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Abstract. Algorithms for determining quality/cost/price tradeoffs in saturated markets are consid-3

ered. A product is modeled by d real-valued qualities whose sum determines the unit cost of producing4

the product. This leads to the following optimization problem: given a set of n customers, each of5

whom has certain minimum quality requirements and a maximum price they are willing to pay, design6

a new product and select a price for that product in order to maximize the resulting profit.7

An O(n log n) time algorithm is given for the case, d = 1, of products having a single quality,8

and O(n(log n)d+1) time approximation algorithms are given for products with any constant number,9

d, of qualities. To achieve the latter result, an O(nkd−1) bound on the complexity of an arrangement10

of homothetic simplices in R
d is given, where k is the maximum number of simplices that all contain11

a single points.12 1 Introdu
tion13

Revealed preference theory [13] is a method of determining a course of business action through the14

review of historical consumer behaviour. In particular, it is a method of inferring an individual’s or a15

group’s preferences based on their past choices. The marketing mix [10] of a product consists of the 416

Ps: Product, price, place, and promotion. In the current paper, we present algorithms for optimizing17

the first two of these by using data about consumers’ preferences. That is, we show how, given data on18

consumer preferences, to efficiently choose a product and a price for that product in order to maximize19

profit.20

Refer to Figure 1. A product P = (p, q1, . . . , qd) is defined by a real-valued price, p, and21

a number of real-valued orthogonal qualities, q1, . . . , qd. The market for a product is a collection22

of customers C = {C1, . . . , Cn}, where Ci = (pi, qi,1, . . . , qi,d). A customer will purchase the least23

expensive product that meets all her minimum quality requirements and whose price is below her24

maximum price. That is, the customer Ci will consider the product P = (p, q1, . . . , qd) if p ≤ pi and25

qj ≥ qi,j for all j ∈ {1, . . . , d}. The customer Ci will purchase the product if it has the minimum price26

among all available products that Ci considers.27

We consider markets that are saturated. That is, for every customer Ci there is an existing28

product that satisfies Ci’s requirements and among all products that satisfy Ci’s requirements, Ci will29

choose the least expensive product. From the point of view of a manufacturer introducing one or more30

new products, this means that all customers are Pareto optimal, i.e., there are no two customers Ci31

and Cj such that qi,k > qj,k for all k ∈ {1, . . . , d} and pi < pj. This is because no customer will32

every purchase a product that is not Pareto optimal, since there is a lower-priced alternative that also33
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Figure 1: A sample market with d = 1 and n = 3. A customer will consider any product that is in
their upper left quadrant.

satisfies all their minimum quality requirements. Therefore, every customer Ci can be replaced with34

the (Pareto optimal) product that they purchase.35

As an example, consider a market for computers in which an example customer Ci may be36

looking for a computer with a minimum of 8 GB of RAM, a CPU benchmark score of at least 3000,37

a GPU benchmark score of at least 2000, and be willing to pay at most $1500. In addition, there is38

already a computer on the market which meets these requirements and retails for $1200. Thus, this39

customer would be described by the vector (1200, 8, 3000, 2000). If a manufacturer introduces a new40

product (1199, 8, 3500, 2000) (a computer with 8 GB of RAM, a CPU benchmark score of 3500 and a41

GPU benchmark score of 2000 retailing for $1199) then this customer would select this new product42

over their current choice.43

By appropriately reparameterizing the axes, we can assume that the cost, cost(P ), of manufac-44

turing a product P = (p, q1, . . . , qd) is equal to the sum of its qualities45

cost(P ) =

d∑

i=1

qi .46

The profit per unit sold of P is therefore47

ppu(P ) = p − cost(P ) .48

In this paper we consider algorithms that a manufacturer can use when planning a new product to49

introduce into an existing saturated market with the goal being to maximize the profit obtained. More50

precisely, given a Pareto-optimal market of customers M = {C1, . . . , Cn}, each having d qualities, the51

ProductDesign(d) problem is to find a product P ∗ ∈ R
d+1 such that52

profit(P ∗) = ppu(P ∗) × |{i : Ci purchases P ∗}|53

is maximized.54

The term marketing mix is probably the most famous phrase in marketing. Not surprisingly,55

economists and market researchers have considered methods of optimizing the marketing mix in various56

scenarios. As there are many different models of the problem, it is difficult to compare algorithms.57
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Most models of marketing-mix problems involve a constant number of real-valued input pa-58

rameters. This sometimes leads to problems where the optimal solution is one of a constant number59

of possible closed forms (see, e.g., Thomson and Teng’s optimal constant price model [12]). In other60

cases, a closed form is not achievable, but a (sometimes approximate) solution can be obtained using61

numerical optimization techniques (see, e.g., Balanchandran and Gensch [2], Thomson and Teng [12],62

Naik et al. [11], Deal [6], Erickson [9]). In all cases, it is expected that the model parameters are derived63

from real-world data, such as surveys or sales figures, and involves fitting of the model parameters to64

the available data.65

The work in the current paper is different from this previous work in several ways. For one, it66

is one of the few works that deals primarily with the first two P’s, product and pricing. Most existing67

literature focuses on the marketing P’s, namely place and promotion, and to a lesser extent, pricing68

of an existing product. Secondly, it deals directly with data about individual consumers rather than69

aggregating this data so that it fits a particular model of consumer behaviour.70

We believe that this models very well what happens in online shopping for high cost products71

such as computers, cameras, and televisions. In such markets, savvy consumers have good data available72

about both the specifications and the cost of all available products so that marketing efforts are73

(arguably) less important than the quality and prices of the products. On the other hand, online74

sellers such as Amazon have large amounts of data about users’ past purchases and can use this data75

as input to the problem. In particular, these sellers know the specifications qi,1, . . . , qi,d and prices pi76

of huge quantities of items sold and can use this data to advise a manufacturer that is designing a new77

product.78

In the remainder of the paper we give an O(n log n) time algorithm for ProductDesign(1)79

(Section 2), and O(n(log n)d+1) time approximation schemes for ProductDesign(d) (Section 3 and80

Section 4). Section 5 summarizes our results and concludes with directions for future research.81 2 One-dimensional produ
ts82

In this section, we consider the simplest case, when a manufacturer wishes to introduce a new product83

in which the quality of a product has only one dimension. Examples of such markets include, for84

example, suppliers to the construction industry in which items (steel I-beams, finished lumber, logs)85

must have a certain minimum length to be used for a particular application. An overly long piece can86

be cut down to size, but using two short pieces instead of one long piece is not an option.87

Throughout this section, since d = 1, we will use the shorthand P = (p, q) for the product88

being designed and qi for qi,1. Thus, we have a set of customers M = {(p1, q1), . . . , (pn, qn)} and we89

are searching for a point P ∗ = (p∗, q∗) that maximizes90

profit(p∗, q∗) = (p∗ − q∗)|{i : p∗ ≤ pi and q∗ ≥ qi}| .91

Our algorithm is an implementation of the plane-sweep paradigm [4]. The correctness of the92

algorithm relies on two lemmas about the structure of the solution space. The first lemma is quite93

easy:94

Lemma 1. The value (p∗, q∗) that maximizes profit(p∗, q∗) is obtained when p∗ = pi and q∗ = qj for95

some i, j ∈ {1, . . . , n}.96
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Figure 2: profit(p, q) ≤ profit(p, q′) implies that profit(p′, q) ≤ profit(p′, q′) for all p′ ≤ p.

Proof. First, observe the obvious bounds on p∗ and q∗:97

min{pi : i ∈ {1, . . . , n}} ≤ p∗ ≤ max{pi : i ∈ {1, . . . , n}}98

and99

min{qi : i ∈ {1, . . . , n}} ≤ q∗ ≤ max{qi : i ∈ {1, . . . , n}} .100

Consider the arrangement of lines obtained by drawing a horizontal and vertical line through each101

customer (pi, qi) for i ∈ {1, . . . , n}. Within each cell of this arrangement, the function profit(p, q) is102

a linear function of p and q and it is bounded. Therefore, within a particular cell, the function is103

maximized at a vertex. Since each vertex is the intersection of a horizontal and vertical line through a104

pair of customers, the lemma follows.105

The following lemma, illustrated in Figure 2, is a little more subtle and illustrates a manufac-106

turer’s preference for lower-quality products:107

Lemma 2. Let q′ ≤ q and let p be such that 0 < profit(p, q) ≤ profit(p, q′). Then, for any p′ ≤ p,108

profit(p′, q) ≤ profit(p′, q′).109

Proof. By definition, profit(p, q) = a(p−q) and profit(p, q′) = a′(p−q′), where a and a′ are the number110

of customers who would consider (p, q) and (p, q′), respectively. These customers are all taken from the111

set M≥ = {(pi, qi) ∈ M : pi ≥ p}.112

Now, consider the customers in the set M ′ = {(pi, qi) ∈ M : p′ ≤ pi < p}. By the assumption113

that customers are Pareto optimal, any customer (pi, qi) in M ′ has qi ≤ q′, so all of these customers114

will consider either (p′, q′) or (p′, q) if either one is offered. Therefore,115

profit(p′, q′) = (a′ + |M ′|)(p′ − q′)

= a′(p′ − q′) + |M ′|(p′ − q′)

≥ a′(p′ − q′) + |M ′|(p′ − q) since q > q′

= a′(p − q′) + a′(p′ − p) + |M ′|(p′ − q)

≥ a′(p − q′) + a(p′ − p) + |M ′|(p′ − q) since a ≥ a′ and (p′ − p) < 0

≥ a(p − q) + a(p′ − p) + |M ′|(p′ − q) by assumption

= a(p′ − q) + |M ′|(p′ − q)

= profit(p′, q) ,

116
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as required.117

Lemma 2 allows us to apply the plane sweep paradigm with a sweep by decreasing price. It118

tells us that, if a product (p, q′) gives better profit than the higher-quality product (p, q) at the current119

price p, then it will always give a better profit for the remainder of the sweep. In particular, there will120

never be a reason to consider a product with quality q for the remainder of the algorithm’s execution.121

Let the customers be labelled (p1, q1), . . . , (pn, qn) in decreasing order of pi, so that pi+1 ≤ pi122

for all i ∈ {1, . . . , n − 1}. At any point in the sweep algorithm, there is a current price p, which123

starts at p = ∞ and decreases during the execution of the algorithm. At the start of the algorithm the124

algorithm’s event queue Q, which is represented as a balanced binary search tree, is initialized to contain125

the values pn, . . . , p1. At all times, the algorithm maintains a list L of qualities q∗1 > q∗2 > · · · > q∗m126

such that profit(p, q∗1) > profit(p, q∗2) > · · · > profit(p, q∗m). The quality q∗1 is the optimal quality for127

the current price, p. By the time the algorithm terminates, the quality of the globally-optimal solution128

will have appeared as the first element in L. To complete the description of the algorithm, all that129

remains is to show how L and Q are updated during the processing of events in the event queue.130

There are two kinds of events in the event queue. Insertions occur at the values p1, . . . , pn.131

Deletions, which we describe next, occur when the relative order of two adjacent items in L changes.132

Consider a consecutive pair of the elements q∗i and q∗i+1 in L. When q∗i and q∗i+1 became adjacent in L,133

it was at some price p = pt such that profit(pt, q
∗
i ) > profit(pt, q

∗
i+1). Let ai and ai+1 be the number of134

customers who would consider (pt, q
∗
i ) and (pt, q

∗
i+1), respectively. Then,135

profit(pt, q
∗
i ) = (pt − q∗i )ai136

and137

profit(pt, q
∗
i+1) = (pt − q∗i+1)ai+1138

Now, looking forward in time to a later step in the execution of the algorithm, when p = pt′ , with139

t′ > t, we find that140

profit(pt′ , q
∗
i ) = (pt′ − q∗i )(ai + t′ − t)141

and142

profit(pt′ , q
∗
i+1) = (pt′ − q∗i+1)(ai+1 + t′ − t) .143

We are interested in identifying the price pt′ where the inequality profit(pt′ , q
∗
i ) > profit(pt′ , q

∗
i+1)144

changes to profit(pt′ , q
∗
i ) ≤ profit(pt′ , q

∗
i+1). When this happens, q∗i can be safely discarded from L145

since, by Lemma 2, profit(p, q∗i ) will never again exceed profit(p, q∗i+1) for the remainder of the sweep.146

The value pt′ is a deletion event.147

Note that Lemma 2 also allows for binary search on the value pt′ . In particular, the interval148

[pj , pj+1] containing pt′ can be found in O(log n) time, after which the value of pt′ can be obtained by149

solving the linear equation150

(pt′ − q∗i )(ai + t′ − t) ≤ (pt′ − q∗i+1)(ai+1 + t′ − t) ,151

for t′. (The equation is linear because the values ai and ai+1 are constant in the interval (pj, pj+1).)152

Thus, whenever two new elements become adjacent in L, we can add the appropriate deletion event to153

Q in O(log n) time.154

When processing an insertion event pi, we remove from the tail of L all values q∗j such that155

profit(pi, q
∗
j ) ≤ profit(pi, qi) and then append qi onto L. While deleting the elements of L, we also156
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remove all the associated deletion events from Q. Appending qi to L causes at most one new pair of157

elements in L to become adjacent, so we add the appropriate deletion event to Q as described above.158

The time to process the event pi is there O((ki + 1) log n), where ki is the number of elements that are159

deleted from L.160

When processing a deletion event that deletes q∗i from L, we simply delete q∗i from L and its (at161

most two) associated deletion events from Q. This may cause a new pair of elements, q∗i−1 and q∗i+1,162

in L to become adjacent, so we add the appropriate deletion event to Q. In this way, a deletion event163

can be processed in O(log n) time.164

Note that, after all the processing associated with an event pt is complete, the first element, q∗1 ,165

in L is the value that maximizes profit(pt, q
∗
1). Thus, the algorithm need only keep track, throughout166

its execution, of the highest profit obtained from the first element of L, and output this value at the167

end of its execution. This completes the description of the algorithm.168

Theorem 1. There exists an O(n log n) time algorithm for ProductDesign(1).169

Proof. The correctness of the algorithm described above follows from 2 facts: Lemma 1 ensures that170

the optimal solution is of the form (pi, q
∗) for some i ∈ {1, . . . , n}, and Lemma 2 ensures that the171

optimal solution appears at some point as the first element of the list L.172

The running time of the algorithm can be bounded as follows: The total number of deletion173

events processed is at most n, since each such event removes some value qi from L for some i ∈174

{1, . . . , n}. Thus, the cost of processing all deletion events is O(n log n). Similarly,
∑n

i=1 ki ≤ n since175

ki is the number of elements deleted from L during the processing of pi. Thus, the time required to176

handle all insertion events, and therefore the running time of the entire algorithm, is O(n log n)177

The following theorem shows that a running time of Ω(n log n) is inherent in this problem, even178

when considering approximation algorithms.179

Theorem 2. Let M be an instance of ProductDesign(1) and (p∗, q∗) be a solution that maximizes180

profit(p∗, q∗). In the algebraic decision tree model of computation, any algorithm that can find a solution181

(p, q) such that 2 · profit(p, q) > profit(p∗, q∗) has Ω(n log n) running time in the worst-case.182

Proof. We reduce from the integer Element-Uniqueness problem, which has an Ω(n log n) lower183

bound in the algebraic decision tree model [14]: Given an array A = [x1, . . . , xn] containing n integers,184

are all the elements of A unique?185

We convert A into an instance of ProductDesign(1) in O(n) time as follows (refer to Figure 3).186

For each xi, i ∈ {1, . . . , n} we introduce a customer (pi, qi) with pi = qi + 1/2 and qi = xi. If187

there exists a value x in A that occurs 2 or more times, then the product (x + 1/2, x) gives a value188

profit(x + 1/2, x) ≥ 1. On the other hand, if there is no such x, then189

1. any product (p, q) with p − q > 1/2 can not be sold to any customers and190

2. any product (p, q) with p − q > 0 can be sold to at most 1 customer.191
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Figure 3: Reducing Element-Uniqueness to ProductDesign(1,1).

Therefore, if all the elements of A are unique, then profit(p∗, q∗) = 1/2, otherwise profit(p∗, q∗) ≥ 1.192

The result follows.193 3 A near-linear approximation algorithm for bidimensional produ
ts194

In this section, we consider algorithms for ProductDesign(2), in which products have 2 qualities. As195

a baseline, we first observe that, if we fix the value of q2, then the optimal solution of the form (p, q1, q2)196

can be found using a single application of the algorithm in Theorem 1. Therefore, by successively solving197

the problem for each q2 ∈ {q2,1, . . . , q2,n} and taking the best overall solution we obtain an O(n2 log n)198

time algorithm for ProductDesign(2).199

More generally, ProductDesign(d) can be solved using O(nd−1) applications of Theorem 1200

resulting in an O(nd log n) time algorithm. Unfortunately, these are the best results known for d ≥ 2,201

and, as discussed in Section 5, we suspect that an algorithm with running time o(nd) will be difficult202

to achieve using existing techniques. Therefore, in this section we focus our efforts on obtaining a203

near-linear approximation algorithm.204

Fix some constant ǫ > 0. Given an instance M of ProductDesign(d), a point P ∈ R
d+1 is a205

(1 − ǫ)-approximate solution for M if profit(P ) ≥ (1 − ǫ) profit(P ∗) for all P ∗ ∈ R
d+1. An algorithm206

is a (high probability) Monte-Carlo (1 − ǫ)-approximation algorithm for ProductDesign(d) if, given207

an instance M of size n, the algorithm outputs a (1 − ǫ)-approximate solution for M with probability208

at least 1 − n−c for some constant c > 0.209

Let r = max{ppu(Ci) : i ∈ {1, . . . , n}} and observe that r is the maximum profit per unit210

that can be achieved in this market. Let E = 1/(1 − ǫ) and let ℓ = ⌈logE n⌉ and observe that211

ℓ = O(ǫ−1 log n).1 For each i ∈ {0, 1, 2, . . . , ℓ}, define the plane Hi = {(p, q1, q2) : p−q1−q2 = r(1−ǫ)i}.212

The following lemma says that a search for an approximate solution can be restricted to be contained213

in one of the planes Hi.214

Lemma 3. For any product P ∗ = (p∗, q∗1 , q
∗
2), there exists a product P = (p, q1, q2) such that P ∈ Hi215

for some i ∈ {0, . . . , ℓ} and profit(P ) ≥ (1 − ǫ) profit(P ∗).216

1This can be seen by taking the limit limǫ→0+(ǫ/ log(E)) using one application of L’Hôpital’s Rule.
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Figure 4: The intersection of Hi with customers’ quadrants is a set of homothetic equilateral triangles.

Proof. There are two cases to consider. If ppu(P ∗) ≤ r/n then profit(P ∗) ≤ r, in which case we set217

P = Ci where ppu(Ci) = r, so that P ∈ H0 and profit(P ) = r ≥ profit(P ∗) ≥ (1 − ǫ) profit(P ∗), as218

required.219

Otherwise, r/n < ppu(P ∗) ≤ r. In this case, consider the plane Hi where i = ⌈logE(r/ppu(P ∗))⌉.220

Notice, that for any point P ∈ Hi, ppu(P ) ≥ (1 − ǫ) ppu(P ∗). More specifically, the orthogonal pro-221

jection P = (p, q1, q2) of P ∗ onto Hi is a product with p ≤ p∗, q1 ≥ q∗1 , and q2 ≥ q∗2 . Therefore,222

any customer who would consider P ∗ would also consider P , so profit(P ) ≥ (1 − ǫ) profit(P ∗), as223

required.224

Lemma 3 implies that the problem of finding an approximate solution to ProductDesign(2)225

can be reduced to a sequence of problems on the planes H0, . . . ,Hℓ. Refer to Figure 4. Each customer226

Cj considers all products in a quadrant whose corner is Cj. The intersection of this quadrant with227

Hi is a (possibly empty) equilateral triangle ∆i,j. The customer Cj will consider a product P in Hi228

if and only P is in ∆i,j. Thus, the problem of solving ProductDesign(2) restricted to the plane Hi229

is the problem of finding a point contained in the largest number of equilateral triangles from the set230

∆i = {∆i,j : j ∈ {1, . . . , n}}.231

Note that the elements in ∆i are homothets (translations and scalings) of an equilateral triangle,232

so they form a collection of pseudodisks and we wish to find the deepest point in this collection of233

pseudodisks. No algorithm with running time o(n2) is known for solving this problem exactly, but234

Aronov and Har-Peled [1] have recently given a Monte-Carlo (1 − ǫ)-approximation algorithm for this235

problem that runs in time O(ǫ−2n log n). By applying this algorithm to each of ∆i for i ∈ {1, . . . , ℓ},236

we obtain the following result:237

Theorem 3. For any ǫ > 0, there exists an O(ǫ−3n(log n)2) time high-probability Monte-Carlo (1− ǫ)-238

approximation algorithm for ProductDesign(2).239
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4 A near-linear approximation algorithm for 
onstant d240

In this section we extend the algorithm from the previous section to (approximately) solve ProductDesign(d)241

for any constant value of d. The algorithm is more or less unchanged, except that the proof requires242

some new results on the combinatorics of arrangements of homothets.243

As before, let r = max{ppu(Ci) : i ∈ {1, . . . , n}} and let ℓ = ⌈logE n⌉. For each i ∈244

{0, 1, 2, . . . , ℓ}, define the hyperplane Hi = {(p, q1, . . . , qd) : p −
∑d

i=1 qi = r(1 − ǫ)i}. The follow-245

ing lemma has exactly the same proof as Lemma 3.246

Lemma 4. For any product P ∗ = (p∗, q∗1, . . . , q
∗
d), there exists a product P = (p, q1, . . . , qd) such that247

P ∈ Hi for some i ∈ {0, . . . , ℓ} and profit(P ) ≥ (1 − ǫ) profit(P ∗).248

Again, each customer Cj defines a regular simplex ∆i,j in Hi such that Cj will consider P ∈ Hi249

if and only if P ∈ ∆i,j. In this way, we obtain a set ∆i = {∆i,1, . . . ,∆i,n} of homothets of a regular250

simplex in R
d and we require an algorithm to find a ((1 − ǫ)-approximation to) the point that is251

contained in the largest number of these simplices. The machinery of Aronov and Har-Peled [1] can be252

used to help solve this problem, but not before we prove some preliminary results, the first of which is253

a combinatorial geometry result.254

Lemma 5. Let ∆ be a set of n homothets of a regular simplex in R
d, for d = O(1), and such that no255

point in R
d is contained in more than k elements of ∆. Then, the total complexity of the arrangement,256

A(∆), of the simplices in ∆ is O(nkd−1).257

Proof. We first consider the simpler case in which the elements of ∆ are translates (without scaling) of258

a regular simplex. Suppose that the total complexity of A(∆) is m. Then, by the pigeonhole principle,259

there is some element T in ∆ whose surface is involved in m/n features of A(∆). (Note that this implies260

that T intersects all the elements of a set ∆′ ⊆ ∆ with |∆′| = Ω((m/n)1/(d−1)), since otherwise there261

are not enough elements in ∆′ to generate m/n features on the surface of ∆.)262

Observe that, since the elements of ∆′ are all unit size and they all intersect T , that they are263

all contained in a ball of radius O(1) centered at the center of T . Furthermore, since each element of264

∆′ has volume Ω(1) this implies that some point must be contained in Ω((m/n)1/(d−1)) elements of ∆′.265

Thus, we obtain the inequality k ≥ Ω((m/n)1/(d−1)), or, equivalently, m ≤ O(nkd−1), as required.266

Now, for the case where the elements of ∆ are homothets (translations and scalings) of a regular267

simplex, we proceed as follows. Suppose that |A(∆)| = rn. Our goal is to show that r = O(kd−1).268

Label the elements of ∆ as T1, . . . , Tn in increasing order of size and consider the smallest element Ti269

such that Ti contributes at least r features to A({Ti, . . . , Tn}). Such a Ti is guaranteed to exist, since270

otherwise |A(∆)| ≤ rn.271

Now, Ti intersects all the elements in some set ∆′ ⊆ {Ti+1, . . . , Tn} with |∆′| = Ω(r1/(d−1)).272

Shrink each element T ′ in ∆′ so as to obtain an element T ′′ such that (a) the size of T ′′ is equal to273

the size of Ti, (b) T ′′ ⊆ T ′, and (c) T ′′ intersects Ti. Call the resulting set of shrunken elements ∆′′.274

Condition (a) and the packing argument above imply that there is a point p ∈ R
d that is contained in275

Ω(r1/(d−1)) elements of ∆′′. Condition (b) implies that p is contained in Ω(r1/(d−1)) elements of ∆′ and276

hence also ∆. Therefore, we conclude, as before, that r = O(kd−1), which completes the proof.277

9



Remark. Lemma 5 is somewhat surprising, since the union of n homothets of a regular tetrahedron in,278

for example, R
3 can easily have complexity Ω(n2). This fact makes it impossible to apply the “usual”279

Clarkson-Shor technique [5] that relates the complexity of the first k levels to that of the boundary of280

the union (the 0-level).281

Lemma 6. Let ∆ be a set of n homothets of a regular simplex in R
d such that no point of R

d is282

contained in more than k simplices of ∆. Then the arrangement A(∆) of ∆ can be computed in283

O(n(kd−1 + (log n)d)) time.284

Proof. Computing the arrangement A(∆) can be done in the following way. Sort the elements of ∆ by285

decreasing size and construct A(∆) incrementally by inserting the elements one by one. When inserting286

an element T , use a data structure (described below) to retrieve the elements of ∆ that intersect T and287

discard the elements that are smaller than T . The proof of Lemma 5 implies that there will be at most288

O(k) such elements. The intersection of the surfaces of these O(k) elements with the surface of T has289

size O(kd−1) and can be computed in O(kd−1) time using d + 1 applications of the standard algorithm290

for computing an arrangement of hyperplanes in R
d−1 [7, 8]. Thus, ignoring the cost of finding the291

elements that intersect T , the overall running time of the algorithm is O(nkd−1).292

All that remains is to describe a data structure for retrieving the elements that intersect a given293

simplex T ∈ ∆. In the following we describe a data structure that can be constructed in O(n(log n)d)294

time and can answer queries in O(x + (log n)d) time, where x is the size of the output. This data295

structure will be constructed once and queried n times. The total size of the outputs over all n queries296

will be the O(|A(∆)|) = O(nkd−1).297

Refer to Figure 5. Suppose that every element T ∈ ∆ is a homothet of the regular simplex V298

whose vertices are v1, . . . , vd+1 and let n1, . . . , nd+1 be the inner normals of the faces of V where ni299

is the face opposite (not incident on) vertex vi. For any T ∈ ∆, let ti be the image of vi under the300

homothetic transformation that takes V onto T . Observe that, if h is a halfspace of R
d with inner301

normal ni, then h intersects T if and only if h contains ti. Furthermore, every simplex T ∈ ∆ is the302

intersection of d halfspaces hT
1 , . . . , hT

d+1 where the inner normal of ht
i is ni. Therefore, a simplex T ∈ ∆303

intersects a simplex T ′ ∈ ∆ if and only if hT
i contains t′i for all i ∈ {1, . . . , d + 1}.304

This implies that the elements of ∆ can be stored in a (d+1)-layer range tree [3]. The ith layer305

of this tree, for i ∈ {1, . . . , d + 1}, stores elements of ∆ ordered by the projection of ti onto ni. In this306

way, the range tree can return the set of all simplices in ∆ that intersect a query simplex T ∈ ∆. The307

size of this range tree is O(n(log n)d) and it can answer queries in time O(x+ n(log n)d) where x is the308

size of the query result. Since each simplex in ∆ is passed as a query to this data structure exactly309

once, the total sizes of outputs over all n queries is equal to the number of pairs T1, . . . , T2 ∈ ∆ such310

that T1 ∩ T2 6= ∅. But the number of such pairs is certainly a lower bound on |A(∆)| so it must be at311

most O(nkd−1). This completes the proof.312

Lemma 6 can be used as a subroutine in the algorithm of Aronov and Har-Peled [1, Theorem 3.3],313

to obtain the following Corollary.314

Corollary 1. Let ∆ be a set of n homothets of a regular simplex in R
d such that some point p ∈ R

d is315

contained in δ elements of ∆. Then there exists an algorithm whose running time is O(ǫ−2dn(log n)d−1+316

n(log n)d) and that, with high probability, returns a point p′ ∈ R
d contained in at least (1− ǫ)δ elements317

of ∆.318
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Figure 5: The simplex T ∈ ∆ intersects T ′ ∈ ∆ if and only if hTi contains t′i for all i ∈ {1, . . . , d}.

As before, an approximate solution to ProductDesign(d) problem reduces to finding deepest319

point in each of the sets ∆1, . . . ,∆ℓ where ∆i is a set of n d-simplices in Hi. By using the algorithm320

of Corollary 1 to do this we obtain the following result:321

Theorem 4. For any ǫ > 0, there exists an O(ǫ−(2d+1)n(log n)d + n(log n)d+1) time high-probability322

Monte-Carlo (1 − ǫ)-approximation algorithm for ProductDesign(d).323 5 Con
lusions324

We have given an O(n log n) time exact algorithm for solving ProductDesign(1) and O(n(log n)d+1)325

time approximation algorithms for solving ProductDesign(d). The running time of the exact326

ProductDesign(1) algorithm is optimal and no algorithm that produces a (2 − ǫ)-approximation,327

for any ǫ > 0, can run in o(n log n) time.328

In developing these algorithms, we gave a proof (the proof of Lemma 5) that shows that an329

arrangement of n fat convex objects in R
d has complexity O(nkd−1) where k is the maximum number330

of objects that contain any given point. We expect that this result, and the algorithm for approximate331

depth that arise from it [1], will find other applications.332

An exact near-linear time algorithm for the case d = 2 seems to be out of reach. It appears as333

if this problem requires (at least) a solution to the problem of finding a point contained in the largest334

number of homothets of an equilateral triangle, a problem for which no subquadratic time algorithm335

is known. Is it possible to prove some kind of a lower bound? The related problem of finding the336

point contained in the largest number of unit disks is 3-Sum hard [1] providing some evidence that this337

problem will be difficult to solve in subquadratic time.338

In this paper we considered the case where the problem is parameterized by the number, d,339

of orthogonal qualities that a product may have. Another case to consider is the case in which a340

manufacturer wishes to introduce some number, k, k > 1, of new products into a market. Is this341
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problem NP-hard? Does it have a polynomial time approximation algorithm?342 A
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