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Problem Definition

Given a geometric graph in d-dimensional space, it is useful to preprocess it so that
distance queries, exact or approximate, can be answered efficiently. Algorithms that
can report distance queries in constant time are also referred to as “distance oracles”.
With unlimited preprocessing time and space, it is clear that exact distance oracles
can be easily designed. This entry sheds light on the design of approximate distance
oracles with limited preprocessing time and space for the family of geometric graphs
with constant dilation.
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Notation and Definitions If p and q are points in Rd, then the notation |pq| is
used to denote the Euclidean distance between p and q; the notation δG(p, q) is used
to denote the Euclidean length of a shortest path between p and q in a geometric
network G. Given a constant t > 1, a graph G with vertex set S is a t-spanner for
S if δG(p, q) ≤ t|pq| for any two points p and q of S. A t-spanner network is said
to have dilation (or stretch factor) t. A (1 + ε)-approximate shortest path between
p and q is defined to be any path in G between p and q having length ∆, where
δG(p, q) ≤ ∆ ≤ (1 + ε)δG(p, q). For a comprehensive overview of geometric spanners,
see the book by Narasimhan and Smid [14].

All networks considered in this entry are simple and undirected. The model of
computation used is the traditional algebraic computation tree model with the added
power of indirect addressing. In particular, the algorithms presented here do not use
the non-algebraic floor function as a unit-time operation. The problem is formalized
below.

Problem 1 (Distance Oracle). Given an arbitrary real constant ε > 0, and a ge-
ometric graph G in d-dimensional Euclidean space with constant dilation t, design a
data structure that answers (1+ε)-approximate shortest path length queries in constant
time.

The data structure can also be applied to solve several other problems. These
include (a) the problem of reporting approximate distance queries between vertices in
a planar polygonal domain with “rounded” obstacles, (b) query versions of closest pair
problems, and (c) the efficient computation of the approximate dilations of geometric
graphs.

Survey of Related Research The design of efficient data structures for answer-
ing distance queries for general (non-geometric) networks was considered by Thorup
and Zwick [17] (unweighted general graphs), Baswanna and Sen [3] (weighted general
graphs, i.e., arbitrary metrics), and Arikati et al. [2] and Thorup [16] (weighted planar
graphs).

For the geometric case, variants of the problem have been considered in a number
of papers (for a recent paper see, for example, Chen et al. [5]). Work on the approximate
version of these variants can also be found in many articles (for a recent paper see, for
example, Agarwal et al. [1]). The focus of this entry are the results reported in the work
of Gudmundsson et al. [10; 11; 12; 13]. Similar results on distance oracles were proved
subsequently for unit disk graphs [7]. Practical implementations of distance oracles in
geometric networks have also been investigated [15].

Key Results

The main result of this entry is the existence of approximate distance oracle data
structures for geometric networks with constant dilation (see Theorem 4 below). As
preprocessing, the network is “pruned” so that it only has a linear number of edges.
The data structure consists of a series of “cluster graphs” of increasing coarseness each
of which helps answer approximate queries for pairs of points with interpoint distances
of different scales. In order to pinpoint the appropriate cluster graph to search in for
a given query, the data structure uses the bucketing tool described below. The idea
of using cluster graphs to speed up geometric algorithms was first introduced by Das
and Narasimhan [6] and later used by Gudmundsson et al. [9] to design an efficient
algorithm to compute (1 + ε)-spanners. Similar ideas were explored by Gao et al. [8]
for applications to the design of mobile networks.
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Pruning If the input geometric network has a superlinear number of edges, then the
preprocessing step for the distance oracle data structure involves efficiently “pruning”
the network so that it has only a linear number of edges. The pruning may result in
a small increase of the dilation of the spanner. The following theorem was proved by
Gudmundsson et al. [12].

Theorem 1. Let t > 1 and ε′ > 0 be real constants. Let S be a set of n points in Rd,
and let G = (S,E) be a t-spanner for S with m edges. There exists an algorithm to
compute in O(m+ n log n) time, a (1 + ε′)-spanner of G having O(n) edges and whose
weight is O(wt(MST (S))).

The pruning step requires the following technical theorem proved by Gudmundsson et
al. [12].

Theorem 2. Let S be a set of n points in Rd, and let c ≥ 7 be an integer constant. In
O(n log n) time, it is possible to compute a data structure D(S) consisting of:

1. a sequence L1, L2, . . . , L` of real numbers, where ` = O(n), and

2. a sequence S1, S2, . . . , S` of subsets of S such that
∑`

i=1 |Si| = O(n),

such that the following holds. For any two distinct points p and q of S, it is possible
to compute in O(1) time an index i with 1 ≤ i ≤ ` and two points x and y in Si such
that (a) Li/n

c+1 ≤ |xy| < Li, and (b) both |px| and |qy| are less than |xy|/nc−2.

Despite its technical nature, the above theorem is of fundamental importance to
this work. In particular, it helps to deal with networks where the interpoint distances
are not confined to a polynomial range, i.e., there are pairs of points that are very close
to each other and very far from each other.

Bucketing Since the model of computation assumed here does not allow the use
of floor functions, an important component of the algorithm is a “bucketing tool”
that allows (after appropriate preprocessing) constant-time computation of a quantity
referred to as BIndex, which is defined to be the floor of the logarithm of the interpoint
distance between any pair of input points.

Theorem 3. Let S be a set of n points in Rd that are contained in the hypercube
(0, nk)d, for some positive integer constant k, and let ε be a positive real constant. The
set S can be preprocessed in O(n log n) time into a data structure of size O(n), such
that for any two points p and q of S, with |pq| ≥ 1, it is possible to compute in constant
time the quantity BIndexε(p, q) = blog1+ε |pq|c.

The constant-time computation mentioned in Theorem 3 is achieved by reducing
the problem to one of answering least common ancestor queries for pairs of nodes in a
tree, a problem for which constant-time solutions were devised most recently by Bender
and Farach-Colton [4].

Main Results Using the bucketing and the pruning tools, and using the algorithms
described by Gudmundsson et al. [13], the following theorem can be proved.

Theorem 4. Let t > 1 and ε > 0 be real constants. Let S be a set of n points in Rd,
and let G = (S,E) be a t-spanner for S with m edges. The graph G can be preprocessed
into a data structure of size O(n log n) in time O(mn log n), such that for any pair of
query points p, q ∈ S, it is possible to compute a (1 + ε)-approximation of the shortest-
path distance in G between p and q in O(1) time. Note that all the big-Oh notations
hide constants that depend on d, t and ε.
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Additionally, if the traditional algebraic model of computation (without indirect ad-
dressing) is assumed, the following weaker result can be proved.

Theorem 5. Let S be a set of n points in Rd, and let G = (S,E) be a t-spanner
for S, for some real constant t > 1, having m edges. Assuming the algebraic model
of computation, in O(m log log n + n log2 n) time, it is possible to preprocess G into a
data structure of size O(n log n), such that for any two points p and q in S, a (1 + ε)-
approximation of the shortest-path distance in G between p and q can be computed in
O(log log n) time.

Applications

As mentioned earlier, the data structure described above can be applied to several
other problems. The first application deals with reporting distance queries for a planar
domain with polygonal obstacles. The domain is further constrained to be t-rounded,
which means that the length of the shortest obstacle-avoiding path between any two
points in the input point set is at most t times the Euclidean distance between them.
In other words, the visibility graph is required to be a t-spanner for the input point
set.

Theorem 6. Let F be a t-rounded collection of polygonal obstacles in the plane of
total complexity n, where t is a positive constant. One can preprocess F in O(n log n)
time into a data structure of size O(n log n) that can answer obstacle-avoiding (1 +
ε)-approximate shortest path length queries in time O(log n). If the query points are
vertices of F , then the queries can be answered in O(1) time.

The next application of the distance oracle data structure includes query versions of
closest pair problems, where the queries are confined to specified subset(s) of the input
set.

Theorem 7. Let G = (S,E) be a geometric graph on n points and m edges, such
that G is a t-spanner for S, for some constant t > 1. One can preprocess G in time
O(m + n log n) into a data structure of size O(n log n) such that given a query subset
S ′ of S, a (1 + ε)-approximate closest pair in S ′ (where distances are measured in G)
can be computed in time O(|S ′| log |S ′|).

Theorem 8. Let G = (S,E) be a geometric graph on n points and m edges, such
that G is a t-spanner for S, for some constant t > 1. One can preprocess G in time
O(m + n log n) into a data structure of size O(n log n) such that given two disjoint
query subsets X and Y of S, a (1 + ε)-approximate bichromatic closest pair (where
distances are measured in G) can be computed in time O((|X|+ |Y |) log(|X|+ |Y |)).

The last application of the distance oracle data structure includes the efficient compu-
tation of the approximate dilations of geometric graphs.

Theorem 9. Given a geometric graph on n vertices with m edges, and given a constant
C that is an upper bound on the dilation t of G, it is possible to compute a (1 + ε)-
approximation to t in time O(m+ n log n).

Open Problems

Two open problems remain unanswered.
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1. Improve the space utilization of the distance oracle data structure from O(n log n)
to O(n).

2. Extend the approximate distance oracle data structure to report not only the ap-
proximate distance, but also the approximate shortest path between the given query
points.
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