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ABSTRACT
In this paper we present a new model for noisy channels which permit arbitrarily distributed

substitution, deletion and insertion errors. Apart from its straightforward applications in string
generation and recognition, the model also has potential applications in speech and uni-
dimensional signal processing. The model is specified in terms of a noisy string generation
technique. Let A be any finite alphabet and A* be the set of words over A. Given any arbitrary
string U � A*, we specify a stochastically consistent scheme by which this word can be
transformed into any Y � A*. This is achieved by specifying the process by which U is
transformed by performing substitution, deletion and insertion operations. The scheme is shown
to be Functionally Complete and stochastically consistent. The probability distributions for these
respective operations can be completely arbitrary. Apart from presenting the channel in which all
the possible strings in A* can be potentially generated, we also specify a  technique by which
Pr[Y|U], the probability of receiving Y given that U was transmitted, can be computed in cubic
time.  This procedure involves dynamic programming, and is to our knowledge, among the few
non-trivial applications of dynamic programming which evaluate quantities involving relatively
complex combinatorial expressions and which simultaneously maintain rigid probability
consistency constraints.

I.  INTRODUCTION
Syntactic and structural pattern recognition are distinct from statistical pattern recognition

because, unlike in the latter, in the former two areas, the processing of the patterns is achieved by
representing them symbolically using primitive or elementary symbols. The pattern recognition
system essentially symbolically models noisy variations of typical samples of the patterns, and
these models are utilized in both the training and testing phases of the system. Thus, the
fundamental question in many of these systems is essentially one of modelling the structural
behaviour of the patterns. From the point of view of reverse engineering or black-box modelling,
this question is, indeed, one of specifying how the individual patterns from the various classes
could have been generated. This is the problem studied in this paper.

In this paper we shall present a new model for noisy channels which transfer (or rather,
carry) symbolic data, garbling it with arbitrarily distributed substitution, deletion and insertion
errors. To our knowledge, this is the first generalized model of its type. Apart from its
straightforward applications in string generation and recognition, like its predecessor [1], the
model also has potential applications in speech and uni-dimensional signal processing.



           

All of text processing involves manipulating the symbols of an alphabet and in almost all
cases this alphabet is finite. Once the alphabet for a text processing problem has been defined, the
next question of importance is one of understanding the nature of the individual  strings that will
be processed. In many applications such as natural languages, telephone directories, and the
vocabulary used by handicapped individuals the dictionary used is finite. But when the dictionary
is prohibitively large, problem analysts tackle the problem by modelling the dictionary
appropriately. Typically, it is represented using a stochastic string generation mechanism. The
most elementary model (also referred to as the Bernoulli Model) is the one in which only the
unigram (single character) probabilities of the dictionary are required [2,6,9,12]. A word in the
dictionary is then modelled as a sequence of characters independently drawn from the unigram
distribution. Typically, these unigram probabilities approximate the probabilities of the symobls in
the original language. A generalization of this is the Markovian Model [1,2,6,8,9, 12,13] where
the probability of a particular symbol occurring depends on the previous symbol. Essentially, this
model is identical to the one which models the dictionary using the bigrams of the language. Both
the Bernoulli Model and the Markovian Model have been used to analyze various pattern
matching and keyboard optimization algorithms, and the associated data structures that are
encountered, such as suffix trees and their generalizations (See the references listed above).

The problem of modelling the language can be viewed from an entirely different perspective,
which is one of viewing the language to be the output of a sequence generator whose input is a
string or language itself. Thus, if we permit the system to be operating without any input (or in an
"unexcited" mode, as a systems theorist would say) all the above scenarios can be appropriately
modelled. Indeed, a finite dictionary is obtained when the unexcited source generator randomly
outputs an element from a predefined set of strings. Similarly, the Bernoulli model is obtained
when the unexcited source generator generates a sequence characterized by a single probability
distribution. Finally, the Markovian Model is obtained when the unexcited source generator
generates a sequence characterized by a probability distribution (the distribution of the first
character) and a finite stochastic matrix which constitutes the "next character" information.

In this paper, we shall consider the channel as an excited random string generator.
Explicitly, we shall consider the channel as a generator whose input is a string U and whose
output is the random string Y. The model for the channel is that Y is obtained by mutating the
input string with an arbitrary sequence of string deforming operations. The operations which we
shall consider in this paper are the substitution, deletion and insertion operations of the individual
symbols of the alphabet. In the literature, these operations are the most popular, because the
general string editing problem has been studied using them [1,5,7,11,14], and furthermore, they
can also be used to study problems involving subsequences and supersequences [7,10,11,14].
Viewed from a philosophical perspective, our model is a "distant" relative of the ones using the
Viterbi algorithm [4,9,13]. It is a generalization of [1], with the advantage that it is functionally
complete even though the distribution for the number of insertions is not a mixture of geometric
distributions.

Using the notation that U is the input to the channel and that Y is its random output, we list
below the novel, salient features of our nodel  :

(i) The strategy is Functionally Complete because it involves all the ways  by which U can
be mutated into Y using the edit operations. It is also stochastically consistent.

(ii) The distributions for the various garbling operations can be arbitrary.
(iii) The probability of U being transformed into the same word, Y, even twice can be

arbitrarily small.



           

(iv) For a given U, the length of Y is a random variable whose distribution does not have
to be a mixture of geometric distributions.

Apart from its straightforward applications in string generation and string comparison, we
believe that just like its "predecessor" [1,13], this scheme will have applications in speech and
phoneme generation and processing.

II.   NOTATION
Let A be a finite alphabet, and A* be the set of strings over A. λ � A is the null symbol. A

string  X�A* of the form X=x1x2...xN is said to be of length |X| = N. Its prefix of length i will be
written as Xi, where i < N. Upper case symbols represent strings, and lower case symbols,
elements of the alphabet under consideration. The symbol ≈≈  represents the set union operator.

II.1 The Null Symbols  ξξ  and  λλ  and the Compression Operators  CI and CO
Let Y' be any string in (A ≈≈ {λ} )* , the set of strings over (A ≈≈ {λ}). The string Y' is called

an output edit sequence. The operation of transforming a symbol a � A  to λ will be used to
represent the deletion of the symbol a. To differentiate between the deletion and insertion
operation, the symbol ξ is introduced. Let X' be any string in (A ≈≈ {ξ})* , the set of strings over
(A ≈≈ {ξ}). The string X' is called an input edit sequence . Observe that ξ is distinct from λ, the null
symbol, but is used in an analogous way to denote the insertion of a symbol. Thus, the operation
of transforming a symbol ξ  to b �A  will be used to represent the insertion of b.

The Output Compression Operator, CO is a function which maps from (A ≈≈ {λ})*  to A*.
CO(Y') is Y' with all the occurrences of the symbol λ removed. Note that CO preserves  the order
of the non-λ symbols in Y'. Thus, for example, if Y'=fλoλr,  CO(Y')=for. Analogously, the Input

Compression Operator, CI is a function which maps from (A ≈≈ {ξ})*  to A*. CI(X') is X' with the
occurrences of ξ removed. Note that CI preserves  the order of the non-ξ symbols in X'.

II.2 The Set of all Possible Edit Operations :  ΓΓ(U,Y)
 For every pair (U,Y), U,Y� A*, the finite set  Γ(U,Y) is defined by means of the
compression operators CI and CO , as a subset of (A ≈≈ {ξ})* x  (A ≈≈ {λ})* as :

Γ(U,Y) = {(U', Y') | (U', Y') � (A ≈≈ {ξ})* x (A ≈≈ {λ})*, and each (U',Y') obeys (i) - (iii)}  (1)
(i) CI(U') = U ;  CO(Y') = Y
(ii) |U'| = |Y'|
(iii) For all 1 ≤  i  ≤ |U'|, it is not the case that u'i =  ξ  and  y'i = λ.

By definition, if (U', Y') � Γ(U,Y),  then, Max[ |U|, |Y| ]  ≤  |U'| = |Y'| ≤  |U| + |Y|.
The meaning of the pair (U', Y') � Γ(U,Y) is that it corresponds to one way of editing U into

Y, using the edit operations of substitution, deletion and insertion.  The edit operations
themselves are specified for  1 ≤ i ≤ |Y'|, as (u'i,y'i), which represents the transformation of u'i, to

y'i. Indeed, if u'i � A and y'i � A, it represents the substitution of y'i for u'i, if u'i � A and y'i = λ, it

represents the deletion of  u'i, and if u'i = ξ and y'i � A, it represents the insertion of y'i.



           

Γ(U,Y) is an exhaustive enumeration of the set of all the ways by which U can be edited to
Y using the three edit operations without destroying the order of the occurrence of the symbols.
Note that we do not permit the channel to delete a symbol it has once inserted or substituted.

Lemma O.
The number of elements in the set Γ(U,Y) is given by :

|Γ(U,Y)|   =   ∑
k=Max(0,|Y|-|U|)

|Y|

      
(|U|+k)!

(k! (|Y|-k)! (|U|-|Y|+k) !)  
  (2)

Proof : The Proof is included in [15].
→→→

Note that the size of Γ(U,Y) increases combinatorially with the lengths of U and Y. Also, observe
that Γ(U,Y) includes duplicate entries for the same edit operations. Thus, if U="f" and Y="go",
the entries which represent the same edit operations {(fξξ, λgo),(ξfξ, gλo),(ξξf, goλ)} will be in
Γ(U,Y). The difference between them is the sequence in which the operations occur.

III.    MODELLING -- THE STRING GENERATION PROCESS
We now describe the process of generating a string Y given an input string U � A*.
First of all we assume that the model utilizes a probability distribution G over the set of

positive integers. The random variable in this case is referred to as Z  and is the number of
insertions that are performed in the mutating process. G is called the Quantified Insertion
Distribution, and in the most general case, can be conditioned on the input string U. The quantity
G(z|U) is the probability that Z =z given that U is the input word. Since G is a distribution, the
sum of G(z|U) over all valid values of z should be unity. Examples of G are the Poisson and
Geometric Distributions. However, G can be arbitrarily general.

The second distribution that the model utilizes is  the probability distribution Q  over the
alphabet under consideration. Q is called the Qualified Insertion Distribution. The quantity Q(a)
is the probability that a � A will be the inserted symbol conditioned on the event that an insertion
operation is to be performed.  Indeed, the sum of Q(a) over all the elements of A should be unity.

The final distribution which the model utilizes is a distribution S over A X (A ≈≈  {λ}) called
the Substitution and Deletion Distribution.  The quantity S(b|a)  is the conditional probability that
given the symbol a � A in the input string is mutated by a stochastic substitution or deletion -- in
which case it will it will be transformed into a symbol b � (A ≈≈  {λ}). Since S is a distribution, the
sum of S(b|a) over all b � (A ≈≈  {λ}) should be unity.

Using the above distributions we now informally describe the model for the garbling
mechanism (or equivalently, the string generation process).  Let |U| = N. Using the distribution G,
the generator randomly determines the number of symbols to be inserted. Let Z  be random
variable denoting the number of insertions that are to be inserted in the mutation. Based on the
random choice of  Z   let  us assume that Z   takes the value z. The algorithm then determines the
position of the insertions  among the individual symbols of U. This is done by randomly
generating an input edit sequence U' � (A ≈≈  {λ})*. For the sake of simplicity, we assume that
each of the (N+k)! / (N! k!) possible strings are equally likely.



           

Since CI(U') is U, the positions of the ξ in U' represent the  positions  where symbols will be

inserted into  U. The non-ξ  symbols in U' are now substituted for or deleted using S. Finally, the
occurrences of ξ are transformed independently into the individual symbols of A using Q.

This defines the string generation process completely. It is formally given as Algorithm
GenerateString below, and a graphical model of the channel for these operations is given in [15].

Algorithm GenerateString
Input :     The word U and the distributions G, Q  and  S.
Output :   A random string Y which garbles U with substitution, insertion and deletion mutations.
Method:

1. Using  G randomly determine z, the number of symbols to be inserted in U.
2. Randomly generate an input edit sequence U'� (A ≈ ≈ {ξ})* by randomly determining the

positions of the insertions among the individual symbols of U.
3. Randomly independently substitute or delete the non-ξ  symbols in U' using S.
4. Randomly independently transform the occurrences of ξ into symbols of A using Q.

END Algorithm GenerateString

We now derive the properties of the string generation process.

THEOREM I
Let |U| = N and |Y| = M, and let  Pr[Y|U] be defined as follows :

Pr[Y|U]   =   ∑
z=Max(0,M-N)

M

      
G(z). (N! z!)

((N+z)!)
 ∑

U'

   

   ∑
Y'

   

   ∏
i=1

N+z

    p(y'i|u'i)  , where, (3)

 (a)   y'i and u'i are the individual symbols of Y' and U' respectively,

(b)   p(y'i|u'i)  is interpreted as Q( y'i) if  u'i is ξ, and ,

(c)   p(y'i|u'i)  is interpreted as S(y'i|u'i)   if u'i is not ξ. (4)

Then the above definition is both functionally complete and consistent.
Sketch of Proof : The theorem is quite intricate and is proved in [15] . It involves computing the
product of the probabilities of the individual elements of every single pair in Γ(U,Y). Thus, for
every element (U', Y') the product of the individual probabilities is its contribution to Pr[Y|U].
We thus exhaustively add all the probability contributions of the various ways by which U can be
mutated to Y. This is then further summed for all elements of A* by considering the cases for the
various permissible values of Z . By performing the summations in a systematic way and grouping
the cominatorial terms intelligently it can be proved that the total summation equals unity. 

→→→
We shall now describe how the probability Pr[Y|U] can be computed efficiently.

IV.  COMPUTING  P[Y|U]  EFFICIENTLY
Consider the problem of editing U to Y, where |U|=N and |Y|=M.  Suppose we edit a prefix

of U into a prefix of Y, using exactly i insertions, e deletions and s substitutions.  Since the
number of edit operations are specified, this corresponds to editing Ue+s = u1. . .ue+s, the prefix

of U of length  e+s, into Yi+s=y1. . .yi+s, the prefix of Y of length i+s.  Let Pr[Yi+s|Ue+s ; Z=i] be



           

the probability of obtaining Yi+s given that Ue+s was the original string, and that exactly i
insertions took place in garbling.  Then, by definition,

Pr[Yi+s|Ue+s ; Z=i]  =  1 if  i=e=s=0  
To obtain an explicit expression for the above for values of i, e and s which are nonzero, we

have to consider all the possible ways by which Yi+s could have been obtained from Ue+s using

exactly i insertions.  Let r=e+s and q=i+s.  Let Γi,e,s(U,Y) be the subset of the pairs in Γ(Ur,Yq)
in which every pair corresponds to i insertions, e deletions and s substitutions. Since we shall be
using the strings U and Y,  Γi,e,s(U,Y)  will be referred to as Γi,e,s. Using  (3) and (4),

Pr[Yi+s|Ue+s ; Z=i]   =  
(s+e)! i!

 (s+e+i)!  
  ∑

(U'r,Y'q)

   

       ∏
j=1

|U'r|

    p(y'qj|u'rj) ,            if i, e or s > 0    (5)

where, (U'r,Y'q) is the arbitrary element of Γi,e,s, and has jth symbols u'rj and y'qj  respectively.
Let W(. , . , . ) be the array whose general element W(i,e,s) is the sum of the product of the

probabilities associated with the general element of  Γi,e,s defined as below.
W(i,e,s) = 0, if i,e or s <0

=    
(s+e+i)!

 i! (s+e)!  
     Pr[Yi+s |Ue+s ; Z=i] otherwise (6)

Using the expression for Pr[Yi+s|Ue+s ; Z=i] we can obtain the explicit form of W(i,e,s) for all
nonnegative values of i, e and s. The bounds for these indices are :

Max[0,M-N]  ≤  i  ≤  q  ≤  M ;         0  ≤  e  ≤  r  ≤  N ;  0  ≤  s  ≤  Min[M,N].
Triples (i,e,s) satisfying these constraints are termed "feasible" and satisfy Theorem II, and

the recursively computable properties of W(.,.,.) are stated in Theorem III.

THEOREM  II.
To edit Ur, the prefix of U of length r, to Yq, the prefix of Y of length q, the set of feasible

triples is given by  {  (i, r-q+i,  q-i  )  |  Max  [0, q-r] ≤ i ≤ q  }.
Proof : The theorem is proved in [15].

→→→

THEOREM III.
Let W(i,e,s) be the quantity defined as in (6) for any two strings U and Y.  Then, for all

feasible values of i,e and s,
 W(i,e,s) = W(i-1,e,s).p(yi+s|ξ) + W(i,e-1,s).p(λ|ue+s) + W(i,e,s-1).p(yi+s|ue+s) 
 where p(b|a) is interpreted as in (4).
Sketch of Proof : The proof of the result is quite involved.  Let  Γi,e,s be the set of all ways by

which Ue+s can be edited to Yi+s. The proof of the theorem involves partitioning Γi,e,s into three
subsets each of which strips off the elements of the individual pairs as follows :

Γ1
i,e,s = { (U'r,Y'q) | (U'r,Y'q) � Γi,e,s, u'rL = ur, y'qL = yq } (7)

Γ2
i,e,s = { (U'r,Y'q) | (U'r,Y'q) � Γi,e,s, u'rL = ur, y'qL = λ  } (8)

Γ3
i,e,s = { (U'r,Y'q) | (U'r,Y'q) � Γi,e,s, u'rL = ξ, y'qL = yq }. (9)



           

After considerable manipulations, it can be shown that the contributions of each of the sets lead to
the following quantities respectively :

∑
(U'r,Y'q)�(Γ1

i,e,s)

  

          ∏
j=1

|U'r|

 p(y'qj|u'rj)    = W(i,e,s-1).p(yi+s|ue+s),

∑
(U'r,Y'q)�(Γ2

i,e,s)

  

          ∏
j=1

|U'r|

 p(y'qj|u'rj)    = W(i,e-1,s).p(λ|ue+s),

∑
(U'r,Y'q)�(Γ3

i,e,s)

  

          ∏
j=1

|U'r|

 p(y'qj|u'rj)    = W(i-1,e,s).p(yi+s|ξ).

Resubstituting these expressions into the original expressions proves the result.
→→→

The computation of Pr[Y|U] from W(i,e,s) is done by evaluating a combination of the
appropriate terms weighted  by factors that are dependent only on the number of insertions.  This
is stated in Theorem IV, whose proof is found in [15]. Thus, to evaluate Pr[Y|U]  we make use of
the fact that although the latter index itself does not seem to have any recursive properties, the
index W(. , . , . ), has the properties proved in Theorem III and subsequently utilize Theorem IV
to yield   Pr[Y|U].

THEOREM IV

If h(i)= G(i) . 
 N! i!
(N+i)!  

, the quantity Pr[Y|U] can be evaluated  from the array W(i,e,s) as :

Pr[Y|U]  =  ∑
i=Max(0,M-N)

M

       h(i).W(i, N-M+i, M-i).

Proof : The proof of the theorem is given in  [15].
→→→

The Algorithm EvaluateProbabilities below evaluates the array W(. , . , . ) for all permissible
values of the variables i, e and s.  Using the array W(i,e,s)  it then evaluates Pr[Y|U]  by adding
up the weighted contributions of the pertinent elements in W( ., ., . ) as specified by Theorem IV.

Algorithm EvaluateProbabilities
Input:  The strings U=u1u2. .  uN, Y=y1y2. . yM, and the distributions G, Q and S.
Output:  The array W(i,e,s) for all permissible values of i, e and s and the probability Pr[Y|U].
Method :

R=Min[M,N]
W(0,0,0)=1



           

Pr[Y|U] = 0
For i=1 to M Do

W(i,0,0) = W(i-1,0,0). Q(yi)
For e=1 to N Do

W(0,e,0) = W(0,e-1,0).S(λ|ue)
For  s=1 to R Do

W(0,0,s) = W(0,0,s-1).S(ys|us)
For  i=1 to M Do

For  e=1 to N Do
W(i,e,0) = W(i-1,e,0).Q(yi) + W(i,e-1,0).S(λ|ue)

For  i=1 to M Do
For  s=1 to M-i Do

W(i,0,s) = W(i-1,0,s).Q(yi+s) + W(i,0,s-1).S(yi+s|us)
For  e=1 to N Do

For  s=1 to N-e Do
W(0,e,s) = W(0,e-1,s).S(λ|us+e) + W(0,e,s-1).S(ys|us+e)

For  i=1 to M Do
For  e=1 to N Do

For  s=1 to Min[(M-i) , (N-e)] Do
W(i,e,s)=W(i-1,e,s).Q(yi+s)+W(i,e-1,s).S(λ|ue+s)+W(i,e,s-1).S(yi+s|ue+s)

For  i=Min[0 , M-N] to M Do

 Pr[Y|U] = Pr[Y|U] +  G(i) . 
 N! i!

 (N+i)!  . W(i,N-M+i,M-i)

END Algorithm EvaluateProbabilities

Obviously, the algorithm requires  cubic time and space respectively. To compute Pr[Y|U],
we can get a more efficient1 (but more complicated) scheme, which requires only quadratic space.
To do so, we take advantage of the fact that for a particular value of i, in order to compute
W(i,e,s) for all permissible values of e and s, it is sufficient to store only the values of W (i-1, e, s)
for all the corresponding permissible values of e and s.  Thus the trellis is computed by
successively evaluating the array W in planes parallel to the plane i = 0. The algorithm is given in
[15], but omitted here in the interest of brevity.

From a naive perspective it is possible to consider the techniques applied here as mere
application of dynamic programming algorithms [5,7,10,11,14] to the case when the operators
utilized are the arithmetic addition and multiplication.  This is not the case. The differences are
listed in [15]. But in all brevity, we mention that to our knowledge, this is one of the few non-
trivial applications of dynamic programming which evaluates quantities which involve relatively
complex  combinatorial expressions simultaneously satisfying rigid probability constraints. We are
currently studying the use of this channel in speech recognition. Note that this a model, the entire
question of "time warping" would be subsumed in appropriately modelling the distribution G.

                                               
1The next algorithm is more efficient in space. With respect to time the computational complexity of both are the same.
However, for small values of M and N, the earlier algorithm is more efficient, because of the decreased overhead and book-
keeping.



           

V.   CONCLUSIONS
In this paper we have presented a new model for noisy channels which permit arbitrarily

distributed substitution, deletion and insertion errors. This model has straightforward applications
in string generation and recognition,  and also potential applications in speech and uni-
dimensional signal processing. The model is specified in terms of a noisy string generation
technique. Given any arbitrary string U � A*, we specify a stochastically consistent scheme by
which this word can be transformed into any Y � A* by causing substitution, deletion and
insertion operations. The scheme has been shown to be Functionally Complete because it involves
all the ways by which U can be mutated into Y using these three operations. The probability
distributions for these respective operations can be completely arbitrary. Apart from presenting a
scheme by which all the possible strings in A* can be potentially generated, we also specify two
cubic-time algorithm by which Pr[Y|U], the probability of receiving Y given that U was
transmitted, can be computed.  The first of these requires cubic space, and the second requires
only quadratic space. For small values of M and N, the former is more efficient, because of the
decreased overhead and book-keeping.
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