpern [1] and [2], as well as the recent book by Alpern and Gal [3]). Yu and Yung
[15] prove that the rendezvous problem cannot be solved on a general graph as long as the mobile
agents use the same deterministic algorithm. While Baston and Gal [5] mark the starting points of
the agents, they still rely on randomized algorithms or different deterministic algorithms to solve
the rendezvous problem.
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Research has focused on the power, memory and knowledge the agents need, to rendezvous in a
network. In particular what is the ‘weakest’ possible condition which makes rendezvous possible?
For example Yu and Yung [15] have considered attaching unique identifiers to the agents while
Dessmark, Fraigniaud and Pelc [6] added unbounded memory; note that having different identities
allows each agent to execute a different algorithm. Other researchers (Barriere et al [4] and Dobrev
et al [7]) have given the agents the ability to leave notes in each node they travel. In another
approach each agent has a stationary token placed at the initial position of the agent. This model
is much less powerful than distinct identities or than the ability to write in every node. Considering
that the agents have enough memory, the tokens could be used to break symmetries. This is the
approach followed by Kranakis et al [12] and Flocchini et al [9] for the ring topology. In particular
the authors proved in [12] that two agents with one unmovable token each in a synchronous, non-
oriented ring need at least Ω(log log n) memory (where n is the size of the ring) in order to do
rendezvous with detection. They also proved in [12] that if the token is movable then rendezvous
without detection is possible with constant memory. The token model used in our paper was first
introduced in Cindy Sawchuk’s PhD thesis [13].

We are interested here in the following scenario: there are two identical agents running the
same deterministic algorithm in an anonymous torus with a sense of direction. In particular we
are interested in answering the following questions. What memory do the agents need to solve
rendezvous using unmovable tokens? What is the situation if they can move the tokens? What is
the tradeoff between memory and the number of tokens?

1.1 Model and terminology

Our model consists of two identical mobile agents that are placed in an anonymous, synchronous
and oriented torus. The torus consists of n rings and each of these rings consists of m nodes. Since
the torus is oriented we can say that it consists of n vertical rings. A horizontal ring of the torus
consists of n nodes while a vertical ring consists of m nodes. We call such a torus a n×m torus. The
mobile agents share a common orientation of the torus, i.e., they agree on any direction (clockwise
vertical or horizontal). Each mobile agent owns a number of identical tokens, i.e. the tokens are
indistinguishable. A token or an agent at a given node is visible to all agents on the same node,
but is not visible to any other agents. The agents follow the same deterministic algorithm and
begin execution at the same time.

At any single time unit, the mobile agent occupies a node of the torus and may 1) stay there, 2)
move to an adjacent node, 3) detect the presence of one or more tokens at the node it is occupying,
4) release/take one or more tokens to/from the node it is occupying. We call a token movable
if it can be moved by any mobile agent to any node of the network, otherwise we call the token
unmovable in the sense that it can occupy only the node in which it has been released.

More formally we consider a mobile agent as a finite Moore automaton∗ A = (X,Y,S, δ, λ, S0),
where X ⊆ D × Cv × CMA, Y ⊆ D × {drop, take}, S is a set of σ states among which there
is a specified state S0 called the initial state, δ : S × X → S, and λ : S → Y . D is the set
of possible directions that an agent could follow in the torus. Since the torus is oriented, the
direction port labels are globally consistent. We assume labels up, down, left, right. Therefore
D = {up, down, left, right, stay} (stay represents the situation where the agent does not move).
Cv = {agent, token, empty} is the set of possible configurations of a node (if there is an agent and

∗The first known algorithm designed for graph exploration by a mobile agent, modeled as a finite automaton, was
introduced by Shannon [14] in 1951.
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a token in a node then its configuration is agent). Finally, CMA = {token, no− token} is the set
of possible configurations of the agent according to whether it carries a token or not.

Initially the agent is at some node u0 in the initial state S0 ∈ S. S0 determines an action (drop
token or nothing) and a direction by which the agent leaves u0, λ(S0) ∈ Y . When incoming to a
node v, the behavior of the agent is as follows. It reads the direction i of the port through which it
entered v, the configuration cv ∈ Cv of node v (i.e., whether there is a token or an agent in v) and
of course the configuration cMA ∈ CMA of the agent itself (i.e., whether the agent carries a token
or not). The triple (i, cv , cMA) ∈ X is an input symbol that causes the transition from state S to
state S′ = δ(S, (i, cv , cMA)). S′ determines an action (such as release or take a token or nothing)
and a port direction λ(S′), by which the agent leaves v. The agent continues moving in this way,
possibly infinitely.

We assume that the memory required by an agent is at least proportional to the number of bits
required to encode its state which we take to be Θ(log(|S|)) bits. Memory permitting, an agent
can count the number of nodes between tokens, or the total number of nodes of the torus, etc. In
addition, an agent might already know the number of nodes of the torus, or some other network
parameter such as a relation between n and m. Since the agents are identical they face the same
limitations on their knowledge of the network.

Let U = {(n1/2, 0, ..., 0), (0, n2/2, ..., 0), ..., (0, 0, ..., nd/2)}, where ni is even, be a set consisting
of d vectors in d-dimension. The distance between two nodes on a d-dimensional torus is a d-vector
the ith of element of which is |xi − yi| where xi and yi are the ith co-ordinates of the nodes.

Theorem 1.1 Consider two agents placed in a d-dimensional oriented torus (n1×n2×· · ·×nd) so
that their distance is the sum of vectors contained in any nonempty subset S of U. Assume that for
any non-zero element of the distance, the number of nodes of that dimension of the torus is even.
Then, no matter how many tokens or how much memory the agents have, it is impossible for the
agents to rendezvous.

Proof: Let D = (x1, x2, ..., xd), where xi = 0 or xi = ni/2, 1 ≤ i ≤ d be the initial distance of the
agents. As long as they do not release a token, the agents are in the same configuration. Since the
configuration of each node they occupy is also the same (empty), the agents are in the same state
and maintain their distance. They release tokens simultaneously and since they maintain their
distance they meet tokens at the same time. In other words they are always in the same state and
configuration while the configuration of the node they occupy is always the same. Therefore they
maintain their distance forever. 2

Corollary 1.1 Two agents placed in a n×m torus are incapable of meeting each other (no matter
how many tokens, movable or unmovable they have) if their initial distance is either (n/2, 0) or
(0,m/2) or (n/2,m/2).

Theorem 1.1 is a generalization of Theorem 1 in [12] which states that it is impossible for two
agents equipped with one unmovable token each, to rendezvous in a ring with n nodes if their initial
distance is n/2, where n is even.

Definition 1.1 We call rendezvous with detection (RVD) the problem in which the agents meet
each other if their distance is not the sum of vectors contained in any nonempty subset S of U,
otherwise they stop moving and declare that is impossible to meet each other.
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We say that an algorithm A solves RVD (or is an RVD algorithm) if the agents rendezvous
when their initial distance is not the sum of vectors contained in any nonempty subset S of U . If,
the distance is indeed the sum of vectors contained in a subset S of U then A halts after a finite
number of steps and the agents declare that rendezvous is impossible.

Definition 1.2 We call rendezvous without detection (RV) the problem in which the agents meet
each other if their distance is not the sum of vectors contained in any nonempty subset S of U.

Therefore we say that an algorithm A solves RV (or is an RV algorithm) if the agents rendezvous
when their initial distance is not the sum of vectors contained in any nonempty subset S of U. If,
however, the distance is indeed the sum of vectors contained in a subset S of U then A may run
forever.

We assume that at any single time unit an agent can traverse one edge of the network or wait at
a node (we assume that taking or leaving a token can be done instantly). For a given torus G and
starting positions s, s′ of the agents we define as cost CTRV D(A,G, s, s′) of an RVD algorithm A, the
maximum time (number of steps plus waiting time) needed either to rendezvous or to decide that
rendezvous is impossible. The cost CTRV (A′, G, s, s′) of an RV algorithm A′, is the time needed to
rendezvous (when it is possible of course). Finally, the time complexity of an RVD or RV algorithm
is its maximum cost overall possible starting positions of the agents.

1.2 Our results

In the study of the rendezvous problem this paper shows that there is a striking computational
difference between one and more tokens. More specifically, we show that

1. Two agents with a constant number of unmovable tokens each cannot rendezvous if they have
o(log n) memory.

2. Two agents with one movable token each cannot rendezvous if they have o(log n) memory.

3. Two agents with one unmovable token each can perform rendezvous with detection as long
as they have O(log n) memory.

4. When two agents have two movable tokens each then rendezvous (respectively, rendezvous
with detection) is possible with constant memory in an arbitrary n×m (respectively, n× n)
torus.

5. Two agents with three movable tokens each and constant memory can perform rendezvous
with detection in an arbitrary n×m torus.

This is the first publication in the literature that studies tradeoffs between the number of tokens,
memory and knowledge the agents need in order to meet in such a network.

1.3 Outline of the paper

In Section 2 we first give some preliminary results concerning possible ways that an agent can move
in a torus using either no tokens or a constant number of unmovable tokens. Then we prove that
rendezvous without detection in a torus cannot be solved by two agents with one movable token
each, or with a constant number of unmovable tokens unless their memory is Ω(log n).
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In Section 3 we give an algorithm for rendezvous with detection in a n × n torus using one
unmovable token and O(log n) memory. We also give an algorithm for rendezvous with detection
in a n × n torus using two movable tokens and constant memory. Next we give an algorithm for
rendezvous without detection in an arbitrary n ×m torus using two movable tokens and constant
memory, stating the relation that m and n must have in order to do rendezvous with detection
following that algorithm. Finally we give an algorithm for rendezvous with detection in a n ×m
torus using three movable tokens and constant memory.

In Section 4 we discuss the results and state some open problems. Due to space limitations
some proofs, formal algorithms and figures appear in the appendix.

2 Memory lower bounds of rendezvous

2.1 Preliminary results

Lemma 2.1 Consider one mobile agent with σ states and no tokens. We can always (for any
configuration of the automaton, i.e. states and transition function) select a n × n oriented torus,
where n = Ω(σ) so that no matter what is the starting position of the agent, it cannot visit all nodes
of the torus. In fact, the agent will visit at most (σ + 1)n nodes.

Proof: If we select an oriented n × n torus, where n > σ then the agent has to repeat a state at
some point (before visiting all nodes). Let S be the first state repeated. Let v be the node where
the agent is placed when S is encountered for the first time and v′ be the node where the agent is
located when S is repeated for the first time. We call px, py the horizontal and vertical distance
respectively of v′ from v. Since S is the first state repeated, the total number of nodes visited by
the agent until he encounters S again is at most σ + 1.

Once the agent is again at state S it has to repeat the same trajectory (px, py). Label the nodes
of the torus 0, . . . , n − 1 horizontally and vertically. If vx, vy are the coordinates of node v, then
after n repetitions of state S, the position of the agent is:

(vx + npx) mod n = vx

(vy + npy) mod n = vy

This means that the agent is again at node v and state S. The agent has to continue moving
visiting exactly the same nodes. Hence the agent will visit at most (σ + 1)n nodes. 2

Lemma 2.2 Consider one mobile agent with σ states and one unmovable token. We can always
(for any configuration of the automaton, i.e. states and transition function) select an oriented n×n
torus, where n = Ω(σ2) so that no matter what is the starting position of the agent, it cannot visit
all nodes of the torus. In fact, the agent will visit at most (σ + 1)(1 + σn) = O(σ2n) nodes.

Theorem 2.1 Consider one mobile agent with σ states and a constant number k of identical
unmovable tokens. We can always (for any configuration of the automaton, i.e. states and transition
function) select a n × n oriented torus, where n = Ω(σ2) so that no matter what is the starting
position of the agent, it cannot visit all nodes of the torus. In fact, the agent will visit at most
O(σ2n) nodes.

Lemma 2.3 Let A be an agent with σ states and one unmovable token in a n × n torus, where
n = Ω(σ2) and let v be a node in that torus. There are at most (σ + 1)(1 + σn) = O(σ2n) different
starting nodes that we could have placed A so that node v is always being visited by A.

5



2.2 An Ω(log n) memory lower bound for rendezvous using one movable token

Lemma 2.4 Consider two mobile agents with σ states. They each have a token (identical to each
other). Then we can always (for any configuration of the automatons, i.e. states and transition
function) find an oriented n × n torus, where n = Ω(σ2) and place the agents so that if they can
not move tokens then they cannot rendezvous.

Proof: If we place the agents at any distance, as long as they do not release their token they
maintain their distance since they move in exactly the same way.

Suppose that at some point they release their token and they move.
a) Consider the case that they see a token before they repeat a state. The total number of

nodes visited before a state is repeated is at most σ +1. Therefore we can initially place the agents
at such a distance (greater than σ+1 in any dimension) so that if they see a token before repeating
a state then it is their token the one that they see. Hence they see their tokens at the same time
and since they continue moving in exactly the same way they maintain their distance.

b) They repeat a state without having seen a token. Take the first state S that they repeat.
Suppose that when first are at state S, at that moment they are at nodes v1, v2.

If n is the size of the torus, consider what happens after at most n repetitions of S:
i) either both of the agents do not see a token, or
ii) at least one of the agents sees a token
In case i) lemma 2.1 holds and hence they will eventually be located again at nodes v1, v2 having

state S, therefore maintaining their distance.
Suppose now case ii), i.e. at least one of the agents sees a token before the n repetitions. We

prove that we can initially place the agents so that they never meet the other’s token.
We place the first agent A in a node. If A can meet only his token, then by lemma 2.2, the

agent would visit at most (σ + 1)(1 + σn) nodes before he repeats everything. We prove that we
can initially choose a node to place the other agent B so that anyone’s token is out of reach of the
other:

We need to place the second agent B so that

• he releases his token tB at a node different from at most (σ + 1)(1 + σn) nodes visited by the
first agent A and

• to avoid to visit the node where the first agent A released his token tA

We can place the second agent B at a starting node out of at least n2− (σ+1)(1+σn) (taking n =
Ω(σ2)) so that B’s token is out of reach of A. Moreover, by Lemma 2.3 only (σ+1)(1+σn) starting
nodes could lead agent B to meet token A’s token. Thus there are at least n2 − 2(σ + 1)(1 + σn)
starting nodes that satisfy the above property.

Therefore if we choose the size of the torus n > 2(σ+1)(1+σn) = Ω(σ2), then we can place the
agents so that if they meet a token it is always their token. Hence they do this at the same time
and their distance do not change. The situation has been illustrated in Figure 1 (orbits of agent A
have been drawn with solid lines while orbits of agent B have been drawn with dashed lines). 2

Notice that in the previous scenario, where the two agents cannot move the tokens, there are
still unvisited nodes (from the same agent) in the torus. In fact we proved Lemma 2.4 by describing
a way to ‘hide’ token tA in a node not visited by agent B and token tB in a node not visited by
agent A.
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If there are two starting nodes s, s′ for the agents A and B so that agent A drops his token tA
in a node not visited by agent B and agent B drops his token tB in a node not visited by agent A
then we say that s, s′ satisfy property π.

If the agents could move tokens, then it is easy to think of an algorithm where all nodes of any
torus are visited by the same agent. For example consider the following algorithm:

- 1: go right until you meet the second token;
- 2: move the token down;
- 3: repeat from step 1;
Nevertheless the goal is again to place the agents in a way that they could meet only their own

token. To achieve this we place the agents so that in a phase which starts when the agents move
their tokens, up to the moment that they move their tokens again they do not meet each other’s
token.

Lemma 2.5 Consider two mobile agents with σ states. They each have a token (identical to each
other). Then we can always (for any configuration of the automatons, i.e. states and transition
function) find an oriented n× n torus, where n > 8σ3 = Ω(σ3) and place the agents so that even if
they can move tokens they cannot rendezvous.

This implies the following theorem:

Theorem 2.2 Two agents in a n×n torus with one movable token need at least Ω(log n) memory
to solve RV problem.

Proof: Suppose that the agents have a memory of r bits. Hence they can have at most 2r states.
By Lemma 2.5 as long as n > 8σ3 the agents cannot do rendezvous. Hence, the agents need at
least r = Ω(log n) memory in order to do rendezvous. 2

2.3 An Ω(log n) memory lower bound for rendezvous using O(1) unmovable to-
kens

Lemma 2.6 Consider two mobile agents with σ states. They each have two tokens (identical to
each other). Then we can always (for any configuration of the automatons, i.e. states and transition
function) find a n× n oriented torus, where n = Ω(σ2) and place the agents so that if they cannot
move tokens they cannot rendezvous.

Proof: (Sketch) In view of Lemmas 2.2, 2.4 we can select the torus and the starting positions so
that an agent will visit at most (σ + 1)(1 + σn) nodes until he decides to release his second token
and up to that point does not meet the other’s token. His second token will have to be released
at a ‘short’ distance from the first one since an agent cannot count more than σ. Using similar
arguments as in the proof of Lemma 2.4 one can show that there are at least n2− 5(σ + 1)(1 + σn)
pairs of starting nodes that satisfy property π. 2

This implies the following theorem:

Theorem 2.3 Two agents in a n×n torus with two identical unmovable tokens each, need at least
Ω(log n) memory to solve RV problem.

Applying similar arguments we can further prove the following lemma and the following theorem:
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Lemma 2.7 Consider two mobile agents with σ states. They each have a constant number of k
identical tokens. Then we can always (for any configuration of the automatons, i.e. states and
transition function) find an oriented n× n torus, where n = Ω(σ2) and place the agents so that if
they cannot move tokens they cannot rendezvous.

Proof: (Sketch) Using similar arguments as in the proof of Lemma 2.4 one can show that there

are at least n2 − k(k+2)
2 (σ + 1)(1 + σn) pairs of starting nodes that satisfy property π. 2

Theorem 2.4 Two agents in a n × n torus with a constant number of unmovable tokens need at
least Ω(log n) memory to solve RV problem.

3 Rendezvous

3.1 Rendezvous with Detection (RVD) in a n × n torus using one token and
O(log n) memory

We describe an algorithm which solves the RVD problem of two agents in a n× n torus, equipped
with one unmovable token and O(log n) memory each. Below is a high level description of the
algorithm.

First the agent (both agents do the same) moves in the initial horizontal ring; he releases his
token and he counts steps until he meets a token twice. If his counters differ, then he can meet
the other agent. Otherwise he does the same in the initial vertical ring. If he does not meet the
other or decide that rendezvous is impossible (which means that the agents must have started in
different rings), then he searches one by one the horizontal rings of the torus counting his steps. If
at least one of his counters (representing horizontal or vertical distances) is different than n/2 then
he can meet the other agent. Otherwise he stops and declares rendezvous impossible. The formal
description appears in Algorithm 1 in the Appendix.

Theorem 3.1 The Rendezvous with Detection problem on a n×n torus can be solved by two agents
using one unmovable token and O(log n) memory each, in time O(n2).

The above result can be extended for the case of an arbitrary n×m torus. The main difference
in that case is how the agents decide if they have started on the same ring or not: they again
explore one by one the horizontal rings. They will meet a token while going down (passing from
one horizontal ring to the next) if and only if they have started on the same ring. Otherwise, they
will meet a token while going right (before finishing the exploration of a horizontal ring). They can
again solve the Rendezvous with Detection problem in O(n2) steps as long as they have O(log n)
memory each. The complete algorithm will apear in the full version of the paper.

3.2 Rendezvous with Detection in a n× n torus using two movable tokens and
constant memory

We define Procedures HorScan and VerScan which will be used in our algorithms.
In these procedures the agent stops immediately after he meets a token. So for example, if

he executes procedure HorScan and then, after he goes right, he meets a token then he stops
immediately; he does not go up.

We also use Procedure FindTokenHor.
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Procedure HorScan

1: repeat
2: go down, right, up
3: until you meet a token

Procedure VerScan

1: repeat
2: go right, down, left
3: until you meet a token

An agent following Procedure FindTokenHor, scans one by one the horizontal rings of the torus
until he meets a token while moving down or right. Below we explain procedure FindTokenHor
and prove some properties.

Let the agents release their first token and execute procedure FindTokenHor. During execution
of HorScan (step 2 of Procedure FindTokenHor), the agent has to meet a token for the first time
either after he moved down in the first step, or up or right (he can not meet a token while going
down at a later step of Horscan since he would have met the token while going right earlier).

If he meets a token after he moved up, then this can be any token: his or the other’s first token
(or his or the other’s second token when he scans a later horizontal ring). However, if he executes
Horscan again (step 4 of Procedure FindTokenHor), then no matter what was the case, it is easy to
see that the first token he meets now is his token (first or second) and he meets it after he moved
up†. Furthermore in this case he is sure that the down ring had no tokens.

If he meets a token right then it is clear that it is the other’s first token and that the two agents
have started in different rings.

If he meets a token while he goes down then either it is his first token or the other’s first token.
In both cases this means that they have started in the same ring: if it is his first token it means
that he has searched the whole torus and did not meet any other token while he was moving right.

Therefore the agent exits procedure FindTokenHor knowing that he has started either in the
same ring with the other agent (if he met a token after he moved down) or in different rings (if he
met a token after he moved right).

We also use Procedure FindTokenVer (see Appendix) which scans one by one the vertical rings
of the torus using Procedure VerScan. Procedure FindTokenVer has exactly the same properties
with procedure FindTokenHor if we replace direction down with right, right with down and up

†Supposing that there are at most two tokens in the same horizontal ring

Procedure FindTokenHor

1: repeat
2: HorScan
3: if you meet token up then
4: HorScan
5: go one step down and drop (or move) the second token
6: end if
7: until you meet a token down or right
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with left. If we had a guarantee that the agents started in different rings then an agent executing
procedure FindTokenVer he will exit the procedure, meeting a token while he moves right. The
movements of the agents following these two procedures are shown in Figure 2. Both procedures
FindTokenHor and FindTokenVer need O(n2) time units.

We also use Procedure RVDRing (see Appendix) which appeared in [10], for rendezvous with
detection in a ring using two tokens and constant memory.

Combining those procedures we now give a description of the algorithm RVD2n which is a RVD
algorithm for two agents with constant memory in a n× n torus.

The two agents search one by one the horizontal rings of the torus (using Procedure FindTo-
kenHor) to discover whether they have started in the same ring. If so, then they execute Procedure
RVDRing. Otherwise they try to ‘catch’ each other on the torus using a path, marked by their
tokens. If they do not rendezvous then they search one by one the vertical rings of the torus (using
Procedure FindTokenVer). They again try to ‘catch’ each other on the torus. If they do not meet
this time they declare rendezvous impossible. Algorithm RVD2n takes O(n2) time.

Theorem 3.2 The Rendezvous with Detection problem on a n×n torus can be solved by two agents
using two movable tokens and constant memory each, in time O(n2).

Another possible algorithm could be if after discovering that the agents started on different
rings, first to search whether they are at distance (n/2, n/2) and if not, then searching one by
one the horizontal rings of the torus. We have chosen to present here the first approach since it is
expandable to a n×m torus.

3.3 Rendezvous without Detection in a n ×m torus using two movable tokens
and constant memory

We give now algorithm RV2mn which is a RV algorithm for two agents with constant memory in
a n×m torus. Algorithm RV2mn, at first, copies algorithm RVD2n. If no rendezvous occurs and
no decision is made about its impossibility (i.e. the agents have started in different rings), the
algorithm instructs the agents to mark a rectangle with their tokens on the torus and then execute
Procedure Pendulum: they try to shrink the rectangle and eventually meet which will happen
unless they had started at distance (n/2,m/2) (in that case the algorithm runs forever).

In fact one of the following things could happen: either the agents rendezvous, or they detect
that they are in the same ring and their distance is half the size of the ring or the algorithm runs
forever (in that case they are at horizontal distance n/2 and vertical distance m/2). Algorithm
RV2mn needs O(n4 + m4) time.

Theorem 3.3 The Rendezvous without Detection problem on an arbitrary n × m torus can be
solved by two agents using two movable tokens and constant memory each, in time O(n4 + m4).

An interesting question which naturally follows is: what is the relation of n and m for which
algorithm RV2mn is indeed a RVD algorithm? The answer is given by the following lemma.

Lemma 3.1 If after the horizontal and vertical scanning of Algorithm RV2mn the agents do not
rendezvous and n−1

10 ≤ m ≤ 2n + 17 then their distance is (n/2,m/2) and therefore rendezvous is
impossible.

Hence by Lemma 3.1 if we knew that n−1
10 ≤ m ≤ 2n + 17 then algorithm RV2mn would be a

RVD algorithm for the n×m torus.
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3.4 Rendezvous with Detection in a n × m torus using three movable tokens
and constant memory

If the agents have 3 tokens then we can extend our RVD2n algorithm to get a RVD algorithm for a
n×m torus. The idea is the following: If the agents do not meet while they copy Algorithm RVD2n
then they mark a rectangle on the torus using their two tokens each. Next they release their third
token to the right of their starting position. They travel on this rectangle (one agent from inside
and the other from outside), each time moving one step the fifth token they meet: first they move
it to the right until it hits another token and then down until it touches a token. Next they go left
until they meet a token and then up until they meet a token. If at that point they see two tokens
adjacent then they declare rendezvous impossible. Otherwise they wait until rendezvous which will
occur in less than n + m time. Algorithm RVD3mn takes O(n2 + m2) time.

Theorem 3.4 The Rendezvous with Detection problem on an arbitrary n×m torus can be solved
by two agents using three movable tokens and constant memory each, in time O(n2 + m2).

4 Conclusions

In this paper we investigated on the number of tokens and memory that two agents need in order
to rendezvous in an anonymous oriented torus.

It appeared that there is a strict hierarchy on the power of tokens and memory with respect
to rendezvous: a constant number of unmovable tokens are less powerful than two movable tokens.
While the hierarchy collapses on three tokens (we gave an algorithm for rendezvous with detection
in a n×m torus when the agents have constant memory each), it remains an open question if three
tokens are strictly more powerful than two with respect to rendezvous with detection.

It is also interesting that although a movable token is more powerful than an unmovable one
(we showed that an agent with one unmovable token cannot visit all the nodes of a torus with a
properly selected size unless he has Ω(log n) memory, while he could do it with a constant memory
if he could move his token) it appeared that this power is not enough with respect to rendezvous;
the agents with one movable token each, still need Ω(log n) memory to rendezvous in the torus.

As this is the first publication in the literature that studies tradeoffs between the number of
tokens, memory, knowledge and power the agents need in order to meet on a torus network, a lot
of interesting questions remain open:

- Can we improve the time complexity for rendezvous without detection on a n×m torus using
constant memory? Can we improve the time complexity for rendezvous with detection on a n× n
torus using constant memory?

- What is the lower memory bound for two agents with two movable tokens each in order to do
rendezvous with detection in a n×m torus? Can they do it with constant memory?

- What is the situation in a d-dimensional torus? Is it the case that with d− 1 movable tokens,
rendezvous needs Ω(log n) memory while with d movable tokens and constant memory rendezvous
with detection can be done? How this changes if the size of the torus is not the same in every
dimension?

- What are the results if the torus is not oriented? If the torus is asynchronous?
- Finally, an interesting problem is that of many agents trying to rendezvous (or gathering) in

a torus network.
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A ' s t o k e n B ' s t o k e n

Figure 1: two agents with 1 unmovable token each cannot see each other’s token

A Appendix

Proof of Lemma 2.2.

As long as the agent does not release the token lemma 2.1 holds.
Suppose that the agent releases the token at some point. This point has to be before repeating

a state (otherwise he will never take this decision since after repeating a state, everything is being
repeated). Hence up to that point he has visited up to σ + 1 nodes in a n× n torus, where n > σ.
After releasing the token the agent moves just like in lemma 2.1 (without having any tokens). Take
the first state S which is encountered and repeated after dropping the token.

Suppose that after at most n repetitions of S, the agent does not meet its token. Then it visits
at most (σ + 1)n nodes (see the proof of Lemma 2.1). Hence in that case the agent visits a total
number of at most (σ + 1)(n + 1) nodes.

Suppose now that at some point t, the agent sees again his token before finds himself located
at a node twice having the same state. In view of Lemma 2.1, up to that point t, he has visited at
most (σ + 1)n nodes. When he meets his token he could change his orbit visiting another (σ + 1)n
nodes. After at most σ times he sees his token being in a state twice. In other words, it could
enter at most σ different states (thus changing his orbit) when he meets his token. Therefore he
will visit a total of at most σ + 1 + (σ + 1)σn nodes and after that he visits exactly the same
nodes. Hence if we select the size of the torus to be n = Ω(σ2), then the agent will visit at most
(σ + 1)(1 + σn) = O(σ2n) nodes. 2

Proof of Lemma 2.3.

By Lemma 2.2, agent A can visit at most (σ +1)(1+σn) different nodes. This means that starting
from a node s, there are at most (σ + 1)(1 + σn) different nodes ui = (xi, yi) (where xi, yi are
oriented horizontal and vertical respectively distances of node ui from s) that could be visited. We
prove that a fixed node v can be reached only starting from at most (σ+1)(1+σn) different nodes:

Take a node s as a starting node. Suppose that the given node v has relative distance (x, y)
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s t a r t

a

s t a r t

b
Figure 2: a) An agent executing Procedure FindTokenHor and b) An agent executing Procedure
FindTokenVer

from s (e.g. x nodes horizontally clockwise and y nodes vertically clockwise) and can be reached
by A. Change the starting node to s′. Now from the new starting node s′, agent A can reach the
node at distance (x, y) (which of course is different than v). Suppose that A can still reach node v
which now is at a different distance (x′, y′) from s′.

By repeating this procedure you can have at most (σ + 1)(1 + σn) = O(σ2n) different starting
nodes for which an agent starting there visits node v, otherwise it would mean that there exists a
starting node such that once the agent started there, he could pass from more than (σ +1)(1+σn)
nodes which in view of Lemma 2.2 is impossible. 2

Proof of Lemma 2.5.

As long as they do not move tokens lemma 2.4 holds. We can initially place the agents so that if
they see a token, it is their own token (up to the moment that they decide to move it). Suppose
that at some point they decide to move their token.

Then each agent moves with a probably different orbit than before. Every time they see a token
they can change their orbit. Nevertheless they can change their orbits for at most σ times.

We proved in Lemma 2.4 that we could place the agents so that in the first part (i.e. until they
decide to move the tokens for the first time), they do not meet and they do not see each other’s
token. Suppose that agent A has been placed at a node s.

In view of Lemma 2.4 there are at most 2(σ +1)(1+σn) starting nodes so that each one paired
with s do not satisfy property π up to the moment that the agents move the tokens for the first
time. Every time they move the tokens we can have at most 2(σ + 1)(1 + σn) new pairs (with
different distances than the previous pairs). There are at least n2/4 pairs with different distances
in a n × n torus. Since there is a limited number (≤ σ) of different orbits that the agents could
choose after moving the tokens, there will be left at least Ω(n2/4− 2σ(σ + 1)(1 + σn)) legal nodes
(each one of them paired with s, satisfy property π).

This means that if we select the size of the torus n > 8σ3 then there are some nodes that are
legal for all orbits (i.e. if we place agents there then anyone’s token is out of reach of the other).

To find a pair of such nodes, one may execute the following procedure:
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- place agent A in a node
- place agent B in one of the n2 − 2(σ + 1)(1 + σn) nodes as in Lemma 2.4
- after they have moved the tokens find the new different ‘bad’ nodes (which do not satisfy

property π) (at most 2(σ + 1)(1 + σn))
- If the so far selected pair s, s′ does not belong to any of the previous sets of ‘bad’ nodes,

repeat the previous step
- otherwise choose a different pair of starting nodes and repeat the whole procedure 2

Algorithm 1 Algorithm for RVD with 1 token and O(log n) memory

1: SameRing
2: DifRing

As Algorithm 1 suggests, the agents first execute Procedure SameRing. If they do not meet
each other and they do not decide that rendezvous is impossible, then they must have started in
different rings (c1 = c3). In that case they execute procedure DifRing. Their exploration finishes
after at most O(n2) steps, while they need O(log n) memory for counting.

Procedure SameRing

1: leave your token down
2: go right and count steps until you see a token
3: c1 ←this number of steps
4: go right and count steps until you see a token
5: c2 ←this number of steps
6: if c2 6= c1 then
7: Rendezvous(horizontal, c1, c2)
8: else
9: go down and count steps until you see a token

10: c3 ←this number of steps
11: if c1 = c3/2 or c3 = c1/2 then
12: stop and declare rendezvous impossible
13: end if
14: if c1 6= c3 and c1 6= c3/2 and c3 6= c1/2 then
15: go down and count steps until you see a token
16: c4 ←this number of steps.
17: end if
18: if c4 6= c3 then
19: Rendezvous(vertical, c3, c4)
20: end if
21: end if

Lemma. If the agents are located on the same ring of a n×n torus then Procedure SameRing
is a RVD algorithm. Furthermore the agents are located in the same ring if and only if counters c1

and c3 differ.
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Procedure Rendezvous(ring, c1, c2)

1: if ring = horizontal then
2: if c2 > c1 then
3: go right
4: else
5: go left
6: end if
7: end if
8: if ring = vertical then
9: if c2 > c1 then

10: go down
11: else
12: go up
13: end if
14: end if

Proof.

After c1 + c2 steps the agents see their token. So they are again located at their starting positions.
If c1 6= c2, this means that the agents started in the same horizontal ring. They execute

procedure Rendezvous on the horizontal ring and since they have counted different they can break
symmetries and perform rendezvous.

If c2 = c1 then the agents started either on the same horizontal ring at distance n/2 or in
different horizontal rings. In that case (c2 = c1) they try the vertical ring. They count c3 steps
until they meet a token on the vertical ring. It is easy to see that c1 = c3 if and only if they have
started on different rings. Hence since (by hypothesis) they have started in the same ring it holds
c1 6= c3.

- If c1 = c3/2 or c3 = c1/2 then they have started at distance n/2 in the same horizontal or
vertical ring respectively. Hence (in view of Theorem 1.1) rendezvous is impossible.

- If c1 6= c3/2 and c3 6= c1/2, since c1 = c2 6= c3 the agents must have started at distance
different than n/2 in the same vertical ring. After c4 steps in the vertical ring they see their token.
Since c4 6= c3 the agents can break symmetries and perform rendezvous by executing procedure
Rendezvous on the vertical ring. 2

Lemma. If the agents are located on different rings of a n × n torus then Procedure DifRing
is a RVD algorithm. Furthermore the agents are located in different rings if and only if counters
c1 and c3 (from Procedure SameRing) are equal.

Proof.

In view of the previous lemma, the agents are in different rings initially if and only if it holds
c1 = c3 = n. They explore the other horizontal rings. If they do not find a token after c1 steps
then of course they can be sure that there is no token at that ring. After exploring c6 horizontal
rings, they see a token located c5 steps to the right of their starting position. If c5 = c6 = c1/2
then (in view of Theorem 1.1) rendezvous is impossible. Otherwise:
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Procedure DifRing

1: repeat
2: go down to the next horizontal ring
3: repeat
4: go right
5: c5 ←the number of steps right
6: until (c5 = c1) OR (you meet a token)
7: until you meet a token
8: c6 ←the number of rings down
9: if c5 = c6 = c1/2 then

10: stop and declare rendezvous impossible
11: else
12: if c6 6= c1/2 then
13: Rendezvous2(c6)
14: else
15: Rendezvous2(c5)
16: end if
17: end if

Procedure Rendezvous2(ct)

1: if ct < c1/2 then
2: reverse horizontal direction and go c5 horizontally and then vertically until you meet your

token and wait
3: end if
4: if ct > c1/2 then
5: wait
6: end if
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- If c6 6= c1/2 then they can break symmetries as follows: The agent that counted c6 < c1/2
reverses its horizontal direction and goes c5 steps. Then reverses the vertical direction and moves
until he meets a token. He waits there. The other agent just waits. They will rendezvous there.

If c6 = c1/2 then the agent who counts c5 < c1/2 reverses directions as above and moves. The
other agent waits. 2

Procedure FindTokenVer

1: repeat
2: VerScan
3: if you meet token left then
4: VerScan
5: go one step right and drop (or move) the second token
6: end if
7: until you meet a token right

Procedure RVDRing

1: move one step right and drop the second token
2: repeat
3: move right until you meet the forth token t
4: move token t one step to the right
5: until there is another token next to t
6: go right until you meet a token
7: if there is another token next to it then
8: stop and declare rendezvous impossible
9: else

10: wait there
11: end if

Lemma. Consider two mobile agents with constant memory on an oriented ring consisting of
n nodes. They each have two tokens (identical to each other). If they release their first tokens and
execute procedure RVDRing then they perform rendezvous with detection.

Proof.

Since after step 1 of Procedure RVDRing there are 4 tokens in the ring, each agent meets (at step
3) always the token he has dropped second. Moreover since the agents started at the same time
and do complete cycles, they always meet their forth token at the same time. Consider the first
moment at which after moving forward a token, it touches another token. The other agent moved
forward the token at exactly the same time.

i) suppose that both agents see that their tokens touch other tokens. Since they have travelled
exactly the same distance, this means that the distance between an agent’s tokens is n/2. They
discover this at the same time according to the procedure.

ii) suppose that only one of the agents (say A) sees his token touching another token. Since
the agents travelled the same distance, it means that their initial distances were different. Now A
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moves to the next token just to see that it is not touching other tokens. He will be there in less
than n steps, while in exactly n steps the other agent will also be there. 2

We also use in our algorithms a similar procedure with RVDRing for rendezvous with detection
on a vertical ring of a torus. We only need to replace direction right with down.

Procedure SearchTorus

1: release the first token
2: FindTokenHor
3: if the agents are on the same ring then
4: Synchronize
5: RVDRing on the horizontal ring
6: RVDRing on the vertical ring
7: if not rendezvous then
8: stop and declare rendezvous impossible
9: end if

10: else
11: go up until you meet a token
12: go one step down
13: repeat
14: go left, wait 1 time step
15: until (rendezvous) OR (you meet a token for the second time)
16: if not rendezvous then
17: Synchronize2
18: FindTokenVer
19: go left until you meet a token
20: go one step right
21: repeat
22: go up, wait 1 time step
23: until (rendezvous) OR (you meet a token for the second time)
24: end if
25: end if

Algorithm 2 RVD2n

1: SearchTorus
2: if not rendezvous then
3: stop and declare rendezvous impossible
4: end if

Proof of Theorem 3.2.

The agents execute Algorithm RVD2n. They release their first token and follow procedure Find-
TokenHor.

If they find a token while going down this means that they have started in the same ring
(horizontal or vertical). If this is the case, then they get synchronized by continuing moving in
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Figure 3: a possible situation in the torus

the same way (it is like executing procedure FindTokeHor once more, ignoring the token that they
have just found). Now they are at the same time back at their starting points knowing that they
have started in the same ring. They execute procedure RVDRing in the horizontal ring and then
(if no rendezvous occurs) in the vertical ring. After that either they rendezvous or stop, declaring
rendezvous impossible (which in view of Theorem 1.1 is true).

If they find a token while moving right then they know that they have started in different rings.
In that case, after they meet a token right they go up until they meet a token. Consider agent A
with initial vertical distance dy from agent B. We suppose wlog that agent B is dy ≤ n/2 down of
agent A and dx to the right (notice that dx can have any value lower than n). When A goes up
(after he met a token right) he will meet either (again) B’s first token (when dy = 1 and dx small
enough) or B’s second token since every agent moves his second token in the vertical ring where
his first token lies.

Suppose that agent B still executes procedure FindTokenHor (not having found yet a token
right). We claim that if A goes one step down after he finds B’s (first or second) token and then
left-wait-1-step repeatedly, then either he will meet agent B, or he will find a token. Let’s see why:

Agent A went down dy ≤ n/2 and then dx until he met the other’s first token. After that, agent
A goes up and meets the other’s second token t2(B)‡ since: agent B moves his second token always
in the vertical ring where his first token lies until he meets the other’s first token. After that the
first agent that will possibly move t2(B) is A. Therefore, token t2(B) has to be somewhere in a
ring above the ring where A’s first token t1(A) lies.

Suppose that token t2(B) is in a ring not adjacent to the ring that t1(A) lies. This means
that the other agent B is still searching that ring coming from left to right. Therefore they will

‡If agent A met token t1(B) again while going up, then the agents will rendezvous when A will start to go left,
unless they are in a 2x2 torus
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rendezvous.
If token t2(B) is just one horizontal ring above the ring where token t1(A) lies then the situation

is shown in Figure 3. In that case the agents may not rendezvous if agent B reaches first t1(A).
Suppose that they do not rendezvous. We prove now some properties about dy and dx.

Agent A moves as follows: After 3n steps he meets his own token (going up) for the first time. it
takes him another 3n time units to meet his token for the second time plus one for going down. This
is repeated dy−1 times (until he is one ring above the ring where the other’s first token lies). It takes
another 3(dx−1)+2 to meet the other’s first token. So far he has spent (1+6n)(dy−1)+3(dx−1)+2.
Then he goes up dy + 1 steps until he meets the other’s second token. He goes one step down and
another 2(dx− 1) + 1 steps until he meets his own first token for the first time. Totally it took him
to be there (1 + 6n)(dy − 1) + 3(dx − 1) + 2 + dy + 2 + 2(dx − 1) + 1 = 6ndy + 2dy − 6n + 5dx − 1.

Agent B needs (1 + 6n)(n− dy − 1) + 3(n− dx − 1) + 2 = 6n2 − 6ndy − dy − 3dx − 2n− 2 time
units to be there.

If the agents do not rendezvous until A meets the token for the second time then this means
that agent B reached that token (t1(A)) first. Thus

6ndy + 2dy − 6n + 5dx − 1 > 6n2 − 6ndy − dy − 3dx − 2n− 2

12ndy + 3dy + 8dx + 1 > 6n2 + 4n

Let dy = n−k
2 , k ≥ 0. The above inequality implies that dx > 3nk

4 + 5n
16 + 3k

16 −
1
8 . Since dx < n,

the previous inequality holds only when k = 0. This means that dy = n/2. Observe that if n is an
odd number, then they will always rendezvous.

Then they get synchronized by moving for example left-up-down until they meet the other’s
second token again. They pick it up (they will use it from now on as their second token) and they
go one step down and then repeatedly right-wait-1 until they meet their first token. It is easy to
see that they will reach their first token at the same time.

Now they repeat the same procedure by replacing down with right, right with down, up with
left and left with up (the situation will be like the one shown in Figure 3 rotated by 90 degrees).
Using the same arguments as before, if they do not rendezvous, then dx = n/2 and in view of
Theorem 1.1, they can safely decide that rendezvous is impossible. 2

Procedure Pendulum

1: repeat
2: move token to the right
3: go left one step
4: go down waiting 1 step in every node until you meet a token
5: move token to the right
6: go right until you meet a token
7: move token to the left
8: go right one step
9: go up waiting 1 step in every node until you meet a token

10: move token to the left
11: go left until you meet a token
12: until rendezvous
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Lemma.

Suppose that there is a rectangle marked by four tokens in a n×m torus. Suppose also that either
the horizontal distance is n/2 or the vertical distance is m/2. There are two agents situated on the
left upper and right down corners of the rectangle. Then Procedure Pendulum is an RV algorithm.
It will lead the agents to rendezvous in O(n4 + m4) time, unless their distance is (n/2,m/2).

The proof will appear in the full version of the paper.

Algorithm 3 RV2mn

1: SearchTorus
2: if not rendezvous then
3: Synchronize3
4: BuildRectangle
5: Synchronize4
6: Pendulum
7: end if

Procedure BuildRectangle

1: go right until you meet a token
2: move that token one step right
3: repeat
4: go up, wait 1 time step
5: until you meet a token
6: go left until you meet a token
7: go down until you meet a token

Proof of Theorem 3.3.

The agents follow Algorithm RV2mn. They first copy Algorithm RVD2n (as in the case of a n× n
torus). We first prove that if they do not rendezvous after horizontal and vertical scanning then
either their horizontal distance dx = n/2 or their vertical distance dy = m/2 (or both).

Let’s see what happens during the horizontal scanning. Consider agent A whose dy = m−k
2 ,

k = 0, 1, 2, .... Agent A travelled 6ndy + 2dy − 6n + 5dx − 1 while agent B travelled 6nm− 6ndy −
3n− 3dx + m− dy − 2. Suppose that they do not rendezvous. This means that:

6ndy + 2dy − 6n + 5dx − 1 > 6nm− 6ndy − 3n− 3dx + m− dy − 2

12ndy + 3dy + 8dx + 1 > 6nm + 3n + m

Since dy = m−k
2 , the above inequality implies:

dx >
3

4
nk +

3

16
k +

3n

8
−

m

16
−

1

8

After picking up their second token and synchronizing (in a different way that suggested in the
proof of Theorem 3.2 but still easy to implement) they do the vertical scanning. Consider the agent
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whose d′x = n−δ
2 , δ = 0, 1, 2, .... This agent travelled 6md′x + 2d′x − 6m + 5d′y − 1 while the other

agent travelled 6nm− 6md′x − 3m− 3d′y + n− d′x − 2. Suppose that they do not rendezvous. This
means that:

6md′x + 2d′x − 6m + 5d′y − 1 > 6nm− 6md′x − 3m− 3d′y + n− d′x − 2

12md′x + 3d′x + 8d′y + 1 > 6nm + 3m + n

Since d′x = n−δ
2 ,

d′y >
3

4
mδ +

3

16
δ +

3m

8
−

n

16
−

1

8

Suppose that k = 1. Then dy = m−1
2 and d′y = m−1

2 or d′y = m+1
2 and the previous inequality

implies:
3mδ

4
+

3δ

16
<

m− 4

8
+

n

16
+

1

8
or

3mδ

4
+

3δ

16
<

m + 4

8
+

n

16
+

1

8

Suppose now that δ = 1. Then:

3m

4
+

3

16
<

m− 4

8
+

n

16
+

1

8

or
3m

4
+

3

16
<

m + 4

8
+

n

16
+

1

8

Therefore n > 10m− 7 or n > 10m + 9.
Since dx = n−1

2 or dx = n+1
2 then the first inequality implies:

dx =
n + 1

2
>

9

8
n +

1

16
−

m

16

or

dx =
n− 1

2
>

9

8
n +

1

16
−

m

16

Therefore m > 10n − 7 or m > 10n + 9.
If n,m > 2, it is impossible for the above relations to hold at the same time. This means that

at least one of the following holds: either dx = n/2 or dy = m/2.
Now the two agents get synchronized, build the rectangle and run the procedure Pendulum

which ends up to rendezvous unless dx = n/2 and dy = m/2. 2

Proof of Lemma 3.1.

The agents execute Algorithm RV2mn. Recall that if the agents do not rendezvous after the
horizontal scanning, then it must hold

dx >
3

4
nk +

3

16
k +

3n

8
−

m

16
−

1

8

Suppose that k ≥ 1. Then

dx >
3

4
nk +

3

16
k +

3n

8
−

m
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−

1

8
≥

9n

8
+

1
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−

m

16
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It holds that dx < n, since the agents did not start on the same ring. Therefore it must hold that

9n

8
+

1

16
−

m

16
< n− 1→ m > 2n + 17

The contraposition implies that if m ≤ 2n + 17 then k = 0. This means that dy = m/2.
After the vertical scanning it holds

d′y =
m

2
>

3

4
mδ +

3

16
δ +

3m

8
−

n

16
−

1

8

Suppose that δ ≥ 1. Then

3

4
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3

16
δ +

3m

8
−

n
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−

1

8
≥

9m

8
+

1

16
−

n

16

Therefore it must hold
9m

8
+

1

16
−

n

16
<

m

2
→ m <

n− 1

10

The contraposition of this concludes the lemma. 2

Proof of Theorem 3.4.

The agents follow Algorithm RVD3mn. Suppose that after executing procedure SearchTorus they
do not rendezvous neither decide that it is impossible. This means that either their horizontal
distance dx = n/2 or their vertical distance dy = m/2 (or both). The agents get synchronized and
form a rectangle in the torus. One of the agents (say A) travels (2dx + 2dy)(dx + dy − 1) + dx + dy

until he sees his third token touches for the second time a token. The other agent B travels
(2(n− dx)+2(m− dy))(n− dx +m− dy − 1)+n− dx +m− dy until he sees his third token touches
for the second time a token.

Suppose wlog that dx = n/2 and dy ≤ m/2. If dy = m/2 then the two agents always move at
the same time their tokens and at the end (when their third token is adjacent for the second time
to a token) they find out that the other’s token is adjacent to another token as well. Therefore
they declare rendezvous impossible.

If dy < m/2 then by the time agent A sees his third token touching for the second time a
token, agent B has traveled at most dx + dy − 1 < n/2 + m/2 − 1 times the rectangle. Thus B
needs at least one more round to move his third token close to another token. This means another
2(n − dx) + 2(m− dy) ≥ n + m steps for agent B. But in dx + dy ≤ n/2 + m/2 agent A will meet
B’s third token. Therefore if A waits there B will eventually come. 2
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Algorithm 4 RVD3mn

1: SearchTorus
2: if not rendezvous then
3: Synchronize3
4: BuildRectangle
5: Synchronize4
6: go right one step and drop the third token
7: repeat
8: go right until you meet a token
9: go down until you meet a token

10: go left until you meet a token
11: go up until you meet a token
12: go right until you meet a token
13: move that token one step to the right
14: until the token hits another token
15: repeat
16: go down until you meet a token
17: go left until you meet a token
18: go up until you meet a token
19: go right until you meet a token
20: go down until you meet a token
21: move that token one step down
22: until the token is adjacent to another token
23: go left until you meet a token
24: go up until you meet a token
25: if there are two tokens adjacent then
26: stop and declare rendezvous impossible
27: else
28: wait
29: end if
30: end if
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