
Distributed Storage in Disruption Tolerant Network

Jingzhe Du, Evangelos Kranakis

School of Computer Science

Carleton University

Ottawa, Canada

{jdu3, kranakis}@scs.carleton.ca

Amiya Nayak

School of Information Technology and Engineering

University of Ottawa

Ottawa, Canada

anayak@site.uottawa.ca

Abstract—We describe a novel Distributed Storage protocol
in Disruption (Delay) Tolerant Networks (DTN). Since DTNs
can not guarantee the connectivity of the network all the time,
distributed data storage and look up has to be performed in a
store-and-forward way. In this work, we define local distributed
location regions which are called cells to facilitate the data storage
and look up process. Nodes in a cell have high probability of
moving within their cells. Our protocol resorts to storing data
items in cells which have hierarchical structure to reduce routing
information storage at nodes. Multiple copies of a data item may
be stored at nodes to counter the adverse impact of the nature
of DTNs. The cells are relatively stable regions and as a result,
data exchange overheads among nodes are reduced. Through
experimentation, we show that the proposed distributed storage
protocol achieves higher successful data storage ratios with lower
delays and limited data item exchange requirements than other
protocols in the literature.

Index Terms—Distributed Data Storage, Disruption (Delay)
Tolerant Network, Local Algorithm.

I. INTRODUCTION

Mobile Ad Hoc Networks (MANET) consist of autonomous

mobile nodes connected by wireless channels without any

pre-existing network infrastructure. Typically, some of these

mobile devices are part of the network only while they can

communicate with the rest of the network. Existing ad hoc dis-

tributed data storage protocols usually assume that the network

is dense and there is always a connected path from message

(data item) source to destination. In situations where network

partitions exist, these protocols drop the message if a path

could not be found and thus perform insufficiently in terms

of data item delivery. Disruption (Delay) Tolerant Networks

(DTN) are proposed to address such issues in MANET where

instantaneous source and destination node connections may

not exist. There are increased DTN applications in recent

years, including military communications [13], inter-planetary

networks [5], wildlife tracking [8] and intermittent Internet

connection in under-developed countries (areas) [14], to name

a few.

Geographic data storage has been studied in MANET.

Nodes could get their location information either by global

positioning system (GPS) or localization algorithms [18]. In

existing geographic data storage schemes [16], [10], a node

makes data storage decisions according to the mapping of a

data item to a specific location. During the storage process,

the node forwards this data item to the location according

to its neighboring nodes’ location information and the data

item is stored at the node closest to the mapped location.

The look up action is similar to this storage process. Since

contemporaneous source to destination node connections may

not exist in DTN, network disruptions have to be properly

dealt with if geographic data storage is applied on the network.

And since different DTN networks have different network

characteristics (e.g., different node densities and movement

patterns), a simple mapping approach can introduce too much

overheads and thus is not the best choice in dealing with

different situations.

A. Related Work

Peer-to-Peer (P2P) is a decentralized way of networking

in which network participants have equal responsibilities and

capabilities. Distributed Hash Table (DHT) based P2P systems

[19], [20] are well known for their efficiency in the storing and

searching of data items. In DHT, an object is mapped to an

ID through a one way hash function. DHT has been widely

used in distributed data storage and look up on the Internet,

which is considered to be able to provide reliable and fast

connections between any two nodes. With only neighboring

connections among nodes, the distributed data storage and

look up in MANET is different from the DHT substrate on the

Internet. There are several protocols [10], [11], [15] dealing

with distributed data storage in MANET. In [10], the authors

proposed the idea of a mobile structured peer to peer network,

called Mobile Hash Table (MHT) to facilitate data storage and

look up. In MHT, every node is assumed to know its moving

trajectory and a data item is mapped to a tuple (position,

direction, speed). This data item is further stored at a node

with the “closest matching” pattern. When this node moves

out of the circle with radius half its communication range and

with center a data item’s matching position, the data item has

to be moved to another node. As shown in Figure 1, a data

item with mapping location d has to be stored in, e.g., node

a within r

2
(r is communication range) of d such that another

node b can find the data item when it comes within r

2
of the

mapped location. In [11], the authors proposed MPI, another

location based information sharing mechanism in MANET. In

MPI, a data item is always kept by the owner and relevant

look up information on the data item needs to be updated

accordingly when the owner moves around. MPI uses equal

sized lower level squares to hierarchically divide the upper

level squares. The lowest level squares are called grid cells,

with side length r√
2
(r is node communication range). In this

scheme, a node shares its data item with others by publishing

its data item and location information, starting from its grid

cell, level by level up until the top level. A data item look up

process works first in a bottom up fashion, by searching lowest

level up to a level where information of the data item can be

found, then from this level sends data item request down to the

lowest level location. Both MHT and MPI use GPSR [9] as

the underlying routing protocol. In [15], the authors proposed

a DHT substrate in MANET, which is a combination of DSR

[7] and Pastry [17]. However, it can not scale well when the

number of nodes increases. According to the mapping schemes

in [10] and [11], existing location based mechanisms would

not work properly when the area of a region is very large, the

number of nodes is small or when the nodes are not uniformly

distributed. MPI can not scale well and is fragile when lots of

source nodes move around.

/2

r

r
r

d
a b

Fig. 1: MHT data item storage

B. Contributions and Organization of the Paper

In this paper, we propose Cell-based Hash (mapping) Table

(CHT), a novel Distributed Storage scheme in DTN. CHT

maps a data item to a region, called cell. Cells are defined

in such a way that node movements inside cells are far more

frequent than the node movements crossing cell borders. CHT

mapping works in a hierarchical manner. When a node wants

to store a data item, it first needs to map this data item to the

highest layer (level) cell where the data item should be placed.

This data item is mapped either layer by layer down to the

lowest level cell using only local information, or to a certain

layer cell which is different from the cell of source node where

the mapping stops. Then the data item is routed towards the

available different cell by using DTN routing protocols, e.g.,

GLR [6] algorithm. Once it reaches a node in that cell, this

node can then further map it down to a lower layer. A data

item is mapped and stored at a node in the lowest level cell.

Data item look up request mapping works in the same way.

Location diffusion is only performed in the lowest level cell

or at most in several upper layers, no global location diffusion

is needed to reduce the storage overhead.

We present the formal algorithm and compare it with MHT

[10] (using DTN routing protocol instead of GPSR [9]) and

show that it is advantageous in communication overheads,

delays and data item storage success ratios.

The rest of the paper is organized as follows. Section II

elaborates on our proposed solutions. Section III describes

the details of experiments and analysis. Section IV concludes

with possible future work.

II. DISTRIBUTED STORAGE ALGORITHM

We propose the idea of using distributed peer-to-peer (P2P)

solution to counter network disruption (delay), without relying

on centralized network servers or super nodes.

Our proposed solutions use a mapping function f(name) →
cell (we use the same symbol f in the following paper which

may take different parameters) to facilitate distributed data

item storage and look up. A data item first maps to a cell,

then from a cell maps to a node in the cell. If a one to many

mapping is necessary, the mapping cells (or nodes) are better

distributed evenly to counter network delay and disruptions.

The mapping function f(name) → cell is also required to

map a node name to a cell.

A. Delay-Tolerant Distributed Storage and Look up

1) Network Partitioning: In the proposed solution, network

regions are divided into cells (regions). Cells may be flat or

with multiple layers and are not necessary to cover whole area

(gaps are allowed if it is impossible that there will be nodes

in these gaps). Nodes can define their own cells with variable

size. The random sized area description can be stored in an

approximate way to save the storage space. Region definition

is a slow changing mechanism. Once the border of a region

changes, this information is broadcasted to all other regions

in the same layer, within the same upper region. A node

does not need detailed global information to communicate

with nodes in faraway places. In this way, local information

(with very limited global information) is used to achieve

global communication without relying on centralized nodes

in the proposed solution. A node outside a region can use the

mapping function f(name) → region to find the region of

interest and a node inside this region can use mapping function

f(name) → ID to locate the node which is responsible for

storing the data item with corresponding name. As a special

case, network may be divided in a way that cells can follow

some specified shapes (e.g., hexagon, rectangle etc.), where the

required storage space for area description is greatly reduced.

There are two ways for network partitioning. The first one

makes use of existing or predicted network characteristics. If

there are high probabilities that nodes will move within certain

areas, then the network partitions can be made based on this

information, using either a flat (one layer) or a hierarchical

structure, depending on the network size. In DTN, there are

works on model based [4] and history based [12] routing

protocols. Model and history statistical information can also

be used in cell formation process. The second way works au-

tonomously. Nodes will try to formulate their cells depending

on the network evolving process, by gradually accumulating

the network statistical information, from local neighbors to

faraway nodes. When nodes tend to move within their specific

areas (regions) with high probability, a cell based data storage

scheme is more robust with less message exchange overhead.

Only when a node moves out of a cell, will message exchanges

be necessary.

2) Layering: Layered regions are necessary when there are

too many nodes distributed in a vast area. In the layered cell

approach, the mapping function is f (t, name, parameter1,

parameter2, ..., parametern−1)→ lowest layer cell,

where the network has n layers with layer1 the top layer,

t is time, name is the data item (or node) name and

parameteri is a layer specific parameter. The mapping func-

tion f(t, name, parameteri) → layeri+1 means that by

using layer specific parameter, a name could be mapped to

a lower layer at time t. This mapping parameter may only

need to be kept in layeri, within the framework of the upper

layer. The boundary of a region in layeri is specified in a way

that less nodes movement across region boundary will happen,

compared with nodes movement inside the corresponding

region. In the proposed solution, the higher the layer, the

less possible boundary would need change. It is apparent that

most of the time lower layer local change would not affect

faraway nodes in this way. Assume each layer cell has m sub-

cells and the storage space for mapping related information

(cell description) is the same, then a node only needs to store

n + m − 2 items of mapping information, rather than mn−1

items of mapping related information.

3) CHT with DHT: The proposed solution of distributed

storage which uses P2P mechanism is called Cell-based Hash

Table (CHT). In CHT, a cell is divided in a single layer if

the area and nodes number is small and multiple layers are

adopted if nodes number and its corresponding areas are large.

In CHT, cells are used for data storage. Inside the lowest level

cell, a data item is mapped to a node (or nodes if a one to

many mapping is used) with closest matching ID(s) in the

cell. Some existing DHT protocols [17], [19] can be used if

nodes move within their cells with high probability, with the

consideration that accurate data item to node mapping may

not be complete because of the nature of DTN. A node with a

specific data item will handover the item to another node in the

cell when it moves out (crossing lowest cell border). If there

is high probability that nodes will move across cell borders,

then a simple balanced storage mechanism (e.g., only balance

the number of data items stored at nodes without using DHT)

may be a good choice.

The combination of CHT with DHT limits the use of DHT

overlay to a small scale within the lowest layer cell. If the

probability of nodes moving within their cells is very high,

we would suggest the use of exact DHT substrate (e.g., Chord

protocol in [19]). To further improve routing efficiency, we

propose the use of Mchord (modified chord) if the underlying

DTN routing protocol is GLR. In our Mchord scheme, a data

item is mapped to an ID and it is supposed to be stored at

a node with closest ID to its own. If a node which stores

the data item meets a neighboring node with a closer ID to

the data item, it will give this data item to its neighbor. In

Figure 2, when node 1 which has a data item with ID 26 meets

another node 15, it will give this data item to node 15 because

|26 − 15| < |26 − 1|. There are two modes in our approach,

one is reactive and the other is proactive. In reactive mode,

data item and look up request are only sent to a neighboring

node when the neighbor is closer to the stored data item ID (or

request ID). While in proactive mode, a data item or request

is always routed to a node with closest ID according to the

local knowledge of a node. Depending on the priority of the

data item or request, the reactive or proactive mode can be

selected.

1
15

60

61

21
33

50

M
26

request
26

32

request
request

26
26

(26)

(26)

(26)(26)

Fig. 2: Mchord storage and look up

4) Mapping: Two different rules exist for data items and

nodes. A data item should stay at its mapping cell(s), while

a node is allowed to move around. If nodes move faster,

both CHT and DHT mapping should only be loosely coupled

to reduce frequent message exchange overhead (due to cell

changes of nodes). If nodes are relatively stable, mapping

could be accurately coupled. For a node crossing multiple

regions (large or small), it either can treat the mapping location

as its home location and check regularly (when it requests a

data item at that original location), or its ID can be mapped to

more regions (large or small) and thus the reply for a request

should be sent to multiple mapping regions. The extreme

situation is one cell, then it is the same as traditional P2P.

5) Storage with Multiple Copies Option: We define the

traffic hub (the point where most cell communication will pass

through) in a cell as the cell center. When a data item (or

request) message forwarding is necessary, this message will

first be sent to a node in the cell with the shortest distance

to the destination cell center. In Figure 3, when node a1 in a

layer1 cell with center c1 has a data item for another layer1

cell with center c2, it needs to route the data item towards c2.
However, once the data item enters into the layer1 cell with

center c2 and stores at node a2, a2 will decide the layer2 cell

with center c′ where this data item should be placed. Similarly,

a node a3 in layer2 cell with center c′ will decide the layer3

cell, where the data item will finally be stored at a node d.

In CHT with Mchord, a data item can always be kept by a

matching node so long as this node moves within the mapping

cell. When a node stores a data item whose mapping ID is

the same as its ID, there is no need to switch this data item

with other nodes unless it leaves a cell. Even if a node stores

a data item whose mapping ID does not equal to its ID, it

a1

a2

c1

c2

c’
a3

d

Layer1

Layer3

Layer2

Fig. 3: Multiple layer storage

would not give this data item to other nodes unless another

node with closer ID to the data item is found. When two nodes

have the same distance (|node ID - data item mapping ID|),
the node with smaller ID is chosen as the store node. This

process converges to the node with the closest matching ID

to the data item. In MHT however, a data item needs to be

frequently exchanged among nodes because of the nature of

mobility and its mapping mechanism. Due to the above reason,

the maintenance overhead of CHT is less than that of MHT.

Multiple copies approach can be used in the proposed

DTN P2P storage. In traditional P2P network, some protocols

have proposed multiple copies approach. DKS(N, K, f) (f is

replication factor) [3] and Tapestry [20] (Prefix routing) are

two of them. The need of multiple copy approach is further

necessary because of the characteristics of the DTN. The

number of duplicate copies depends on the moving patterns

of nodes.

6) Look Up: When a node performs data look up, it first

maps the data item to a cell identifier (certain layer), and

then use any possible connections to route its request towards

this cell according to the look up mapping. The nodes in that

certain layer further maps the data item look up into its sub-

layer and forwards the look up. If mapping is loosely coupled,

data item look up should be performed in the following order:

first the mapping node in the cell, then any other node in the

cell which has the data item and finally, nodes in surrounding

cells should be checked. For nodes in a cell, if they perform

P2P storage, their view of network may be incomplete. So

counter measures in look up are necessary even if accurate

mapping is adopted. A step by step option similar to the

loosely coupled situation should also be used.

In DTN, data item look up uses the closest node to the cell to

store request upon partition. It will be kept in a node that does

not have a closer neighbor to the cell temporarily. Alternative

ways (e.g., face routing) can also be used to send the look up

request to the cell. In a certain region, it is possible that lots of

nodes will move out. A few other nodes will have to store all

the data items temporarily. When other nodes join again, these

nodes will distribute data to the new joining nodes. Another

alternative for nodes is to keep data items while away if they

will for sure come back, so as to save some data exchange

cost. Generally speaking, it is allowed to store data item at

surrounding regions of a mapped region. Data item request is

also allowed to be saved at surrounding regions, provided that

they are finally directed to a certain region, and matching is

found, it is fine. The delay in DTN is unavoidable.

To accelerate data look up, cache may be used. Nodes use

cache to temporarily store their newly forwarded data items. If

a new request matches one of the data items in the cache, no

further look up is needed. However, the cache size can not be

large. There are tradeoffs between cache size and the number

of stored messages.

If nodes move out of their initial cells (nodes in cells could

change cells as they wish), the initial cells work as relays

(routers) for these (look up source) nodes. If a cell is empty

temporarily, any information (look up request or returned data

item) destined for it is kept at nodes that are surrounding the

empty cell. Cell size does not necessarily need to be the same,

so long as they cover the necessary communication area.
7) Location Diffusion: We assume nodes know their loca-

tion and time. For every node, its description could be a tuple

(location, time, movement pattern). When nodes meet each

other, they will exchange (location, time) pairs. If there are

multiple layer cells, all nodes in a lowest level cell report and

store each other’s location together with time stamp through

location diffusion. In case there are two location reports

concerning one node, the newer report prevails. This location

information provides a node with an overall picture of who is

in the lowest layer cell and can be used in the data storage

and look up process.

B. Analysis of Multiple Copies Approach

Multiple copies approach is useful in accelerating data

item storage and look up. In order to optimize the algo-

rithms and protocols, we calculate the complexity of mul-

tiple copies approach. Assume every step uses an equal

sized time interval T , a node is in the same state (alive

or die in a certain cell) at every step and the probability

p = Pr[a node is alive over time interval T]. We

store a data item in s nodes and calculate the probability

Pr[item still exists in a node after k steps]. If the

probability that a node is alive is p, then the probability that a

node either dies or moves out (of a cell) is 1−p. If s copies are

stored at nodes, the probability that an item exists in at least a

node after k steps is 1− [(1 + p + p2 + ... + pk−1)(1− p)]s =
1 − (1 − pk)s. We use OCTAVE [1] to plot this probability

with varying k, s.

We plot a figure with 0 to 20 steps and 0 to 20 duplicate

copies. The node alive probability is 0.9 (Figure 4). It is clear

that with multiple copies approach, the probability that at least

a data item will stay in a cell is still very high even after 20

steps.

C. Operational Procedures

The proposed solution can be used in DTN applications,

which include data item publication and storage, specific data

probability 0.9

0

5

10

15

20

number of steps k

0

5

10

15

20

number of copies s

0

0.2

0.4

0.6

0.8

1

probability

Fig. 4: Multiple copies with 0.9 alive probability

item look up and data item browsing. A node can publish

its own data item and store it in DTN using CHT. If a node

knows the name of the data item, it can map it to the specific

cell (region) according to the working procedure of CHT. It is

still possible that a node wants to browse available names of

data items and find its own item of interest. In this case, we

introduce a special type of name, called item inventory, which

stores available data items. This name is reserved and can be

mapped to a cell, just as other data item mappings. However,

we emphasize that this inventory may not be complete in DTN.

A record in the data item inventory includes the name and

the data item description. Due to the distributed nature of the

protocol, any inventory mainly stores data items in its locality

(or a few faraway data items according to its own decision).

III. EXPERIMENTAL EVALUATION

In order to evaluate our CHT distributed storage strategy,

we perform simulations to compare CHT with MHT. During

the experiments, we pay great attention to the key attributes,

including maintenance overheads, data item storage latency,

and storage success ratios.

A. Simulation Environment

The CHT is implemented using the NS-2 [2] simulator. This

simulation environment includes full simulation of the IEEE

802.11 physical and MAC layers, which makes the simulation

better reflect the real world. A random waypoint model is

chosen as the motion pattern. For the propagation model, we

have chosen Two Ray Ground which considers both the direct

path and a ground reflection path. The simulation parameters

are shown in Table I.

Through simulation, we show that data item maintenance

overheads are significantly reduced if a data item is mapped

to a cell instead of mapping to a location point. The delay

performance and storage success ratios for storing a data item

in a cell in CHT are also better than those in MHT.

For the simulation results, all points in the figures, as

well as numbers in the tables are obtained as an average of

10 different runs with 10 different network topologies and

TABLE I: Parameters of the simulations.

Parameter Value

Number of mobile nodes 50

Mobility 0-20m/s(uniform distribution)

Transmission range 100m

Data rate 1 Mbps

Propagation model Two Ray Ground

Simulation time 1000 seconds

Link layer queue length 150

Topology size 1500m×300m

Pause time 0 seconds

Packet payload size 1000 bytes

Antenna model OmniAntenna

movement patterns. The confidence intervals for the numbers

are calculated at 95% confidence level.

B. Single Cell Data Storage and Maintenance

We implement CHT with Mchord proactive mode on top of

GLR routing protocol (GLR single copy approach is used for

accurate maintenance overhead calculation). Although initially

we want to compare CHT with original MHT which works

on top of GPSR routing protocol, simulation results show that

the original MHT can only achieve 6%±2% successful data

item storage ratio. As a result, MHT on top of GLR is also

implemented for comparison with our proposed solution. We

store 20 data items at each scenario in both CHT and MHT.

Our simulation results show that CHT experiences significant

less data item handovers compared with that of MHT (one

handover means from source node to the mapping node or

from one qualified store node to another qualified store node),

as shown in Figure 5. Table II shows the average data item

storage delay (the latency when a data item first reaches a

qualified storage node). It is clear that storage delay in CHT

is also less than that of MHT. In the simulation, all data items

have been properly stored at their storage sites in CHT while

the success ratio in MHT is only 91.5%±4.85%.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
D

a
ta

 I
te

m
 H

a
n

d
o

v
e

rs

 Time (seconds)

CHT vs. MHT Data Item Storage Overhead

 CHT
MHT

Fig. 5: Single cell storage maintenance overhead

TABLE II: Data Item Storage Delay

Protocol Delay (seconds)

CHT 15.07 ± 2.14

MHT 81.92 ± 14.65

C. CHT Multiple Cell

Furthermore, we evaluate the multiple cell storage in CHT.

Since MHT maps data items to locations, it does not consider

multiple cells and works in the same way throughout the

simulation. We divide the topology area into 9 cells with

100m×500m cell size and 5 nodes in each cell. So 90%

nodes move within cells and 10% move globally. We assume

rectangle centers as cell centers.

The simulation results clearly show that our multiple cell

mapping scheme also significantly reduces the data item ex-

change overhead. Similar to the single cell situation, the longer

the time, the more savings can be observed when compared

with MHT. Since there are nodes which move globally and

data items should be kept at their mapping cells, data item

handovers exist over time in CHT, as shown in Figure 6.

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
D

a
ta

 I
te

m
 H

a
n

d
o

v
e

rs

 Time (seconds)

CHT vs. MHT Data Item Storage Overhead

 CHT
MHT

Fig. 6: Multiple cell storage maintenance overhead

IV. CONCLUSIONS

We have proposed a novel distributed data storage mech-

anism in DTN, called Cell-based Hash Table (CHT). CHT

use cells (flat or hierarchical) to divide regions and cells are

divided in such a way that nodes inside a cell have high

probability of moving within. A data item is mapped to a

lowest level cell by using local information and it is further

stored at a node according to a modified chord mechanism

(or DHT). Due to the use of CHT, data storage maintenance

overheads are greatly reduced in DTN. Through simulation,

we have shown that our scheme has less storage maintenance

overheads with higher success ratios and less delays when it is

compared with MHT storage mechanism. As future work, we

plan to further study our CHT protocol, exploring the efficient

distributed cell formation process in DTN.

REFERENCES

[1] GNU OCTAVE, http://www.gnu.org/software/octave/, Accessed Decem-
ber 16, 2009.

[2] The Network Simulator, NS-2, http://www.isi.edu/nsnam/ns/, Accessed
July 8, 2008.

[3] L. Alima, S. El-Ansary, P. Brand, and S. Haridi, “DKS (N, k, f): A
Family of Low Communication, Scalable and Fault-Tolerant Infrastruc-
tures for P2P Applications,” in Proceedings of the 3st International

Symposium on Cluster Computing and the Grid, pp. 344–350, IEEE
Computer Society. 2003.

[4] C. Becker and G. Schiele, “New mechanisms for routing in ad hoc
networks through world models,” Proceedings of the 4th CaberNet

Plenary Workshop, Pisa, Italy, 2001.
[5] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott,

and H. Weiss, “Delay-tolerant networking: an approach to interplanetary
Internet,” Communications Magazine, IEEE, vol. 41, no. 6, pp. 128–136,
2003.

[6] J. Du, E. Kranakis, and A. Nayak, “A Geometric Routing Protocol
in Disruption Tolerant Network,” in Proceedings of 6th Workshop on

Wireless Ad hoc and Sensor Networks (WWASN2009), June 22, 2009,

(ICDCS Workshops 2009, June 22-26), pp. 109–116. Montreal, Canada.
[7] D. Johnson, D. Maltz, J. Broch, et al., “DSR: The dynamic source

routing protocol for multi-hop wireless ad hoc networks,” Ad hoc

networking, vol. 5, pp. 139–172, 2001, Citeseer.
[8] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein,

“Energy-efficient computing for wildlife tracking: design tradeoffs and
early experiences with ZebraNet,” ACM SIGPLAN Notices, vol. 37,
no. 10, pp. 96–107, 2002, ACM Press New York, NY, USA.

[9] B. Karp and H. Kung, “GPSR: greedy perimeter stateless routing
for wireless networks,” Proceedings of the 6th annual international

conference on Mobile computing and networking, pp. 243–254, 2000,
ACM Press New York, NY, USA.

[10] O. Landsiedel, S. Gotz, and K. Wehrle, “Towards scalable mobility in
distributed hash tables,” in Proceedings of the Sixth IEEE International

Conference on Peer-to-Peer Computing, pp. 203–209, IEEE Computer
Society. 2006.

[11] M. Li, W. Lee, and A. Sivasubramaniam, “Efficient peer-to-peer in-
formation sharing over mobile ad hoc networks,” in Second Workshop

on Emerging Applications for Wireless and Mobile Access (MobEA II),

in conjunction with the World Wide Web Conference (WWW), Citeseer.
2004.

[12] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in inter-
mittently connected networks,” ACM SIGMOBILE Mobile Computing

and Communications Review, vol. 7, no. 3, pp. 19–20, 2003, Springer.
[13] P. Marshall, “The disruption tolerant networking program,” 2005. http:

//www.darpa.mil/sto/solicitations/DTN/briefs.htm, Accessed March 30,
2009.

[14] A. Pentland, R. Fletcher, and A. Hasson, “DakNet: Rethinking Connec-
tivity in Developing Nations,” IEEE Computer, vol. 37, no. 1, pp. 78–83,
2004.

[15] H. Pucha, S. Das, and Y. Hu, “Ekta: An efficient DHT substrate
for distributed applications in mobile ad hoc networks,” Proceedings

of the 6th IEEE IEEEWorkshop on Mobile Computing Systems and

Applications (WMCSA), pp. 163–173, 2004.
[16] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and

F. Yu, “Data-centric storage in sensornets with GHT, a geographic hash
table,” Mobile networks and applications, vol. 8, no. 4, pp. 427–442,
2003, Springer.

[17] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” Lecture Notes
in Computer Science, pp. 329–350, 2001, Springer.

[18] A. Savvides, C. Han, and M. Strivastava, “Dynamic fine-grained local-
ization in Ad-Hoc networks of sensors,” Proceedings of the 7th annual

international conference on Mobile computing and networking, pp. 166–
179, 2001.

[19] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Network-

ing (TON), vol. 11, no. 1, pp. 17–32, 2003, IEEE Press.
[20] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,

“Tapestry: A resilient global-scale overlay for service deployment,”
IEEE Journal on selected areas in communications, vol. 22, no. 1,
pp. 41–53, 2004, Citeseer.

