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ABSTRACT
The Capacity Assignment (CA) problem focuses on finding the best possible set of capacities for

the links that satisfies the traffic requirements in a prioritized network while minimizing the cost. Most

approaches consider a single class of packets flowing through the network, but in reality, different classes

of packets with different packet lengths and priorities are transmitted over the networks. In this paper we

assume that the traffic consists of different classes of packets with different average packet lengths and

priorities. We shall look at three different solutions to this problem.

Marayuma and Tang [MT77] proposed a single algorithm composed of several elementary

heuristic procedures. Levi and Ersoy [LE94] introduced a simulated annealing approach that produced

substantially better results. In this paper we introduce a new method which uses continuous learning

automata to solve the problem. Our new schemes produce superior results when compared with either of

the previous solutions and is, to our knowledge, currently the best known solution.

I. INTRODUCTION

I.1 DATA NETWORKS AND DESIGN CONSIDERATIONS
Data networks are divided into three main groups which are characterized by their size ; these

groups are Local Area Networks (LANs), Metropolitan Area Networks (MANs) and Wide Area Networks

(WANs). An Internetwork is comprised of several of these networks linked together, such as the Internet.

Most applications of computer networks deal with the transmission of logical units of information or

messages, which are sequences of data items of arbitrary length. However, before a message can be

transmitted it must be subdivided into packets. The simplest form of packet is a sequence of binary data

elements of restricted length, together with addressing information sufficient to identify the sending and

receiving computers and an error detecting code. Typically, however, packets also contain an error

correcting code.
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There are several tradeoffs that must be considered when designing a network system. Some of

these are difficult to quantify since they are the criteria used to decide whether the overall network design is

satisfactory or not. This decision is based on the designer’s experience and familiarity with the

requirements of the individual system. As there are several components to this area we will examine in

detail only the factors that are pertinent to the problem which we study, and will briefly state the others.

I.1.1 COST
Costs are measured in terms of three main considerations.

(i) Line Costs: These are the charges imposed by the carrier to connect the nodes of the network

and the communications center(s) as required.

(ii) Equipment Costs: These are the cost of the devices used in the network to accommodate its

users (for example, terminals), to transmit the packets, and to monitor performance.

(iii) Software Costs: These are the costs incurred in obtaining and maintaining the required

software packages. It is important to note that the more complex the design of the network, the more

intricate will be the software required to operate and control it.

I.1.2 PERFORMANCE
Performance is measured in terms of four main criteria. Response Time refers to the percentage of

packets in an inquiry/response system to be handled by the system within a certain time period. This is

sometimes a goal for the network’s peak hour. Throughput specifies the portion of a line’s capacity that

must be carrying packets of value to the network’s users. It is usually measured in Throughput Rate in

Information Bits (TRIB). Some factors that improve throughput lead to an improvement in response time,

for example, a TRIB of 2100 bps on a 2400 bps line. Utilization specifies the maximum portion of a line’s

capacity that can be used, counting both data and overhead. A major component of response time is the

wait time that is directly dependent on a line’s utilization. Busy Rate applies to systems that use primarily

voice and data, and that use switched or measured services of common carriers. It specifies the maximum

percentage of packets that will find the network’s facilities busy and thus unable to serve them. Other

factors that might influence performance include reliability and vulnerability, although these are generally

considered to be of lesser importance.

Response time is the primary area of interest and there are many factors that can affect it.

(i) Terminal Buffering refers to the size of the buffer that the node has for accommodating a

packet. If the buffer is adequate in size, only a single transmission will be required. If multiple

transmissions are required the response time will be lengthened by the amount of time needed for the

individual transmissions to be sent and acknowledged.
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(ii) Line Speed can have a significant effect on response time. The effect must be measured by

considering every individual leg of the packet’s route through the network, and determining the minimum,

average, and peak-load-time transmission rates in order to determine the overall impact. Possible

alternative paths for the original message and acknowledgment considerations must also be examined

whenever queuing or line problems cause rerouting.

 (iii) Quantity of Paths is critical to response time. Routing selections must be done intelligently in

order to determine whether it is feasible (or desirable) to send long transmissions over the same paths as

shorter ones.

(iv) Queuing at Transmission Nodes and Communication Centers is also very important and

can have a significant effect on response time. Since almost all transmission nodes are store-and-forward

devices2, the entire message must be received and validated before it can be transmitted to the next

destination. Consequently, the possibility of malfunctioning equipment and/or queues building up at nodes

must also be examined. As the queues become longer, the wait time increases, and the longer it will take for

a message to be received and retransmitted by a node. 

(v) The Length of the Transmission must also be considered because as the message lengths

increase, the time of transmission also increases, regardless of line speed. This does not mean that messages

should be shortened as this would be unacceptable in most systems. However, the designer should be aware

that occasional large messages transmitted over a low capacity line will result in delays that would not

normally occur if the line is primarily used by messages of short lengths.

(vi) Processing Delay refers to the actual work that must be done at a node in order to retransmit a

message. This factor is sometimes ignored in the design phase only to be re-encountered when the network

is in operation. The speed of processing is determined by several factors such as the speed of the input and

output devices, the quality of the transmission media, the traffic through the node, and even the type of

software. Every facility will have individual preferences in this regard, and each may require a careful and

extensive planning effort to account for all the variables involved.

I.1.3 OTHER CRITERIA
The other factors that must be considered in the design process include ease of implementation,

cohesion, maintenance, servicing and support, security, reliability, redundancy, robustness, flexibility,

financing, and compatibility. These are all important factors but are not explained in detail because they are

not crucial to the problems that we study in this paper.
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I.2 THE CAPACITY ASSIGNMENT PROBLEM
In the process of designing computer networks the designer is confronted with a trade-off between

costs and performance. In the previous section we catalogued the cost and performance parameters used in

a general design process, but, in practice, only a subset of these factors are considered in the actual design.

In this paper we study scenarios in which the factors considered include the location of the nodes and

potential links, as well as possible routing strategies and link capacities.

The Capacity Assignment (CA) Problem specifically addresses the need for a method of

determining a network configuration that minimizes the total cost while satisfying the traffic requirements

across all links. This is accomplished by selecting the capacity of each link from a discrete set of candidate

capacities that have individual associated cost and performance attributes. Although problems of this type

occur in all networks, in this paper, we will only examine the capacity assignment for prioritized networks.

In prioritized networks, packets are assigned to a specific priority class which indicates the level of

importance of their delivery. Packets of lower priority will be given preference and separate queues will be

maintained for each class.

The currently acclaimed solutions to the problem are primarily based on heuristics that attempt to

determine the lowest cost configuration once the set of requirements are specified. These requirements

include the topology, the average packet rate, or the routing, for each link, as well as the priorities and the

delay bounds for each class of packets. The result obtained is a capacity assignment vector for the network,

which satisfies the delay constraints of each packet class at the lowest cost.

The only solutions (to our knowledge) to the CA problem have been developed by

Marayuma/Tang[MT77] and Levi/Ersoy[LE94]. The Marayuma/Tang algorithm is a heuristic based

solution that results in a high quality solution but proves to be quite slow for large networks. The

Levi/Ersoy algorithm uses a Simulated Annealing approach, and yields better results than the

Marayuma/Tang algorithm for both cost and performance criteria. However, the strengths of these results

diminish for larger  networks. In this paper, a new algorithm is proposed that uses Learning Automata to

generate superior results (when compared with the previous methods) in terms of cost and performance.

Apart from the fundamental contribution of the paper being a new technique to solve the CA problem, the

essential idea of using LA which have actions in a “meta-space” (i.e., the automata decide on a strategy

which in turn determines the physical action to be taken in the real-life problem) is novel to this paper. This

will be clarified in Section IV.

                                                                                                                                                      
2 The increasing popularity of the ATM and the Frame Relay schemes are making the store-and-forward

strategies less and less universal. We are grateful to an anonymous referee who brought this to our attention.
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As the results of this study are quite recent (and since the Levi/Ersoy paper is published only in the

Proceedings of a conference [LE94]) we believe that a fairly detailed report on these algorithms is not out

of place. Indeed, we hope that our paper will be used as a survey and a reference for all future researchers

and for designers in the real world.

I.2.1 ASSUMPTIONS AND DELAY FORMULAE
The network model that will be used for all the solutions in the following sections have the

following features [LE94].

1. Standard Assumptions

(a) The message arrival pattern is Poissonly distributed, and

(b) The message lengths are exponentially distributed.

2. There are multiple classes of packets. Each packet class has its own:

(a) Average packet length measured in bits,

(b) Maximum allowable delay measured in seconds, and

(c) Unique priority level, where a lower priority takes precedence.

3. Link capacities are chosen from a finite set of predefined capacities. For each capacity there are:

(a) Associated fixed setup cost, and

(b) Variable cost/km.

4.  Given as input to the system are the:

(a) Flow on each link for each message class,

(b) Average length of each packet class, measured in bits,

(c) Maximum allowable delay for each packet class measured in seconds,

(d) Priority of each packet class,

(e) Link lengths measured in kilometers, and

(f) Candidate capacities and their associated cost factors measured in bps and dollars  respectively.

5.  A non-preemptive FIFO queuing system [BG92] is used to calculate the average link delay for each

class of packet, and also the average network delay for each class.

6. Propagation and nodal processing delays are assumed to be zero.

Based on the standard network delay expressions [LE94], [BG92], [Kl64], all the researchers in

the field have used the following formulae for the delay cost incurred in the network:
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In the above,

Tjk  is the Average Link Delay for packet class k on link j,

Ur is the Utilization due to the packets of priority 1 through r (inclusive),

Vr is the set of classes whose priority level is in between 1 and r (inclusive),

Zk is the Average Delay for packet class k,

η λj jl

l

= ∑ is the Total Packet Rate on link j,

γ λk jk

j

= ∑ is the Total Rate of packet class k entering the network,

λjk is the Average class k Packet Rate on link j,

mk is the Average Bit Length of class k packets, and

Cj is the Capacity of link j,

As a result of the above the problem reduces to the integer programming problem which is to

minimize the network cost,

D =   ∑
  i

  

   ∑
  j

   
 
      dj Cj xij   

subject to,

Z B kk k≤ ∀, ,

where, dj is the discrete link cost-capacity function for link j,

           Bk is the maximum allowable average delay for packet class k, and

           xij is unity if link type i is chosen for link j, and zero otherwise.

Consequently,

x jij

i

= ∀∑ 1, .

II. PREVIOUS SOLUTIONS

II.1 THE MARAYUMA -TANG SOLUTION
The Marayuam/Tang (MT-CA) solution to the Capacity Assignment (CA) problem [MT77] is

based on several low level heuristic routines adapted for total network cost optimization. Each routine
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accomplishes a specific task designed for the various phases of the cost optimization process. These

heuristics are then combined, based on the results of several experiments, to give a composite algorithm.

Some additional notation is required before the heuristic routines can be introduced. These are :

Cj  is the capacity currently assigned to link j,

Cj
+  is the next higher capacity available to link j,

Cj
-
  is the next lower capacity available to link j,

Dj  is the cost of link j when Cj  is used,

Dj
+  is the cost of link j when Cj

+  is used,

Dj
-
  is the cost of link j when Cj

-
  is used,

Tjk  is the average link delay for packet class k when Cj  is used on link j,

Tjk
+  is the average link delay for packet class k when Cj

+  is used on link j,

Tjk
-
  is the average link delay for packet class k when Cj

-
  is used on link j,

Zjk  is the average delay for packet class k when Cj  is used on link j,

Zjk
+  is the average delay for packet class k when Cj

+  is used on link j, and finally,

Zjk
-
  is the average delay for packet class k when Cj

-
  is used on link j.

The Marayuam/Tang (MT-CA) solution to the CA problem is based on the philosophy of a few

procedures. We describe each of them below.

First, there are two initial capacity assignment heuristics, SetHigh and SetLow:

(a) SetHigh: In this procedure each link is assigned the maximum available capacity.     

Observe that if there is a class for which the delay bound is smaller than the average delay then the problem

is not feasible.

(b) SetLow: On invocation each link is assigned the minimum available capacity.

We now describe the actual cost optimization heuristics in which the fundamental motivating

concept is to decide on increasing or decreasing the capacities using various cost/delay trade-offs. This is

done using some fundamental procedures explained in the next few subsections.

II.1.1 PROCEDURE ADDFAST
This procedure is invoked in a situation when all of the packet delay requirements are not being

satisfied and it is necessary to raise the link capacities while simultaneously raising the network cost, until

each packet’s delay bound is satisfied.

The first step is to determine the class with the smallest difference between the average delay of the

network and the delay bound of the packet. This identifies the packet class that benefits the most from an
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increase in link capacity. Next, the link that gives the maximum performance improvement per unit cost for

the packet class is found and its capacity is increased to the next higher one. This process continues until

the delay requirements of each packet class are satisfied. The procedure is formally described below.

Procedure AddFast
Input: No parameters. State of the network is required as input.
Output: The modified state of the network in which the cost of network is increased.
BEGIN

Repeat

Find the packet class k which maximizes {Zk / Bk }

Find the link j which carries k class packets and maximizes 
λjk. (Tjk - Tjk

+
)

Dj
+- Dj 

    

Capacity(Link j) := Cj
+

Until  (Zk  ≤  Bk is true for all k)
END Procedure AddFast

II.1.2 PROCEDURE DROPFAST
This procedure is invoked in a situation when all of the packet delay requirements are being

satisfied but it is necessary to lower the link capacities, and thus lower the network cost, while

simultaneously satisfying the average delay bound for each packet class.

The first step is to determine the class with the maximum difference between the average delay of

the network and the delay bound of the packet. Next, the link that gives the minimum performance

degradation per unit cost for the packet class is found, and its capacity is decreased to the next lower one.

This process continues as long as the delay constraint of any packet class is not violated. The pseudo-code

of this procedure is given below.

Procedure DropFast
Input: No parameters. State of the network is required as input.
Output: The modified state of the network in which the cost of network has been decreased.
BEGIN

Repeat

Find the packet class k which minimizes {Zk / Bk }

Find the link j which carries k class packets and minimizes 
λjk. (Tjk

-
 - Tjk)

Dj- Dj
-

    

Capacity(Link j) :=  Cj
-

Until  (Zk
-  ≤ Bk holds for all k)

END Procedure DropFast

II.1.3 PROCEDURE EXC
This procedure listed below attempts to improve the network cost by pairwise link capacity

perturbations. For any two links i and j we reassign the capacities (using the notation described earlier) as



9

follows, Ci := Ci
+ and Cj := Cj

-. This reassignment must not violate any delay constraint and must satisfy 

Di + Dj > Di
+ + Dj

-. The formal code is omitted here.

To allow the concatenation of the heuristics described above the algorithm provides two interfaces,

ResetHigh and ResetLow below. ResetHigh is the interface used by DropFast and ResetLow is the

interface used by AddFast. They are:

(a) ResetHigh: In this procedure the capacity of each link is increased to the next higher one, C+.

(b) ResetLow: In this procedure the capacity of each link is decreased to the next lower one, C-.

II.1.4 THE MARAYUMA/TANG ALGORITHM
Marayuma/Tang determined that a solution given by one heuristic can often be improved by

running other heuristics consecutively. The MT-CA algorithm, given below,  is the best such composite

algorithm. It yielded the best overall performance based on both the solution’s accuracy and efficiency.

MT-CA //Due to Marayuma and Tang
Input: The network characteristics and packet types.
Output: The lowest cost network capacity assignment vector.
BEGIN-MAIN //Algorithm MT-CA

SetHigh()
previous-cost := calculate-network-cost()
DropFast()
current-cost := calculate-network-cost()
While (current-cost < previous-cost) Do

ResetHigh()
DropFast()
Exc()
ResetLow()
AddFast()
DropFast()
Exc()
previous-cost := current-cost
current-cost := calculate-network-cost()

End-While
END-MAIN //Algorithm MT-CA

II.2 THE LEVI/ERSOY SOLUTION
To our knowledge the faster and more accurate scheme is the Levi/Ersoy solution to the CA

problem (LE-CA) [LE94] which is based on the concept of simulated annealing. Simulated Annealing is

an iterative, heuristic search paradigm, based on statistical physics, that has been used to solve a number of

different problems. The process begins with an initial random, feasible solution and creates neighbor

solutions at each iteration. If the value of the objective function of the neighbor is better than that of the

previous solution, the neighbor solution is accepted unconditionally. If, however, the value of the objective
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function of the neighbor solution is worse than the previous solution it is accepted with a certain

probability. This probability is called the Acceptance Probability and is lowered according to a

distribution called the Cooling Schedule as the iterations continue.

Since the simulated annealing process is a multi-purpose method, its basic properties must be

adopted for the CA problem. In this case, the solution will be a Capacity Assignment Vector, C, for the

links of the network. Therefore, C = (C1, C2, C3, ..., Ci, ..., Cm)  where m is the total  number of links and

Ci takes a value from the set of possible link types/capacities. The objective function is the total cost of the

links. Neighbor solutions, or assignment vectors, are found by first selecting a random link and randomly

increasing or decreasing its capacity by one step. Feasibility is constantly monitored and non-feasible

solutions are never accepted.

II.2.1 THE LEVI/ERSOY ANNEALING HEURISTIC
The simulated annealing heuristic used by Levi/Ersoy has three major steps listed below.

1. Generate a sequence of neighbor CA vectors, Cn, to the currently accepted solution , Ca.

2. Calculate the cost difference, ∆D, between Ca and Cn.

3. If the difference is negative (implying that the cost decreases) Cn is accepted unconditionally. If the

difference is positive (implying that the cost increases) Cn is accepted with a certain probability.

This probability is given by the expression exp(-∆D/tk) , where tk is the Control Parameter and is

gradually decreased as the algorithm proceeds according to the cooling schedule. Note that even if the cost

increases there is a chance that Cn will be accepted. This allows the algorithm to search for a global

minimum, because if such configurations were always rejected only a portion of the search space would be

scanned and only convergence to a local minimum could be guaranteed.

In the previous subsection we discussed how neighbor solutions are created. We now examine the

criteria for the cooling schedule. There are four basic considerations listed below.

(i) The first parameter considered is t0, the initial value of the control parameter tk.

The initial value of the control parameter, t0,  is determined so that virtually all feasible neighbors

of the initial capacity assignment vector, Ci, are acceptable. This means that t0 is chosen so that P0 = exp(-

∆Dmean/t0) ≅ 1, for all possible feasible neighbors. ∆Dmean is the average increase in cost and is calculated by

looking at W random neighbors of Ci. Therefore t0 becomes ∆Dmean/ln(1/P0). In our implementation, the

value of P0 is set to 0.99. W is set to 30 if the number of links is less than 16, otherwise it is assigned a

value which is twice the number of links.

(ii) The second parameter considered is the number of iterations for each value of the control parameter tk,

which is equivalently the criterion to change tk. In the current implementation the control parameter is



11

updated after five neighbors have been accepted or the number of iterations for that value of tk is equal to

twice the number of links.

(iii) The rule, or formula, used to update the control parameter tk.

The initial value of k is unity. At each change of tk, the value of k is incremented by unity and the

following formula is applied.

tk = t0 * e-αk

where, α is a small positive number. In this implementation it is set to 0.5.

(iv) The stopping criteria for the algorithm.

The algorithm terminates if the cost remains the same for a few consecutive values of tk. In our

implementation we required that the cost should remain the same for three consecutive values of tk.

The formal algorithm is quite straightforward and is omitted here in the interest of brevity.

III. LEARNING AUTOMATA
Learning Automata have been used to model biological learning systems and to find the optimal

action which is offered by a random environment. The learning is accomplished by actually interacting with

the environment and processing its responses to the actions that are chosen, while gradually converging

toward an ultimate goal. There are a variety of applications that use automata [NT89, La81] including

parameter optimization, statistical decision making, telephone routing, pattern recognition, game playing,

natural language processing, modeling biological learning systems, and object partitioning [OM88]. In this

section we shall provide a basic introduction to the topic and show how these principles can be used to

formulate a solution to the CA problem.

The learning loop involves two entities, the Random Environment (RE) and a Learning

Automaton (LA). Learning is achieved by the automaton interacting with the environment by processing

responses to various actions and the intention is that the LA learns the optimal action offered by the

environment. A complete study of this subject can be found in the book ‘Learning Automata: An

Introduction’ by Narenda and Thathachar [NT89] and ‘Learning Automata’ by Lakshmivarahan [La81]

which contains a detailed analysis and examples of the types and applications of learning automata.

The actual process of learning is represented as a set of interactions between the RE and the LA.

The LA is offered a set of actions {α1, ..., αr} by the RE it interacts with, and is limited to choosing only

one of these actions at any given time. Once the LA decides on an action αi , this action will serve as input

to the RE. The RE will then respond to the input by either giving a reward, signified by the value ‘0’, or a

penalty, signified by the value ‘1’, based on the penalty probability ci associated with αi . This response

serves as the input to the automaton. Based upon the response from the RE and the current information it
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has accumulated so far, the LA decides on its next action and the process repeats. The intention is that the

LA learns the optimal action (that is, the action which has the minimum penalty probability), and

eventually chooses this action more frequently than any other action.

This interaction between the two is shown diagramatically below.

{c1, ..., cr}

Random Environment

           α = {α1, ..., αr}  β = {0, 1}

Learning Automaton

Figure 3.1: The Automaton - Environment Feedback Loop

Based on the structure of the transition and output matrices LA can be classified into the following

two categories, mainly (i) Fixed Structure Stochastic Automata (FSSA), and (ii) Variable Structure

Stochastic Automata (VSSA). FSSA exhibit transition and output matrices that are time invariant as

opposed to VSSA which possess exhibit transition and output matrices that change with time. We shall

work with the latter class of automata.

Although the VSSA can be described in terms of the transition and output matrices they are usually

completely defined in terms of action probability updating schemes which are either continuous (operate

in the continuous space [0, 1]) or discrete (operate in steps in the [0, 1] space). The action probability

vector P(n) of an r-action LA is defined as:

[p1(n), ..., pr(n)]T

where, pi(n) is the probability of choosing action αi at time ‘n’,

0 ≤ pi(n) ≤ 1,  and  p ni

i

r

( ) =
=
∑ 1

1

.

Since the VSSA chooses an action based on a distribution specified by its action probability vector

it is implemented using a random number generator. Since a random number generator and the action

probability vector are used to decide which action is to be chosen, the VSSA has the added flexibility of

choosing two different actions at two consecutive time instants. Also, action probability updating schemes

are mainly divided into two mutually exclusive classes.

(a) A scheme with no absorbing barrier, or an ergodic scheme, has a distribution of the limiting action

probabilities that is independent of the initial distribution of values. This type of scheme is
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primarily used if the RE is non-stationary as the LA will not get locked into any of the given

actions. An example of this type of scheme is the Linear Reward-Penalty (LRP) scheme.

(b) A scheme which has an absorbing barrier, or an absorbing scheme, has values of limiting action

probabilities that depend on the initial distribution of action probabilities. This type of scheme is

primarily used if the RE is stationary. An example of this type of scheme is the Linear Reward-

Inaction (LRI) scheme.

A VSSA can be formally defined as a quadruple (α, P, β, T), where,

(i) α = {α1, ..., αr} is the set of r actions offered by the RE that the LA must choose from.

(ii) P = [p1(n), ..., pr(n)] is the action probability vector where pi represents the probability of choosing

action αi  at the nth time instant.

(iii) β = {0, 1} is the set of inputs from the RE where ‘0’ represents a reward and ‘1’ a penalty.

(iv) T is the updating scheme. This is a map from P × β to P, and defines the method of updating the

action probabilities on receiving an input from the RE.

Since we require an absorbing strategy, the updating rule we shall use is for the Linear Reward-

Inaction (LRI) scheme explained below.

Consider a VSSA that has r possible actions, {α1, ..., αr}  with penalty probabilities {c1, .., cr}. If

these actions are equally likely at first, then the initial probability vector is [1/r, ..., 1/r]T. The updating

rules for the LRI scheme are as follows.

pi(n+1) = 1 - ∑j≠i λr pj(n) if αi is chosen and β=0

pj(n+1) = λr pj(n)  if αi is chosen and β=0

pj(n+1) = pj(n) if αi , αj chosen, and β=1,

where λr (0 < λr < 1) is the parameter of the scheme. Typically, λr is chosen to be close to unity.

Notice that only rewards are processed in this scheme. Therefore, if αi is chosen and it receives a

reward the probability of choosing this action on the next iteration, pi(n+1), must be increased. This is

accomplished in two steps. First, the probabilities of choosing any other action αj, for all j≠i, on the next

iteration are reduced by setting pj(n+1) to λr pj(n) for all j≠i.  Next, the probability of choosing αi on the

next iteration, pi(n+1), is increased by subtracting the sum of all pj(n+1) for j≠i, from unity.

It can be shown that as this process continues, a unit vector will eventually be reached since the

chain is absorbing. Indeed, the LRI scheme can be shown to be ε-optimal - it converges to the optimal action

with a probability as close to unity as desired. It is thus ideal for solving the CA problem.
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IV. THE CONTINUOUS AUTOMATA SOLUTION TO CA
We now propose a continuous LA which can be used to solve the CA problem. The Continuous

Automata Solution to CA (CASCA) algorithm is faster than either the MT and LE algorithms and also

produces superior cost results.

This solution to the CA problem utilizes the capacity assignment vector nomenclature discussed for

the Levi/Ersoy solution. The capacities of the links are represented by a vector of the following form.

 (C1, C2, ..., Ci, ..., Cn)

where Ci is chosen from a finite set of capacities (e.g. 1200, 2400, ..., etc.), and n is the maximum

number of links.

In this solution each of the possible link capacities of the capacity assignment vector has an

associated probability vector of the following form:

(Iij, Sij, Dij)

where Iij is the probability that the current capacity j of the link i should be increased,

           Sij is the probability that the current capacity j of the link i should remain unchanged, and

           Dij is the probability that the current capacity j of the link i should be decreased.

The final solution vector will be comprised of the capacities, Ci, that exhibit Sij probability values

that are closest to the converging value of unity. In a practical implementation this value is specified by the

user and is reasonably close to unity. The closer this value is to unity, the higher the level of accuracy,

which will result in a superior final capacity vector and associated network cost.

We now present the various initial settings for the probability vector. Indeed, by the virtue of the

various values for Ci, there are three possible settings for the initial probability vector (Iij, Sij, Dij) given

below as Init1, Init2 and Init3 respectively. To explain how this is done, we shall refer to the index of a

capacity as its “capacity-index”. Thus, if the set of possible capacities for a link are {1200, 2400, 3600,

4800, 9600} the corresponding capacity-indices are {0, 1, 2, 3, 4} respectively. Using this terminology we

shall explain the initial settings and the updating strategies for our scheme.

Init 1: This is the scenario when the capacity-index of the link is at the lowest possible value, 0,

called the left boundary state. This means that the capacity cannot be lowered further.

In such a case,

 Ii0 = 1/2, Si0 = 1/2, Di0 = 0,

because the value can be increased or stay the same, but cannot be decreased.

Init 2: This is the scenario where the capacity-index of the link is at the highest possible value, n, called the

right boundary state. This means that the capacity cannot be raised further. Thus,

 Iin = 0, Sin = 1/2, Din = 1/2,
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 because the value can be decreased or stay the same, but cannot be increased.

Init 3: This is the scenario where the capacity-index of the link is at one of the interior values, referred to as

the interior state. This means that the capacity can be raised or lowered or maintained the same, and

hence,

 Iij = 1/3, Sij = 1/3, Dij = 1/3 for 0 < j < n.

The next problem that arises is that of determining when, and how, to modify the probability values

for a given link/capacity combination. We shall explain this in detail presently. Initially, a random feasible

capacity assignment vector is chosen and assumed to be the current best solution. After this step, the

algorithm enters the learning phase which attempts to find a superior cost by raising and lowering the

capacities of the links using the LRI learning strategy. At each step of this process the capacity of every

single link is raised, lowered or kept the same based on the current action probability vector associated

with the link. Thus, at every single instant, the algorithm examines a (possible completely) different

capacity assignment vector. Based on the properties of the new capacity vector, the associated probability

vector for this assignment is modified in two cases to yield the updated solution and the new capacity

probability vector. We consider each of these cases individually.

Case 1 : The new capacity assignment is feasible. Since this means that no delay constraints are 

violated, the probability vector is modified in the following manner.

(a) if the capacity was increased we raise Dij, the Decrease probability of the link,

(b) if the capacity stayed the same we raise Sij, the Stay probability of the link, and,

(c) if the capacity was decreased we raise Dij, the Decrease probability of the link.

Case 2 : The new capacity assignment is feasible and the cost of the network has been reduced. 

Since this means that the new assignment results in a lower cost than the previous best solution 

the probability vector is modified in the following manner.

(a) if the capacity was increased we raise Dij, the Decrease probability of the link,

(b) if the capacity stayed the same we raise Sij, the Stay probability of the link, and,

(c) if the capacity was decreased we raise Sij, the Stay probability of the link.

It is important to remember that we are always trying to minimize the cost, and so we never

attempt to reward an increase in cost, by raising the increase probability, Iij,, at any point in time.

The next question we encounter is one of determining the degree by which the probability vectors

are modified. These are done in terms of two user defined quantities - the first, λR1, is the reward parameter

to be used when a feasible solution is reached, and the second, λR2, is used when the solution also has a

lower cost. As in learning theory, the closer these values are to unity, the more accurate the solution. It
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should also be noted that the rate of convergence to the optimal probability vector decreases as the

parameters increase. The closer they are to unity, the slower the algorithms are.

As stated previously, this paper not only represents a new solution for the CA problem, but also

introduces a new way of implementing LA. Traditionally, each LA would choose an action directly from

the set of options available in the application domain. For example, in the case of the CA problem,

traditional LA would choose the new capacity of the selected link from the total set of available capacities.

In our current philosophy we proceed from a “meta-level” whereby each LA chooses the strategy (increase

the capacity, decrease the capacity, or let the capacity remain unchanged) which is then invoked on the

selected link to set the new capacity. In this way the LA always selects its choice from a different action

space rather than from a vector consisting of all the available capacities.

We clarify the operation of the scheme by the following example.

Example 4.1

Let us assume that the capacity j of a link i has been lowered, such that j = j - 1, resulting in a

lower cost feasible solution. This means that we take the following steps.

(i) Since the solution vector is feasible, we shall raise the decrease probability, Dij , as:

Iij(t+1) = λR1 * Iij(t)

Sij(t+1) =  λR1 * Sij(t)

Dij(t+1) = 1 - (Iij(t+1) + Sij(t+1)).

(ii) Now, since the solution vector results in a lower network cost it implies that the stay

probability, Sij, should be raised. This is done as follows:

Iij(t+1) = λR2* Iij(t)

Dij(t+1) = λR2 * Dij(t)

Sij(t+1) = 1 - (Iij(t+1) + Dij(t+1)).

Similar steps are performed for each of the possible scenarios that are examined during the

execution of the algorithm. This process continues until all the link capacities, Ci, have Sij probability

values that are close enough to unity.

If the test for feasibility fails then the link capacities are reset to their last lowest cost values. This

enables the algorithm to examine all possible configurations, even more costly configurations, while

maintaining a base solution to which it can return to if there are no feasible, lower cost solutions

encountered in the search. The algorithm is stated formally below.
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THE CASCA ALGORITHM
Input:  (i) The network characteristics and packet types.

(ii) num-iterations - the total number of iterations.
(iii) required-accuracy - the value to which the probability must reach before we accept 
it as being converged.
(iv) Parameters λR1, λR2.

Output: The lowest cost network capacity assignment vector.
Method
START-MAIN //Algorithm CASCA
For (i=1 to maxlinks)

For (j=1 to maxcaps)
If (linki = left-boundary-state) Then Iij = 1/2, Sij = 1/2, Dij = 0 End-If
If (linki = right-boundary-state) Then Iij = 0, Sij = 1/2, Dij = 1/2 End-If

            If (linki = internal-state) Then Iij = 1/3, Sij = 1/3, Dij = 1/3 End-If
End-For

End-For
Repeat For (i=1 to maxlinks) Ci = RAND(1, maxcap) End-For
Until (network is feasible)
current-cost = calculate-network-cost()
For (i=1 to maxlinks) best-Ci = Ci End-For
best-cost = current-cost
While  (count < num-iterations) AND (accuracy-level(all links) < required-accuracy)

For (i=1 to maxlinks)
Actioni = RAND(Increaseij, Stayij, Decreaseij)
If (Actioni = Increaseij) Then Ci = Ci

+

Else If (Actioni = Decreaseij) Then Ci = Ci
-  End-if

End-if
End-For
current-cost = calculate-network-cost()
For (i=1 to maxlinks)

j = Ci

If (network is feasible)
Then If (Actioni = Increaseij) Then Raise(Dij, λR1) End-If

                    If (Actioni = Stayij) Then Raise(Sij, λR1) End-If
                    If (Actioni = Decreaseij) Then Raise(Dij, λR1) End-If

Else Reset all links to best-cost capacities.
End-If
If (network is feasible) AND (current-cost < best-cost)
Then If (Actioni = Increaseij) Then Raise(Dij, λR2) End-If

                    If (Actioni = Stayij) Then Raise(Sij, λR2) End-If
                    If (Actioni = Decreaseij) Then Raise(Sij, λR2) End-If

          For (i=1 to maxlinks) best-Ci = Ci End-For
                   best-cost = current-cost

End-If
End-For

End-While
END-MAIN //Algorithm CASCA
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Procedure Raise
Input: (i) Actionij : either - Increase, Stay, Decrease - performed on link i with current capacity j.

(ii) λR, which is the learning scheme modification parameter. λR is set to λR1 or λR2 depending on
whether the new solution is feasible or  both feasible and superior.
(iii) The current probability vector for link i with current capacity j, (Iij, Sij, Dij).

Output:
The modified probability vector for link i with current capacity j, (Iij, Sij, Dij).

Method
BEGIN
If (Action = Increase)
Then Dij = λR * Dij

          Sij =  λ R* Sij

          Iij = 1 - (Dij + Sij)
Else If (Action = Stay)
        Then Iij = λR * Iij

                  Dij =  λR * Dij

      Sij = 1 - (Iij + Dij)
        End-If
Else If (Action = Decrease)
        Then Iij = λR * Iij

                  Sij =  λR * Sij

     Dij = 1 - (Iij + Sij)
        End-If
End-If
END Procedure Raise

V. EXPERIMENTAL RESULTS

V.1 EXPERIMENTAL TEST BENCH
In order to evaluate the quality of potential solutions to the CA problem an experimental test bench

must be established. This mechanism will establish a base from which the results of the algorithms can be

assessed in terms of the comparison criteria. In this case the comparison criteria is the cost of the solution

and the execution time. The test bench for the CA problem consists of two main components which are

described below.

First, the potential link capacities and their associated cost factors are specified as inputs, and in

our case the specific values we have used are shown in Table 5.1.1 below. The potential link capacities

refers to a finite set of capacities, measured in bits per second, that are available for each link which are

given in column 1. Each link capacity has two cost entries - the initial setup cost of establishing the link

which is given in column 3, and a cost per kilometer of the length of the link which is given in column 2.

Each of these cost factors increases as the capacity of the link increases.

The next step is to establish a set of sample networks that can be used to test the various solution

algorithms. Each of these networks will possess certain characteristics that remain the same for each
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algorithm, and therefore allow the results of the solutions to be compared fairly. The set of networks that

will be used in this paper are shown in Table 5.1.2 below. Each network has a unique I.D. number given in

column 1 and is composed of a number of nodes connected by a number of links, given in column 2, with

the average length of the links given in column 3. Each network will carry multiple classes of packets with

unique priority levels. The classes of packets which the network carries is given in column 4 while the

average packet rate requirements, for each class over the entire network, is given in column 5.

CAPACITY (bps) COST PER KM ($) FIXED COSTS ($)
9600 0.31 750.00

19200 1.31 850.00
50000 2.63 850.00
108000 2.63 2400.00
230000 13.10 7300.00
460000 37.50 8300.00

Table 5.1.1 Set of possible Link Capacities and Costs that are used for all networks.

NET
I.D.

NUMBER
OF LINKS

AVERAGE LINK
LENGTH

PACKET
CLASSES

AVERAGE
PACKET RATES

1 6 54.67 1
2
3

13
13.5
14.5

2 8 58.75 1
2
3
4

14.375
15.625
15.125
15.5

3 12 58.08 1
2
3
4

15.417
15

15.5
17.083

4 12 58.08 1
2
3
4
5

15.417
17

15.5
17.083
17.33

5 48 54.67 1
2
3

13
13.5
14.5

Table 5.1.2 Characteristic values of the networks.

In the suite of networks used in the test bench the network I.D. indicates the average size and

complexity of the network. This means that network 4 is substantially more complex when compared with

network 1 in terms of the number of links and the type and quantity of packet traffic carried.
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Each of the sample networks that is used to test the algorithms carry a distinct type of packet

traffic, and these are catalogued in Table 5.1.3 below. Each network, given by the network I.D. in column

1, carries a number of different packet classes, given in column 2. Each packet class has its own distinct

priority, given in column 3, delay bound, given in column 4, and length, given in column 5. The delay

bound indicates the maximum amount of time that the packet can stay undelivered in the network.

NET
I.D.

PACKET
CLASS

PACKET
PRIORITY

DELAY
BOUND

PACKET
LENGTH

1 1
2
3

3
2
1

0.013146
0.051933
0.914357

160
560
400

2 1
2
3
4

3
2
1
4

0.013146
0.051933
0.914357
0.009845

160
560
400
322

3 1
2
3
4

3
2
1
4

0.053146
0.151933
0.914357
0.029845

160
560
400
322

4 1
2
3
4
5

3
2
1
4
5

0.053146
0.151933
0.914357
0.029845
0.000984

160
560
400
322
12

5 1
2
3

3
2
1

0.013146
0.051933
0.914357

160
560
400

Table 5.1.3 Characteristic values of packet classes for each network.

For example, Network #1 has six links with an average link length of 54.67 Km. This type of

network carries packets of three different types:

1. Packet class one has a priority level of three. Each packet of this class has an average length of

160 bits with a maximum allowable delay of 0.013146 seconds.

2. Packet class two has a priority level of two. Each packet of this class has an average length of

560 bits with a maximum allowable delay of 0.051933 seconds.

3. Packet class one has a priority level of one. Each packet of this class has an average length of

400 bits with a maximum allowable delay of 0.914357 seconds.

Figure 5.1.1 shows a sample network similar to Network Type 1. Each of the six links, L1 - L6,

can be assigned a single capacity value from Table 5.1.1 and the average length will be specified by the
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quantity “average length” of Network Type 1 taken from Table 5.1.2 . Such a network will carry traffic

that exhibit characteristics similar to those shown in Table 5.1.2 and Table 5.1.3 for Network Type 1.

1 L1 2

     L2 3       L6

                      L3                                                               L4

4 5

                                              L5

Figure 5.1: A sample network of Type 1.

V.2 TEST RESULTS
In order to demonstrate that the new algorithm achieved a level of performance that surpassed both

the MT and LE algorithms an extensive range of tests were performed and a sample of these tests are

shown in the tables below. Each table contains the results obtained when the algorithm was run five

consecutive times for each network using each algorithm. The result of each test is measured in terms of

two parameters, Cost and Time which are used for comparison with the MT and LE algorithms. In the

interest of time we have only considered one large network in this series of tests, namely Network #5 which

consists of 50 links, since the execution times of the previous solutions, especially the MT algorithm, take a

considerable time to produce results for larger networks. A comparison with the MT and LE solutions

concludes the section.

Test Category Net 1 Net 2 Net 3 Net 4 Net 5
1 Cost ($)

Time (sec)
5735.04

0.22
12686.10

0.77
11669.30

1.86
53765.90

2.14
43341.90

78.05
2 Cost ($)

Time (sec)
5735.04

0.22
12686.10

0.77
11669.30

1.93
53765.90

2.14
43341.90

83.04
3 Cost ($)

Time (sec)
5735.04

0.22
12686.10

0.77
11669.30

1.92
53765.90

2.14
43341.90

67.45
4 Cost ($)

Time (sec)
5735.04

0.22
12686.10

0.77
11669.30

1.92
53765.90

2.08
43341.90

67.45
5 Cost ($)

Time (sec)
5735.04

0.22
12686.10

0.77
11669.30

2.03
53765.90

2.14
43341.90

67.45
Table 5.2.1 :  Results for MT-CA Algorithm tests using the networks described above.
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Test Category Net 1 Net 2 Net 3 Net 4 Net 5
1 Cost ($)

Time (sec)
5735.04

0.22
12686.10

0.49
12978.80

0.93
65501.20

1.37
45538.40

5.55
2 Cost ($)

Time (sec)
5735.04

0.22
15786.10

0.38
11386.60

0.83
49467.90

1.59
47360.60

5.98
3 Cost ($)

Time (sec)
5735.04

0.22
7214.22

0.55
11416.80

1.37
49509.80

1.71
43400.40

5.39
4 Cost ($)

Time (sec)
5735.04

0.22
12686.10

0.49
10289.70

1.10
47097.70

1.21
39919.60

5.38
5 Cost ($)

Time (sec)
5735.04

0.22
12686.10

0.38
12990.00

0.99
45709.60

1.93
39838.40

4.01
Table 5.2.2 : Results for LE-CA Algorithm tests using the networks described above.

Test Category Net 1 Net 2 Net 3 Net 4 Net 5
1 Cost ($)

Time (sec)
4907.68

0.05
8843.10

0.33
12961.60

0.66
49876.90

1.16
40406.90

1.65
2 Cost ($)

Time (sec)
5020.00

0.11
10144.60

0.72
10006.60

0.66
49221.60

1.31
48688.90

1.32
3 Cost ($)

Time (sec)
4919.68

0.05
7265.26

0.22
11744.70

0.60
48376.00

1.37
37809.00

3.13
4 Cost ($)

Time (sec)
5161.20

0.06
6940.22

0.33
10779.20

0.66
45709.60

1.38
37771.00

2.14
5 Cost ($)

Time (sec)
4919.68

0.11
7448.10

0.33
10194.70

0.83
43189.50

1.05
37723.80

2.37
Table 5.2.3 : Results for CASCA Algorithm tests using the networks described above.

The parameters are λλR1 = 0.9, λλR2 = 0.9.

Test Category Net 1 Net 2 Net 3 Net 4 Net 5
1 Cost ($)

Time (sec)
Iterations

4907.68
0.22
160

7016.78
0.87
422

10458.80
1.37
429

41888.40
2.58
467

39303.40
2.08
194

2 Cost ($)
Time (sec)
Iterations

4907.68
0.22
163

7214.22
0.55
244

9939.27
1.16
389

44138.60
2.80
510

40866.20
2.14
203

3 Cost ($)
Time (sec)
Iterations

4907.68
0.11
138

7214.22
0.66
300

10725.90
1.81
629

40348.90
3.40
637

37862.00
3.46
348

4 Cost ($)
Time (sec)
Iterations

4907.68
0.28
214

7186.38
0.55
285

10479.70
1.10
348

45385.00
3.08
565

37629.40
1.82
176

5 Cost ($)
Time (sec)
Iterations

4907.68
0.28
190

6988.94
0.72
325

10707.30
1.10
384

41888.40
2.80
520

38957.80
1.87
180
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Table 5.2.4 : Results for CASCA Algorithm tests using the networks described above. The
parameters are λλR1 = 0.95, λλR2 = 0.95. In this case, unlike the other tables, we have
also given the mean number of iterations required for the scheme to converge.

The results displayed in the tables demonstrate that the LA solution to the CA problem produces

superior results when compared with both the MT and LE solutions. There is always a set of reward values

that can be used to produce superior results, but in every case the cost value produced by the new algorithm

falls in a range that is generally much closer to the optimal value. Indeed, the MT and LE solutions

categorically produce values that generally lie much further from the optimal value. The new algorithm also

has consistently lower execution times in most cases when compared to either of the previous solutions. For

example, if we examine the results for the set of five tests where λR1 is set to 0.9 and λR2 is set to 0.9, the

results clearly demonstrate the power of the scheme in both time and accuracy. Consider the tests for

Network #4. The MT algorithm finds its best cost as $53,765.90 and takes 2.14 seconds while the LE

algorithm finds a best cost of $45,709.60 and takes 1.93 seconds. The CASCA algorithm finds a best cost

of $43,189.50 and takes only 1.05 seconds which is superior to either of the previous best costs. For this

series of tests, the best set of reward values are 0.9/0.9 which always yield near-optimal solutions and have

lower execution times than either the MT or LE solutions.

As a point of interest, note that for the series of tests where λR1 is set to 0.95 and λR2 is set to 0.95

the CASCA algorithm always finds a superior cost value, even though the execution times are sometimes

larger than those produced by the MT or LE solutions. In this case (see Table 5.2.4) apart from the

accuracy and time results which can be used to compare the various algorithms, we have also given the

mean number of iterations needed for the algorithm to converge. The table demonstrates the power of the

CASCA algorithm: for example, in Test 5, when the algorithm examined a network of Type 5, the

algorithm converged to its final value with an average of only 180 iterations, and the entire computation

took only 1.87 seconds.

Hundreds of other experiments have been carried out which demonstrate identical properties of the

CASCA algorithm. They are omitted here in the interest of brevity, but can be found in [DR97].

It is obvious that as the reward values get closer to unity the accuracy of each cost value improves

but the execution time also increases. This means that the algorithm can be optimized for speed (decrease

the parameters λR1, λR2), accuracy (increase the parameters λR1, λR2) or some combination of the two that

the user finds appropriate for their particular requirements. Also, the value of  λR2 should always be set

lower than, or equal to, λR1 since this is only invoked when a lower cost solution is found and is not used as

much as λR1, which is invoked when any feasible solution is found. This means that the algorithm can make
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larger jumps once it has found a lower cost solution since the main goal is to find the lowest cost solution

possible.

VI. CONCLUSIONS
In this paper we have studied the Capacity Assignment (CA) problem. This problem focuses on

finding the lowest cost link capacity assignments that satisfy certain delay constraints for several distinct

classes of packets that traverse the network.

The first reported solution to the CA problem is due to Marayuma and Tang (MT) and it uses a set

of heuristic procedures to find the lowest cost link capacity configuration. This algorithm is limited by large

execution times that increase as the network becomes larger and more complex. The second algorithm, due

to Levi and Ersoy (LE),  is based on the concept of simulated annealing. It produces a superior low cost

capacity assignment, and has much faster execution time than the MT algorithm.

Our fundamental contribution has been to design the Continuous Automata Solution to CA

(CASCA) algorithm, a LA solution to the problem. This algorithm generally produces superior low cost

capacity assignment when compared with the above algorithms and also proves to be substantially faster.

To the best of our knowledge, this is the fastest and most accurate scheme currently available.

The problem of incorporating topology and routing considerations in the network design remains

open. Also, the problem of relaxing the Kleinrock assumption is still a challenge.
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