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Abstract—Remote attestation in trusted computing is
about the ability of a local platform to authenticate the
hardware and the software stack running on a remote
trusted platform. We say that this process is successful, if
a local application is able to authenticate each layer in the
remote stack; it is meaningful if, by using this information,
the local application can make its own evaluation on
the safety of the platform environment where the remote
application is running.
In this paper we analyze the credentials and beliefs that

are necessary to a local application in order for the remote
attestation process to be both successful and meaningful.

I. INTRODUCTION

Computer platforms are becoming widely available
and are fundamental to the successful spreading of
electronic business and commerce. This makes the need
to protect information even more impelling, particularly
on the type of platforms we use directly (e.g., PCs). The
need for stronger trust and confidence in computer plat-
forms increases with connectivity and physical mobility.
In addition to threats associated with connecting to the
Internet, physical mobility increases the risk of unau-
thorized access to the platforms including actual theft.
Trusted platform technology provides mechanisms that
are useful in both circumstances, by allowing systems to
extend trust to clients running on these platforms.
Trusted platforms are computer platforms character-

ized by specialized hardware designed for security oper-
ations. Various initiatives in trusted computing [6] aim
at designing software building blocks and interfaces that
exploit the functionalities of the trusted platform technol-
ogy. Among the several security-related functionalities
that these platforms offer, remote attestation allows a
local platform to authenticate a combination of hardware
and software stack running in a remote platform. A local
platform, by determining the environment of a remote

platform, is in the position to better evaluate the amount
of trust it is willing to extend on the remote one.
In this paper we focus on the process of remote

attestation which is done by means of digital signatures,
as in [4] and [3], and that rely on the existence of a
hierarchical public key infrastructure for identity, certifi-
cates and key management. In this context, we analyze
the credentials and beliefs that are necessary to a local
application in order for the remote attestation process
to be both successful and meaningful. We say that a
remote attestation process is successful if, by combining
the trust that a local platform has in different certification
authorities, and the content of all the certificates making
up the various chains, the local platform is able to
identify the composition of the remote platform. On the
other hand, the remote attestation process can be said
to be meaningful if, by using the information obtained
during the remote platform authentication and the beliefs
of the local platform, the latter is able to consider the
environment of the former as safe. To the best of our
knowledge, this aspect has never been addressed before.
For simplicity, but without loss of generality, we will

assume that the remote platform is made up of three
layers, that is, the application A, which runs on top of the
operating system OS, which runs on top of the dedicated
security hardware, the trusted platform module (TPM).
The rest of the paper is structured as follows: we

start by recalling the main constructs used by the theory
employed in our analysis (Section II). Then, we ana-
lyze the credentials and beliefs that are needed when
authenticating a single remote layer (Section III), and
we generalize the discussion to a set of layers making
up the remote platform hardware and software stack
(Section IV). Finally, we analyze the credentials and be-
liefs needed to make the attestation process meaningful
(Section V).
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II. NOTATION

In order to understand the remote attestation process
we need to be able to reason about the content of cer-
tificates, to see how they combine together into chains,
and how different chains combine together with the local
platform’s beliefs. We, therefore, need a vocabulary for
describing the content of certificates and beliefs, and
rules in order to understand what can be inferred by
their combination. To this end, we have chosen to model
the certificates and the beliefs in this paper with a logic
for authentication. This logic is introduced in [5], and
has already been used for describing the concepts and
primary APIs employed in Microsoft’s Next Generation
Security Computing Base (NGSCB) [3]. In what follows
we will give a brief overview of the notation and
theorems used by this logic. The description tries to catch
the main aspects intuitively, and is not to be considered
rigorous.
The theory described in [5] is centered around the con-

cepts of principals, channels, and statements. Informally,
a principal is what produces a statement. Examples are
a person, a machine, or a role. A channel is a particular
principal, it is the only one able to produce statements
that can be recognized by a computer. Examples of
channels are cryptographic keys, wires, keystrokes, IP
numbers.
In this paper we are interested in channels made up of

an asymmetric key pair. Using K and K−1 for identifying
the public and private key respectively, a statement s
signed by the private key corresponding to K is expressed
by the theory with K says s. In other words, when
we write K says s we mean that a certificate has been
issued which contains the statement s and the signature
performed on it by the key K−1.
A certificate signed by a certification authority CA

with its private key KCA
−1 asserting that the principal

A owns the key pair (KA, KA
−1), is expressed with

KCA says KA ⇒ A and it is read as “KCA says that KA

speaks for A”. In the previous expression, “KA ⇒ A”
is an example of statement. Intuitively, it means that
everything that is said (signed by) KA is considered as
said by A. Or, in other words, that KA has the authority
to make statements on behalf of A.
We assume that the hand-off axiom holds. It states

that a principal has the right to specify who can speak
for it. In other words, if A says KA ⇒ A, then
anyone can safely assume that KA ⇒ A. This can be
generalized to the case in which the statement is done
by someone speaking for A (extended hand-off axiom).

As an example, consider KCA says KA ⇒ A. Anyone
reading this certificate and believing on the authority of
CA over A (believing KCA ⇒ A) will believe anything
signed (said) by the key KA as if it were said by A itself
(will believe KA ⇒ A).
It is possible to obtain compound principals by com-

bining “simple” principals and operators. The compound
principal we are interested in is the one which is obtained
by using the operator quote (|). As an example, consider
the case in which the trusted platform module (TPM)
needs to relay a statement s of the operating system
(OS) running on the platform. The TPM can do so by
issuing the following statement: KTPM says OS says s.
This is a certificate signed by K−1

TPM which contains a
reference to OS, and the statement which is relayed,
i.e. s. The meaning is that the TPM is “quoting” the OS
when it says s. An alternative way of writing the previous
certificate using the operator | is KTPM|OS says s, and
can be read as “KTPM quoting OS says s”. Notice that,
since TPM is simply relaying a statement from OS, there
is no guarantee that actually OS said s. This would, in
fact, require that KTPM ⇒ OS.
The following important axiom (which we will call

role axiom) holds for the operator quote: for every
principal A and every role R, A ⇒ A|R. Let us consider
this axiom with reference to the TPM key KTPM and
the operating system OS running on top of the TPM.
When the TPM executes the program OS, it is limiting
its behavior according to a certain set of rules, that is
the set of rules that correspond to the OS’ specifications.
Since behaving according to a set of rules can be seen
as acting according to a given role, we can equate a
program with a role [5]. Therefore, the previous axiom
can be used in the case where the principal A is the key
KTPM and the role R is the program OS, whose ID is
IDOS:

KTPM ⇒ KTPM|IDOS (1)

Intuitively the axiom holds because the TPM has the
authority to speak for itself when it is limiting its
authority, such as when it is running OS. The importance
of this axiom will be more evident in Section IV.
Other theorems and axioms of the logic will be used in

the following sections as they are needed. In this paper,
for brevity, we have chosen not to detail them, in favor of
giving intuitions on the line of reasoning. We refer to [2],
for a more theoretical insight on the formula used, to [5]
for a rigorous description of the logic, and to [7], [1] for
its application in modeling different systems.
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III. AUTHENTICATING A REMOTE LAYER
The remote attestation process allows a local platform

to cryptographically authenticate the hardware and the
stack of software running on a remote platform. As
part of this, the local platform must firstly be able to
authenticate each single layer that constitutes the remote
stack, secondly to authenticate the stack in its entirety.
In this section we will consider the first aspect, i.e. the
authentication of a single layer in the remote platform.
In what follows, we will use the term entity to refer to

a generic layer in the remote platform stack. So doing,
the discussion in this section will apply to the authen-
tication of both a hardware component, like the trusted
platform module, and of a software image which is part
of the software stack running on a remote platform.
In order to uniquely authenticate a remote entity, it is

necessary to authenticate its manufacturer beforehand.
In fact, besides the entity name being meaningful only
in the manufacturer’s namespace, the entity’s key pair
(or ID, if it is a software) is normally certified by the
manufacturer that ships it. In the more general case,
a manufacturer will be an organization with its own
public key infrastructure. Often, the PKI employed will
be hierarchical, and not necessarily modeled on the
organizational chart.
In order to fix ideas, but without loss of generality, we

will consider that a remote entity E is a product (software
or hardware) made by an organization with a simple 2-
layered PKI infrastructure. Within the organization, the
root certification authority, which we call VE, certifies
its trusted platform compliant products by means of
an intermediate certification authority, called Tr. This
delegation of authority is expressed by means of the
following certificate1:

KVE
says KVE/Tr ⇒ VE/Tr/∗ (2)

Tr, in turn, will generate a certificate for the product E,
in order to certify its identity, as follows:

KVE/Tr says ID(E) ⇒ VE/Tr/E (3)

Consider the case in which a platform L outside E’s
organization wants to authenticate E. If L receives the
certificates shown above, then, it cannot infer anything
useful, since it does not know who KVE

is, and which
authority it has. In order for L to be able to authenticate
a generic entity which is located in the tree of VE, L
needs to believe that KVE

is the key of VE, and that VE

1In order to keep the notation intuitive, we will use the expression
VE/Tr/∗ in place of the compound principal VE/Tr except ..

is the certification authority of the tree VE/∗, rooted in
VE itself. To this end, the following belief in necessary:

KVE
⇒ VE/∗ (4)

By using (4), together with (2) and (3), and by using
the transitivity property of ⇒, and the extended hand-
off axiom, L will be able to infer ID(E) ⇒ VE/Tr/E,
that is, that ID(E) corresponds to the entity E, which
is located in the organization VE, under the certification
authority Tr.
In the general case, if L is to be able to authenticate

every entity belonging to the organizations O1 . . . On,
then it has to know (believe) that KOi

⇒ Oi/∗ for
every i = 1 . . . n. A straightforward approach is for L
to build a repository of these root certificates. Since this
repository will contain an entry for every organization,
this approach in not scalable and is likely to be subject
to problems of maintenance. As an example, every entry
needs to be updated whenever a change or revocation of
an organization root key occurs. Moreover, as new orga-
nizations need to be authenticated, their corresponding
entries will have to be inserted in the repository.
The usual approach to circumvent this problem is

to use “external” certification authorities, that are not
part of the organizations, but are nevertheless trusted to
certify the organizations’ roots certification authorities.
If, for instance, L trusts the certification authority CA to
perform the certification of different organizations, then
it can put in its repository of root certificates just the
entry

KCA ⇒ ∗ (5)

In this way, when L receives the credentials of the entity
E belonging to the organization VE, which is certified by
CA

KCA says KVE
⇒ VE/∗

KVE
says KVE/Tr ⇒ VE/Tr/∗

KVE/Tr says ID(E) ⇒ VE/Tr/E
(6)

then, by using (5) it can understand

ID(E) ⇒ VE/Tr/E

which is what it needs. Due to its critical function in the
authentication of remote entities, we call CA a root of
trust for authentication for L.
Summing up, the credentials and the beliefs that are

necessary to L in order to authenticate a remote entity E
are represented by expressions (6) and (5), respectively.
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IV. AUTHENTICATING A SET OF REMOTE LAYERS

In the previous section we have analyzed the aspects
related to the authentication of a layer in a remote
platform. In this section we will extend the analysis
to cover the whole remote platform stack, from the
hardware up to the application.
In order for the local platform to authenticate the

remote one, the former has firstly to authenticate ev-
ery layer making up the latter, and secondly to assess
that all the layers are actually part of the same soft-
ware/hardware stack.
Let us focus on the first step, the authentication of

the layers of the remote platform R. For simplicity, we
assume that the vendors of the TPM, the OS, and the
application (VTPM, VOS, and VA, respectively), are all
structured in a 2-layered PKI as described in the previous
section. In this case, we can obtain the credentials
that are necessary to authenticate the three layers by
applying the same reasoning of the previous section,
and considering the remote entity as TPM, OS, and A,
respectively:

KCA says KVE
⇒ VE/∗

KVE
says KVE/Tr ⇒ VE/Tr/∗

KVE/Tr says ID(E) ⇒ VE/Tr/E

for E = {TPM,OS,A}

(7)

The second step consists in assessing that all the
authenticated layers are actually part of the same soft-
ware/hardware stack. This process requires building a
certificate chain from the trusted hardware all the way up
to the application. To this end, each software layer (OS
and A in this case) that wants to be certified generates
a key pair and makes an endorse API call to the lower
layer, passing, as parameters its public key and other
data it wants to be certified [4]. The certificate that is
generated through this process contains an ID which
uniquely identifies the software layer making the endorse
call. This ID can be the hash of the program image
corresponding to the software layer, and, possibly, of
its configuration parameters. Using KTPM to refer to the
key pair embedded in the TPM, KOS for the temporary
key generated by the operating system, and IDOS for
the code ID of the OS, the certificate generated by the
endorse call of the OS is:

KTPM says KOS ⇒ KTPM|IDOS (8)

With this, TPM certifies that the key KOS has the au-
thority to speak for the trusted platform module running
the operating system whose ID is IDOS. Likewise, the

certificate generated by the OS upon the endorse call of
the application is:

KOS says KA ⇒ KOS|IDA (9)

By using (1) in (8) and its homologous (KOS ⇒
KOS|IDA) in (9), we get to:

KOS ⇒ KTPM|IDOS

KA ⇒ KOS|IDA

and, by replacing KOS in the second statement with the
right side of the first statement, for the monotonicity of
operator |, we get to

KA ⇒ KTPM|IDOS|IDA (10)

In other words, every platform L receiving the certifi-
cates (8) and (9) can conclude that the key KA speaks
for a layer identified as IDA that runs on top of a layer
IDOS, that, in turn, runs on top of a layer identified by
the key KTPM.
In order for L to identify these IDs as the application

A, the operating system OS, and the trusted platform
module TPM, respectively, L needs to receive all the
certificates that authenticate each one of these layers, as
explained at the beginning of this section. By using these
certificates, together with its belief on the roots of trust,
L can infer:

ID(A) ⇒ VA/Tr/A
ID(OS) ⇒ VOS/Tr/OS
KTPM ⇒ VTPM/Tr/TPM

(11)

Using these beliefs, together with the belief (10), the
local platform is finally able to infer:

KA ⇒ VTPM/Tr/TPM | VOS/Tr/OS | VA/Tr/A (12)

which means, in prose, that the key KA is the temporary
key of an instance of the application A, certified as
trusted by its vendor VA. It is running on top of the
operating system OS, certified as trusted by its vendor
VOS. OS is running on a trusted platform TPM certified
as trusted by its manufacturer VTPM.
Summing up, what it necessary to a local platform

in order to authenticate an application running on a
remote platform is its belief in one ore more certification
authorities that authenticate the roots of the vendors’
PKI (5), the set of certificates that make up the PKI
of the vendors (7), and the set of endorse calls (8) and
(9).
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V. ASSESSING THE SAFETY OF A REMOTE
PLATFORM

In the previous section we have found what credentials
and beliefs are necessary in order for a local platform
L to authenticate the environment of a remote platform
R, where an application is running. However, being able
to authenticate the stack of a remote platform, does not
answer an important question: is that configuration safe
for the local platform? Answering this question means
evaluating the safety of the remote platform.
The attestation process is meaningful to L if it can get

to believe that:

VTPM/Tr/TPM | VOS/Tr/OS | VA/Tr/A ⇒ TrC (13)

where TrC is the set of configurations considered safe
for the remote application, according to the actions that
the local one wants to perform. In fact, by using this,
together with (12), by the transitivity property of ⇒, the
application can infer KA ⇒ TrC. This means, in prose,
that the key KA belongs to an instance of an application
which is part of a platform in a known trusted state.
There are two issues related to (13). Firstly, since it

is a belief, it needs to be derived from a trusted source
in the form, as an example, of a certificate. Secondly, in
order for a local application to be prepared to evaluate
the safety of a random remote application, the former
needs to receive evidence as in (13) for every possible
remote platform configuration.
This second issue can be kept simpler by grouping

TPMs, operating systems, and applications in trusted and
untrusted, and then considering a remote platform safe if
its stack is made up of trusted entities. The information
related to grouping can be distributed by independent
security organizations or by security companies, in the
form of certificates. Alternatively, it can be entered man-
ually into the local platform by its system administrator.
As an example, the local system administrator could
enter the following beliefs into the local platform:

VTPM/Tr/TPM ⇒ TrTPM

VOS/Tr/OS ⇒ TrOS

VA/Tr/A ⇒ TrA

TrTPM|TrOS|TrA ⇒ TrC

(14)

With these, the local platform believes that TPM,
certified by Tr, and, in turn, certified by VTPM belongs
to the group TrTPM. By using the same reasoning, it
believes that OS and A belong to the group TrOS and
TrA, respectively. The last belief states that if a member
of the group TrA runs on top of a member of the group
TrOS, which runs on top of a member of the group

TrTPM, then the configuration is member of the group
TrC. Therefore, if the local application knows that TrC is
a group of safe configurations for the remote application,
then by using the beliefs in (14), together with (12), it
can infer KA ⇒ TrC, which is exactly what it needs. A
more relaxed security profile could trust some authorities
to certify which entities belong to which groups, as
follows:

CATPM ⇒ TrTPM

CAOS ⇒ TrOS

CAA ⇒ TrA

TrTPM|TrOS|TrA ⇒ TrC

(15)

With these beliefs, the authority CATPM, CAOS, CAA

will be trusted to assess the safety of TPMs, OSs, and
applications, respectively. Due to their critical role in
the evaluation of a remote platform, we call the beliefs
in (14) or in (15) the roots of trust for evaluation for L.
The credentials that L needs in order to evaluate

the safety of R are dependent on its roots of trust for
evaluation. As an example, by using the roots of trust
in (15), the credentials that L needs to receive to evaluate
R (to understand that KA ⇒ TrC) are:

KCATPM
says VTPM/Tr/TPM ⇒ TrTPM

KCAOS
says VOS/Tr/OS ⇒ TrOS

KCAA
says VA/Tr/A ⇒ TrA

KCA says KCAi
⇒ CAi, for i = {TPM,OS,A}

(16)
Notice that every combination of roots of trust for
evaluation and credentials can be used, as long as they
allow to determine KA ⇒ TrC.
Summing up, what is necessary to a local platform

in order to evaluate the safety of a remote platform, is
its roots of trust for evaluation, i.e. trusted statements
that provide information either on which platforms to
consider safe (14), or on authorities to trust for the eval-
uation (15). In the latter case, the local platform needs
also a set of credentials produced by these authorities
that complement the beliefs allowing to evaluate the
platform (16).

VI. CONCLUSIONS
Remote attestation is a new functionality offered by

trusted platform computing, which may be useful to a
local platform in order to extend trust to a remote one.
In this paper we have analyzed which credentials and

beliefs are necessary in order for this process to be
successful and meaningful. As part of this, we have
highlighted how this process relies on two sets of key-
beliefs, which we have called, respectively, the roots of
trust for authentication and for evaluation.
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