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Abstract

A metric space has doubling dimension d if for every ρ > 0, every
ball of radius ρ can be covered by at most 2d balls of radius ρ/2. This
generalizes the Euclidean dimension, because the doubling dimension
of Euclidean space Rd is proportional to d. The following results are
shown, for any d ≥ 1 and any metric space of size n and doubling
dimension d: First, the maximum number of diametral pairs is Θ(n2).
Second, if d = 1, the maximum possible weights of the minimum span-
ning tree and the all-nearest neighbors graph are Θ(R log n) and Θ(R),
respectively, where R is the minimum radius of any ball containing all
elements of the metric space. Finally, if d > 1, the maximum possible
weights of both the minimum spanning tree and the all-nearest neigh-
bors graph are Θ(Rn1−1/d). These results show that, for 1 ≤ d ≤ 3,
metric spaces of doubling dimension d behave differently than their
Euclidean counterparts.

1 Introduction

Let S be a set of n points in Rd, where d ≥ 1 is a constant. Let G be a graph
with vertex set S, in which the weight of any edge (p, q) is defined to be the
Euclidean distance |pq| between p and q. The weight wt(G) of G is defined
to be the sum of the weights of the edges in G.
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We are interested in the maximum values (over all sets of n points) of the
number of diametral pairs, the weight of the minimum spanning tree, and
the weight of the all-nearest neighbors graph.

Diametral pairs: The diameter of S is defined to be the maximum dis-
tance between any pair of points in S. Two points p and q in S form a
diametral pair, if |pq| is equal to the diameter of S. Let DP(S) be the num-
ber of diametral pairs in the set S. Obviously, DP(S) = 1 if d = 1. If d = 2,
the maximum possible value of DP(S) is n, whereas if d = 3, the maximum
possible value is 2n − 2. If d ≥ 4, the value of DP(S) can be as large as
Θ(n2). For proofs of these claims, see Chapter 13 in Pach and Agarwal [5].

Minimum spanning tree: If S is contained in the d-dimensional cube
[0, L]d, then the weight wt(MST (S)) of its minimum spanning tree MST (S) is
O(n1−1/dL). This result was first shown by Few [2]. Subsequently, Smith [7],
and Steele and Snyder [8] gave tighter analyses in terms of the constant
factor in the Big-Oh bound. For the set S consisting of the n vertices on
an n1/d × . . . × n1/d grid with cells having sides of length n−1/dL, we have
wt(MST (S)) = Ω(n1−1/dL). Thus, the above upper bound on wt(MST (S))
is tight.

All-nearest neighbors graph: For any point p in S, let NN S(p) denote
a nearest neighbor of p in S. That is, NN S(p) is a point q in S \ {p} for
which the Euclidean distance |pq| is minimum. The all-nearest neighbors
graph ANN (S) is defined to be the directed graph with vertex set S and
edge set {(p,NN S(p)) : p ∈ S}. Assume again that the point set S is
contained in the cube [0, L]d. Since ANN (S) is a subgraph of MST (S), we
have wt(ANN (S)) = O(n1−1/dL). The grid example given above shows that
this upper bound is tight.

All results mentioned above are valid in the d-dimensional Euclidean
space. A natural question to ask is whether or not similar results hold in an
arbitrary metric space.

Let S be a finite set of elements, called points, that has a distance function
associated with it. This function assigns to any two points p and q in S a
real number |pq|, which is called the distance between p and q. The set S is
called a metric space, if for all points p, q, and r in S,
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1. |pp| = 0,

2. if p 6= q, then |pq| > 0,

3. |pq| = |qp|, and

4. |pq| ≤ |pr|+ |rq|.
The fourth property is called the triangle inequality.

If c is a point in S and R > 0 is a real number, then the ball with center
c and radius R is defined to be the set {p ∈ S : |cp| ≤ R}. The radius of a
subset S ′ of S is defined to be the minimum radius of any ball that contains
S ′. Observe that the center of this ball is not necessarily an element of S ′.

For example, the set S of n points, in which each pair of distinct points has
distance R, is a metric space of radius R. Obviously, we have DP(S) =

(
n
2

)
,

wt(MST (S)) = (n − 1)R, and wt(ANN (S)) = nR. Moreover, these are the
largest possible values in terms of n and R.

Thus, in order to get non-trivial results, we have to consider restricted
classes of metric spaces. In this paper, we consider metric spaces of bounded
doubling dimension, which were introduced by Assouad [1]; see also the book
by Heinonen [4].

Definition 1 Let S be a finite metric space and let λ be the smallest integer
such that the following is true: For each real number ρ > 0, every ball in S
of radius ρ can be covered by at most λ balls of radius ρ/2. The doubling
dimension of the metric space S is defined to be log λ.

Observe that every metric space of n points has doubling dimension at
most log n. Furthermore, it is not difficult to prove that the doubling dimen-
sion of the Euclidean metric in Rd is proportional to d.

In this paper, we prove the following results, for any metric space S
consisting of n points and having doubling dimension d:

1. If d ≥ 1, then DP(S) is Θ(n2) in the worst case. Thus, the maximum
possible value of DP(S) is very different from the corresponding value
in Euclidean space Rd for 1 ≤ d ≤ 3. In fact, we show that, for d = 1,
the maximum possible value of DP(S) is n2/4. For d ≥ 4, the bound
coincides with the corresponding bound for Rd.
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2. If d = 1, then wt(MST (S)) is Θ(R log n) in the worst case, whereas
wt(ANN (S)) is Θ(R) in the worst case. Thus, metric spaces of doubling
dimension 1 behave differently than their one-dimensional Euclidean
counterparts.

3. If d > 1, then both wt(MST (S)) and wt(ANN (S)) are Θ(Rn1−1/d) in
the worst case. Thus, these bounds coincide with the corresponding
bounds for Euclidean space Rd.

Related work: In recent years, metric spaces of bounded doubling dimen-
sion have received a lot of attention in the algorithms literature; see Har-Peled
and Mendel [3] and the references given in that paper. In [3], it was already
observed that these spaces are different from their Euclidean counterparts:
In Euclidean space Rd, the all-nearest neighbors graph can be computed in
O(n log n) time, whereas the worst-case running time becomes Θ(n2) even if
the doubling dimension is equal to 1.

Smid [6] defined the following metric space, based on an earlier example
in [3]: Let S = {p1, p2, . . . , pn} and let 0 < ε < 1 be a real number. For each
i and j with 1 ≤ i ≤ j ≤ n, we define

|pipj| = |pjpi| =




0 if i = j,
4j if i = 1 and j > 1,
4j + ε otherwise.

Then S is a metric space of doubling dimension 1 and radius R = 4n + ε.
We have NN S(p1) = p2 and, for each j with 2 ≤ j ≤ n, NN S(pj) = p1.
Thus, both ANN (S) and MST (S) are equal to the star-graph consisting of
all edges (p1, pj), 2 ≤ j ≤ n. (In contrast, it is well known that in Euclidean
space Rd, the maximum degrees of both these graphs are upper bounded by
a function that depends only on d.) Both wt(ANN (S)) and wt(MST (S)) are
close to 4R/3.

The rest of this paper is organized as follows. In Section 2, we prove
the upper bounds on DP(S), wt(ANN (S)), and wt(MST (S)), for any finite
metric space of doubling dimension d. The proofs will be by induction on
the number of points in S. Some care has to be taken, because the doubling
dimension d′ of a subset of S may be larger than d. We show that d′ is always
at most 2d.
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In Section 3, we prove that the upper bounds in Section 2 are tight. The
lower bounds for DP(S), wt(ANN (S)), and wt(MST (S)) are in fact obtained
by one single class of metric spaces.

We conclude in Section 4 by presenting some more results that show that
metric spaces of doubling dimension 1 are very different than the Euclidean
space R1.

2 The upper bounds

We start by showing that DP(S) ≤ n2/4 for every metric space S of size n
and doubling dimension 1. The proof uses the following lemma which states
that in any isosceles triangle, the base is shorter than the two sides of equal
length.

Lemma 1 Let S be a finite metric space of doubling dimension 1, and let
p, q, and r be three pairwise distinct points in S such that |pq| = |pr|. Then
|qr| < |pq|.
Proof. The proof is by contradiction. Let p, q, and r be a “smallest” triple
of points for which the lemma does not hold. That is, let ` be the smallest
real number such that there exist three points p, q, and r in S such that
` = |pq| = |pr| and |qr| ≥ `.

Let B be the ball with center p and radius `. Observe that B contains
the points p, q, and r. Since S has doubling dimension 1, we can cover B by
two balls B1 and B2 centered at c1 and c2, respectively, and having radius
`/2. We may assume without loss of generality that p is contained in B1.

Let `′ = |qr|. If both q and r are contained in B2, then

`′ = |qr| ≤ |qc2|+ |c2r| ≤ `/2 + `/2 = ` ≤ `′.

It follows that |c2q| = |c2r| = `/2. Since |qr| = ` ≥ `/2, the triple c2, q, and
r forms a “smaller” counterexample to the lemma, which is a contradiction.

Thus, q and r are not both contained in B2. We may assume without
loss of generality that q is contained in B1. We have

` = |pq| ≤ |pc1|+ |c1q| ≤ `/2 + `/2 = `,

which implies that |c1p| = |c1q| = `/2. Since |pq| = ` ≥ `/2, the triple c1,
p, and q forms a “smaller” counterexample to the lemma, which is again a
contradiction.
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Theorem 1 Let S be a metric space of doubling dimension 1 and consisting
of n points. Then DP(S) ≤ n2/4.

Proof. Let R be the diameter of S, let c be a point in S, and let B be
the ball with center c and radius R. Observe that B contains all points of
S. Cover B by two balls B1 and B2, both having radius R/2, and define
S1 = S ∩B1 and S2 = S \ S1.

Assume that S1 contains two points p and q such that |pq| = R. Then,
denoting the center of B1 by c,

R = |pq| ≤ |pc|+ |cq| ≤ R/2 + R/2 = R

and, therefore, |cp| = |cq| = R/2, which contradicts Lemma 1.
Thus, the diameter of S1 is less than R. By the same argument, the

diameter of S2 is less than R. If we denote the size of S1 by m, then it
follows that DP(S) is at most m(n−m). Since the function m(n−m), for
0 ≤ m ≤ n, is maximized when m = n/2, the proof is complete.

The proofs of the upper bounds on the weights of MST (S) and ANN (S)
will be by induction on the size of the metric space S. We have to be careful,
however, because the doubling dimension d′ of a subset S ′ of S may be larger
than the doubling d dimension of S. The reason is that the value of d′ is
determined by only considering balls that are centered at points of S ′.

To give an example, let n = m2 and let S ′ be a metric space of size n,
in which the distance between any two distinct points is equal to 2. The
doubling dimension d′ of S ′ is equal to d′ = log n = 2 log m. Partition S ′

into subsets S ′1, S
′
2, . . . , S

′
m, each consisting of m points. Define S = S ′ ∪

{p1, p2, . . . , pm}, where the pi’s are new points. For each i with 1 ≤ i ≤ m,
and for each q in S ′i, we define |piq| = |qpi| = 1. For any other pair of
distinct points in S, their distance is defined to be 2. Observe that S is a
metric space.

We claim that the doubling dimension d of S is equal to d = log(m + 1).
To prove this claim, let ρ > 0 be a real number and let B be a ball in S
of radius ρ. If ρ ≥ 2, then B is covered by m balls of radius ρ/2, centered
at the points p1, p2, . . . , pm. If 1 ≤ ρ < 2, then B contains at most m + 1
points and, therefore, we can cover B by m + 1 balls of radius ρ/2. Finally,
if ρ < 1, then B is a singleton set and we can cover B by one ball of radius
ρ/2. Thus, d is indeed equal to log(m + 1).
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For large values of m, the ratio d′/d converges (from below) to 2. The
next lemma states that this ratio can never be larger than 2.

Lemma 2 Let S be a finite metric space of doubling dimension d and let S ′

be a non-empty subset of S. Then the doubling dimension of the metric space
S ′ is at most 2d.

Proof. Let c be a point of S ′, let ρ > 0 be a real number, and let B′ =
{p ∈ S ′ : |cp| ≤ ρ}. Thus, B′ is a ball in the metric space S ′. Consider the
corresponding ball B in S, i.e., B = {p ∈ S : |cp| ≤ ρ}. Since S has doubling
dimension d, we can cover B by balls B1, B2, . . . , Bk, all having radius ρ/4,
where k ≤ 22d. For 1 ≤ i ≤ k, let ci be the center of Bi.

If ci ∈ S ′, then we define B′
i to be the ball in S ′ of radius ρ/2 that is

centered at ci. If ci 6∈ S ′ and Bi ∩ S ′ 6= ∅, then we define B′
i to be the ball in

S ′ of radius ρ/2 that is centered at an arbitrary point of Bi ∩ S ′.
We claim that the collection of balls {B′

i : 1 ≤ i ≤ k,Bi ∩ S ′ 6= ∅} cover
the ball B′. To prove this, let p be a point in B′. Then p ∈ B and, thus,
there is an index i such that p ∈ Bi. If ci ∈ S ′, then p ∈ B′

i. Otherwise, let
c′i be the center of B′

i. Since

|c′ip| ≤ |c′ici|+ cip| ≤ ρ/4 + ρ/4 = ρ/2,

it follows that p ∈ B′
i.

Thus, we have covered the ball B′ in S ′ by at most 22d balls (again, in
S ′) of radius ρ/2.

Theorem 2 Let S be a metric space consisting of n points, let d be the
doubling dimension of S, and let R be the radius of S.

1. If d = 1, then wt(MST (S)) ≤ 2R log n.

2. If d > 1, then wt(MST (S)) ≤ 12Rn1−1/d.

Proof. We start by considering the case when d = 1. We will prove the
following claim by induction on the size of V : Let V be a non-empty subset
of S and let RV be the radius of V . Then

wt(MST (V )) ≤ 2RV log |V |. (1)

By taking V = S, this claim will prove the first part of the theorem.
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If V is a singleton set, then (1) obviously holds. Assume that V contains
at least two elements and, further, assume that (1) holds for all non-empty
subsets of S having less than |V | elements. Let B be a ball of radius RV

that contains V . Since the doubling dimension of S is equal to one, we can
cover B by two balls B1 and B2, both having radius RV /2. Note that the
centers of B1 and B2 are not necessarily points of V . Define V1 = V ∩ B1

and V2 = V \ V1. Then both V1 and V2 are non-empty (otherwise, the radius
of V would be less than RV ). Let T be the spanning tree of V consisting of
MST (V1), MST (V2), and one edge joining an arbitrary point of V1 with an
arbitrary point of V2. Let RV1 and RV2 be the radius of V1 and V2, respectively.
Then RV1 ≤ RV /2 and RV2 ≤ RV /2. Since the diameter of V is at most 2RV ,
and by applying the induction hypothesis, we obtain

wt(T ) ≤ 2RV1 log |V1|+ 2RV2 log |V2|+ 2RV

≤ RV (log |V1|+ log |V2|+ 2) .

Since the function − log x is convex for x > 0, and since |V1|+ |V2| = |V |, it
follows that

wt(T ) ≤ RV (log(|V |/2) + log(|V |/2) + 2) = 2RV log |V |.

Since wt(MST (V )) ≤ wt(T ), we have shown that (1) holds for V .
In the rest of the proof, we consider the case when d > 1. We will

prove the following claim, again by induction on the size of V : Let V be a
non-empty subset of S and let RV be the radius of V . Then

wt(MST (V )) ≤ 12RV |V |1−1/d − 12RV . (2)

By taking V = S, this claim will prove the second part of the theorem.
If V is a singleton set, then wt(MST (V )) = RV = 0 and (2) holds.

Assume that V consists of two points p and q. Then wt(MST (V )) = |pq| ≤
2RV . Thus, (2) holds if we can show that 2 ≤ 12 ·21−1/d−12. This inequality
can be rewritten as 7 · 21/d ≤ 12. The latter inequality holds, because d ≥
log 3.

From now on, we assume that V contains at least three elements and (2)
holds for all non-empty subsets of S having less than |V | elements. Let B
be a ball of radius RV that contains V . Since the doubling dimension of S
is equal to d, we can cover B ∩ V by balls B1, B2, . . . , Bk, all having radius
RV /2, where k ≤ 2d. Observe that, since the radius of V is equal to RV , we
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have k ≥ 2. For 1 ≤ i ≤ k, let Vi be the set of points of V that are in the
ball Bi. In case a point of V is contained in more than one ball, we put it
in exactly one subset Vi. Thus, the sets V1, V2, . . . , Vk are pairwise disjoint
and their union is equal to V . We may also assume that none of the sets Vi

is empty. We next claim that we may assume that k ≥ 3. Indeed, if k = 2,
then, since |V | ≥ 3, one of the sets V1 and V2, say V2, contains at least two
points. We partition V2 into two disjoint non-empty subsets, which we call
V2 and V3, and, thus, we can set k = 3.

Let i be an index with 1 ≤ i ≤ k, and let RVi
be the radius of the set Vi.

Then RVi
≤ RV /2. By the induction hypothesis, we have

wt(MST (Vi)) ≤ 12RVi

(|Vi|1−1/d − 1
)
.

Since |Vi|1−1/d − 1 ≥ 0, it follows that

wt(MST (Vi)) ≤ 6RV

(|Vi|1−1/d − 1
)
.

For each i with 1 ≤ i ≤ k, choose an arbitrary point in Vi, and let T ′ be an
arbitrary spanning tree of these k points. Since the diameter of V is at most
2RV , we have

wt(T ′) ≤ 2(k − 1)RV ≤ 2kRV .

Let T be the spanning tree of V consisting of T ′ and MST (V1), MST (V2),
. . ., MST (Vk). Then

wt(T ) ≤
k∑

i=1

6RV

(|Vi|1−1/d − 1
)

+ 2kRV

= 6RV

k∑
i=1

|Vi|1−1/d − 4kRV

≤ 6RV

k∑
i=1

|Vi|1−1/d − 12RV .

Since the function −x1−1/d is convex for x > 0, and since
∑k

i=1 |Vi| = |V |, it
follows that

k∑
i=1

|Vi|1−1/d ≤
k∑

i=1

(|V |/k)1−1/d = k1/d|V |1−1/d ≤ 2|V |1−1/d.
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Thus, we have
wt(T ) ≤ 12RV |V |1−1/d − 12RV .

Since wt(MST (V )) ≤ wt(T ), we have shown that (2) holds for V .

Theorem 3 Let S be a metric space consisting of n points, where n ≥ 2, let
d be the doubling dimension of S, and let R be the radius of S.

1. If d = 1, then wt(ANN (S)) ≤ 4R.

2. If d > 1, then wt(ANN (S)) ≤ 12Rn1−1/d.

Proof. Since ANN (S) is a subgraph of MST (S), the second claim follows
from Theorem 2. Assume that d = 1. The first claim will follow from the
following more general claim: For any subset V of S with |V | ≥ 2 and having
radius RV , ∑

p∈V

|p,NN S(p)| ≤ 4RV . (3)

The proof is by induction on the size of V . If V consists of two points a and
b, then

∑
p∈V |p,NN S(p)| ≤ 2|ab| ≤ 4RV , thus (3) holds.

Assume that V contains at least three elements and, further, assume that
(3) holds for all subsets of S having at least two and less than |V | elements.
Let B be a ball of radius RV that contains V . We cover B by two balls B1

and B2, both having radius RV /2, and define V1 = V ∩B1 and V2 = V \ V1.
Observe that both V1 and V2 are non-empty. Let RV1 and RV2 be the radius
of V1 and V2, respectively. Then RV1 ≤ RV /2 and RV2 ≤ RV /2.

If both V1 and V2 contain at least two points, then, using the induction
hypothesis,

∑
p∈V

|p,NN S(p)| =
∑
p∈V1

|p,NN S(p)|+
∑
p∈V2

|p,NN S(p)|

≤ 4RV1 + 4RV2

≤ 4RV .

Assume that one of V1 and V2, say V1, consists of one point a. Since the
set V has radius RV , we have |a,NN S(a)| ≤ RV . Combining this with the
induction hypothesis, we obtain

∑
p∈V

|p,NN S(p)| = |a,NN S(a)|+
∑
p∈V2

|p,NN S(p)| ≤ RV + 4RV2 ≤ 4RV .
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This completes the proof.

3 The lower bounds

In this section, we show that the upper bounds in Theorems 1, 2 and 3 are
tight. In fact, we give an example of one class of metric spaces that achieve
the upper bounds in all these theorems. This class is obtained by repeatedly
applying the following transformation:

Let m ≥ 2 be an integer and assume we are given a metric space S ′

consisting of m points. Let d be the doubling dimension of S ′, let R′ be the
radius of S ′, and assume that the diameter of S ′ is equal to R′.

We define a new metric space S in the following way. For each i with
1 ≤ i ≤ 2d, let S ′i be a copy of the metric space S ′, and let S be the union
of these copies. For any two points p and q in S, if they are in the same
copy S ′i, then the distance |pq| (in S) is defined to be their distance in S ′i.
Otherwise, we define |pq| to be 2R′.

Let n be the size of S, so that n = 2dm. The following claims can easily
be verified. The triangle inequality holds for the set S and, thus, S is a
metric space. Both the diameter and the radius of S are equal to R = 2R′

and

DP(S) =

(
2d

2

)
m2 =

1

2

(
1− 1

2d

)
n2. (4)

Since the diameter of each set S ′i is equal to R′, and since distances between
points in S ′i and points in S ′j (for j 6= i) are equal to 2R′, we have

wt(ANN (S)) = 2d · wt(ANN (S ′)). (5)

By running Kruskal’s minimum spanning tree algorithm on S, it follows that

wt(MST (S)) = (2d − 1)R + 2d · wt(MST (S ′)). (6)

We finally claim that the doubling dimension of S is equal to d. To prove
this, let c be a point in S, let ρ > 0 be a real number, and consider the ball
B = {p ∈ S : |cp| ≤ ρ}.

First assume that ρ < 2R′. Then B is completely contained in one of the
sets S ′i. Since the doubling dimension of S ′i is equal to d, and since distances
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in S ′i are the same as distances in S, it follows that B can be covered by at
most 2d balls of radius ρ/2.

Now assume that ρ ≥ 2R′. Since the radius of S ′i is equal to R′, there
exists a ball B′

i of radius R′ that contains S ′i. The union of these balls B′
i,

for 1 ≤ i ≤ 2d, cover the entire set S and, thus, it covers the ball B. Clearly,
each such ball has radius at most ρ/2. Thus, also in this case, B can be
covered by at most 2d balls of radius ρ/2.

Theorem 4 Let λ ≥ 2 be an integer, let d = log λ, let k be a positive
integer, and let n = 2kd. There exists a metric space S of size n and doubling
dimension d, such that the following are true:

1. Both the radius and diameter of S are equal to R = 2k.

2. DP(S) = 1
2

(
1− 1/2d

)
n2. In particular, if d = 1, then DP(S) = n2/4.

3. wt(ANN (S)) = 2Rn1−1/d. In particular, if d = 1, then wt(ANN (S)) =
2R.

4. If d = 1, then wt(MST (S)) = R log n.

5. If d > 1, then wt(MST (S)) ≥ 2Rn1−1/d.

Proof. Let S ′ be the metric space of size m = 2d, in which the distance
between any two distinct points is equal to 2. The doubling dimension of S ′

is equal to d, and both its radius and diameter are equal to R′ = 2.
By applying the above construction k−1 times, we obtain a metric space

S of size n = 2kd, doubling dimension d, radius R = 2k and diameter R = 2k,
proving the first claim. The second claim follows from (4).

Since wt(ANN (S ′)) = 2m = 2·2d, it follows from (5) that wt(ANN (S)) =
2 · 2kd = 2n. Since n = 2kd and R = 2k, we have Rn1−1/d = n. Therefore, we
have wt(ANN (S)) = 2Rn1−1/d, proving the third claim.

The fourth claim follows from the recurrence in (6). Finally, the fifth
claim follows from the third one, because MST (S) contains ANN (S).

4 Concluding remarks

We have shown that metric spaces of low doubling dimension are very differ-
ent than low-dimensional Euclidean spaces. In this final section, we present
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some more consequences of Lemma 1 for metric spaces of doubling dimension
1.

Lemma 3 Let S be a finite metric space of doubling dimension 1, and let
p, q, and r be three points in S such that (p, q) is an edge in MST (S) and
|pq| ≤ |pr| ≤ |qr|. Then |pr| ≥ 2|pq|.
Proof. Let ` = |pq|, `′ = |pr|, and `′′ = |qr|. Thus, we have ` ≤ `′ ≤ `′′.

Let B be the ball with center p and radius `′. This ball contains the points
p, q, and r. Cover B by balls B1 and B2 centered at c1 and c2, respectively,
and having radius `′/2. We may assume without loss of generality that p is
contained in B1.

Assume that r is in B1. Then

`′ = |pr| ≤ |pc1|+ |c1r| ≤ `′/2 + `′/2 = `′

and, therefore, |c1p| = |c1r| = `′/2 and |pr| = `′, contradicting Lemma 1.
Thus, r is in B2.

If we assume that q is in B2, then, by a similar argument, it follows that
|c2q| = |c2r| = `′′/2 and |qr| = `′′, contradicting Lemma 1. Thus, q is in B1.

We have shown that both p and q are in B1, and that r is in B2. Let
T = MST (S). By removing the edge (p, q) from T , we obtain two trees T1

and T2, where p is a node in T1 and q is a node in T2. We may assume
without loss of generality that c1 is a node in T1. Observe that (c1, q) is not
an edge in T .

Let T ′ be the tree obtained from T by replacing the edge (p, q) by the
edge (c1, q). Since T is a minimum spanning tree of S, it follows that ` =
|pq| ≤ |c1q|. On the other hand, since q is in B1, we have |c1q| ≤ `′/2. It
follows that `′ ≥ 2`.

We now use Lemma 3 to prove the following claims. First, by following
any (directed) path in ANN (S), edges decrease in weight by a factor of at
least 2. Second, for any point in S, any two incoming edges in ANN (S) differ
in weight by a factor of at least 2. Finally, any two edges in MST (S) that
share a point differ in length by a factor of at least 2.

Lemma 4 Let S be a finite metric space of doubling dimension 1, and let p,
q, and r be three pairwise distinct points in S.

1. If q = NN S(p) and p = NN S(r), then |pr| ≥ 2|pq|.
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2. If p = NN S(q), p = NN S(r), and |pq| ≤ |pr|, then |pr| ≥ 2|pq|.
3. If both (p, q) and (p, r) are edges in MST (S) and |pq| ≤ |pr|, then
|pr| ≥ 2|pq|.

Proof. The assumptions in the first and second claims imply that (p, q) is
an edge in MST (S) and |pq| ≤ |pr| ≤ |qr|. Therefore, these two claims follow
from Lemma 3.

For the third claim, observe that (q, r) is not an edge in MST (S). It
follows that |pq| ≤ |pr| ≤ |qr| and, therefore, the claim also follows from
Lemma 3.
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