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ABSTRACT
Consider a set A = {A1, A2,...,AN} of records, where each record is identified by a unique

key. The records are accessed based on a set of access probabilities S = [s1,s2,...,sN] and are to

be arranged lexicographically using a Binary Search Tree (BST). If S is known a priori, it is well

known [10] that an optimal BST may be constructed using A and  S. We consider the case when

S is not known a priori . A new restructuring heuristic is introduced that requires three extra

integer memory locations per record. In this scheme the restructuring is performed only if it

decreases the Weighted Path Length (WPL) of the overall resultant tree. An optimized version of

the latter method which requires only one extra integer field per record has also been presented.

Initial simulation results which compare our algorithm with various other static and dynamic

schemes seem to indicate that this scheme asymptotically produces trees which are an order of

magnitude closer to the optimal one than those produced by many of the other BST schemes

reported in the literature.
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I.     INTRODUCTION

A Binary Search Tree (BST) may be used to store records whose keys are members of an
ordered set A = {A1, A2, . . ., AN}. The records are stored in such a way that a symmetric-order

traversal of the tree will yield the records in ascending order. This structure has a wide variety of

applications, such as for symbol tables and dictionaries.
If we are given A and the set of access probabilities S=[s1,s2,..,sN], the problem of

constructing efficient BSTs has been extensively studied.  The optimal algorithm due to Knuth

[10], uses dynamic programming and produces the optimal BST using O(N2) time and space.

Alternatively, Walker and Gotlieb [20] have used dynamic programming and divide-and-conquer

techniques to yield a nearly-optimal BST using O(N) space and O(N.log N) time. In this paper,

we study the problem in which S, the access probability vector, is not known a priori. We seek a

scheme which dynamically rearranges itself and generates a tree which is asymptotically  optimal.

This topic is closely related to the subject of self-organizing lists. A self-organizing list is a

linear list that rearranges itself such that after a long enough period of time, it tends towards the

optimal arrangement with the most probable element at the head of the list and the rest of the list

recursively ordered in the same manner. Many memory-less schemes have been developed to

reorganize a linear list dynamically [3,5,8-10,12]. Among these are the move-to-front rule

[10,12] and the transposition rule [18]. These rules and their extensions and their analytic

properties are discussed extensively in the literature [3,5,8-10,12]. Schemes involving the use of

extra memory have also been developed ; a review of these is found in [9]. The first of these uses

counters  to achieve estimation. Another is a stochastic move-to-rear rule [16] due to Oommen

and Hansen, which moves the accessed element to the rear with a probability which decreases

each time the element is accessed. A stochastic move-to-front [16] and a deterministic move-to-

rear scheme [17] due to Oommen et. al. have also been reported.

A BST is not quite so simple to reorganize as a linked list because any reorganizing scheme

must simultaneously give due consideration to the lexicographic ordering of the records and the

statistical information about their access probabilities. Clearly, these can often be conflicting

constraints for a reorganization scheme. Recent result relating the two will be mentioned

presently.

The primitive tree restructuring operation used in most BST schemes is the well known

Rotation [1].  A few memory-less tree reorganizing schemes which use this operation have been

presented in the literature among which are the Move-to-Root and  simple exchange rules.

These rules are analogous in spirit to the move-to-front and transposition rules respectively for

linear lists. The Move-to-Root Heuristic was historically the first self-organizing BST scheme in

the literature [2] and is due to Allen and Munro. It is both conceptually simple and elegant. Each

time a record is accessed, rotations are performed on it in an upwards direction until it becomes
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the root of the tree. The idea is that  a frequently accessed record will be close to the root of the

tree as a result of it being frequently moved to the root, and this will minimize the cost of the

search and the retrieval operations. Allen and Munro [2] also developed the simple exchange

rule, which rotates the accessed element one level towards the root, similar to the transposition

rule for lists. Contrary to the case of lists, where the transposition rule is better than the move-to-

front rule [18], they show that whereas the Move-to-Root scheme has an expected cost that is

within a constant factor of the cost of a static optimum BST, the simple exchange heuristic does

not have this property. Indeed, it is provably bad.

 At this juncture, it is not out of place to mention that  various interesting relationships

between self-organizing lists and BSTs have recently been reported [11]. For example, suppose

that a list ρρ is modified using the Move-to-Front heuristic on accessing the element A to yield the

list ρρ'. Then in [11], Lai and Wood have shown that if from an empty tree a BST µµ is created

using ρρ, and another µµ' is created using ρρ', the tree µµ' can be obtained from µµ by applying the

Move-to-Root Heuristic defined on BSTs. The paper [11] shows that the transposition heuristic

does not possess this property and also presents come fascinating conjectures which claim the

existence of various commutative results that relate lists and BSTs for other families of heuristics.

Sleator and Tarjan [19] introduced a technique, which also moves the accessed record up to

the root of the tree using a restructuring operation called splaying which is a multi-level

generalization of rotation. Their structure, called  the splay tree, was shown to have an amortized

time complexity of O(log N) for a complete set of tree operations which included insertion,

deletion, access, split, and join. This heuristic is rather ingenious. It is  a restructuring move that

brings the node accessed up to the root of the tree, and also keeps the tree in a symmetric order,

and thus an in-order traversal would access each item in order from the smallest to the largest.

Additionally it has the interesting side effect of tending to keep the tree in a form that is nearly

height-balanced apart from also capturing the desired effect of keeping the most frequently

accessed elements near the root of the tree. The heuristic is somewhat similar to the Move-to-

Root scheme, but whereas the latter has an asymptotic average access time within a constant

factor of optimum when the access probabilities are independent and time invariant, the splaying

operation yields identical results even when these assumptions are relaxed. More explicit details

and the analytic properties of the splay tree with its unique "two-level rotations"  can be found in

[6,19].

The literature also records various schemes which adaptively restructure the tree with the

aid of additional memory locations. The two outstanding schemes in this connection are the

monotonic tree and Mehlhorn's D-Tree  [5,10,14]. The monotonic tree is a dynamic version of a

tree structuring method suggested by Knuth [10] as a means to structure a nearly optimal static

tree. The static monotonic tree is arranged such that the most probable key is the root of the tree,
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and the subtrees are recursively ordered in the same manner. The static version of this scheme

behaves quite poorly [13]. Walker and Gotlieb [20] have presented simulation results for static

monotonic trees, and these results also indicate that this strategy behaves quite poorly when

compared to the other static trees known in the literature.

Bitner suggested a dynamic version of this scheme [5], which could be used in the scenario

when the access probabilities are not known a priori . Each record has one extra memory

location, which "counts" the number of accesses made to it. The reorganization of the tree after

an access is then very straightforward. When a record is accessed, its counter is incremented, and

then the record is rotated upwards in the tree until it becomes the root of the tree, or it has a

parent with a higher frequency count than itself. Over a long enough sequence of accesses this

will, by the law of large numbers, converge to the arrangement described by the static monotonic

tree. Although this scheme is intuitively appealing, Bitner determined bounds for the cost of a

monotonic tree, and showed that it is largely dependent on the entropy,  H(S) of the probability

distribution of the keys. If H(S) is small, then the monotonic tree is nearly optimal ; but if H(S) is

large, it will behave quite poorly. Bitner also stated a result of Bayer's [4], that proved that the

expected entropy of a randomly chosen probability distribution1 is log(N)-ln 2, which is nearly the

maximum entropy attainable. He concludes from this that, on the average, the monotonic tree

scheme will behave poorly . Our experimental results [6] support this viewpoint.

As opposed to the above, Mehlhorn's D-tree is a BST scheme significantly different from the

Monotonic Tree [14]. At every node the D-tree maintains counters which record the weights of

the two subtrees at the node, where the weight of a subtree is defined as the number of leaves in

that subtree.  D-trees permit multiple leaves for the same object, for indeed, each time an object is

searched, the number of leaves referring to that object is increased by unity.  The searching

technique in the scheme ensures that all searches will be properly directed to corresponding

objects at the leaf level.  In any actual implementation of the D-tree, both search-time and space

can be saved by coalescing a significant number of leaves into a single "super-leaf". The D-tree

uses the weights of the two children subtrees at each node as the input parameters to a balancing

function which provides a numeric measure for how "balanced" the subtree itself is. On executing

a search for a record, if the balancing function of any node in the tree exceeds this threshold,

single and/or double rotations are executed at strategic nodes along the search path which ensure

that the D-tree remains balanced after the rotations are executed. The properties of D-Trees are

found in [14]. This scheme is closely related to the BB[α]-trees described by Mehlhorn in  [15, pp.

189-199]. The latter uses the weight (defined as in the D-tree) of the subtrees of a tree as a

method of quantifying how balanced the tree is.  A node in the BB[α]-tree scheme is considered

                                               
1Bitner's analysis assumes that the set of access probabilities is randomly assigned to the records, and thus that each
permutation of S is equally likely. We are grateful to an anonymous referee who pointed out that this assumption is unrealistic.
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to be balanced if the balancing function, which takes the weight of the left and right subtrees as

parameters, returns a value which is bounded by the variable α.  If the tree is reckoned to be

"unbalanced", just as in the case of the AVL-tree [10], the BB[α]-tree reorganizes the nodes using

single or double rotations.

In this paper we introduce a new heuristic to reorganize a BST so as to asymptotically arrive

at an optimal form. It requires three extra memory locations per record. Whereas the first counts

the number of accesses to that record, the second counts the number of accesses to the subtree

rooted at that record, and the third evaluates the Weighted Path Length (WPL) of the subtree

rooted at that record. The paper specifies an optimal updating strategy for  these memory

locations. More importantly, however, the paper also specifies how an accessed element can be

rotated towards the root of the tree so as to minimize the overall cost of the tree. Finally, unlike

most of the algorithms that are currently in the literature, this move is not done on every data

access operation. It is performed if and only if  the overall WPL of the resulting BST decreases.

From a very naive perspective one can formulate a straightforward algorithm to achieve the

above goal. Whenever a record is accessed, the three counters mentioned above can be updated

for every node in the tree, and then, in principle, the restructuring can be done by merely

evaluating what the effect of the potential rotation operation would be to the overall WPL of the

tree. This naive scheme is computationally very expensive, for it involves multiple traversals of the

tree for every rotation executed. This is because there seems to no way to "anticipate" whether a

certain rotation operation will decrease the overall WPL of the resulting BST. But it is exactly

here that we believe that this paper makes a fundamental contribution which distinguishes it from

all the other reported schemes. By defining the counters appropriately, we have been able to

discover a criterion function that can be locally computed -- i.e., computed at a particular node

using only the values of the counters of itself, its parents and its direct offspring. We then present

a decision process based on the computation of this local criterion function and reports whether

the rotation of this accessed node is beneficial in reducing the overall WPL of the resulting BST.

Thus, the effect of a rotation can be anticipated, and in this way the restructuring can be rendered

both asymptotically optimal in terms of the expected cost and also computationally optimal in

terms of the local pointer manipulation operations executed at each time instant. Experimental

results show that our scheme asymptotically produces an optimal BST.

Apart from the original three-counter conditional rotation scheme described above we also

present a space-optimized version which only requires a single additional counter per node. Using

this memory location  a scheme identical to the one described above has been designed. The

details of the computations required per access in each  algorithm is described in the subsequent

sections.
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Viewed from the perspective of this minimizing the "path length", in one sense, our scheme

is reminiscent of Gonnet's scheme for statically constructing BSTs using his path length balanced

trees [7]. However in our case, we shall attempt to minimize the weighted path length by

incorporating the statistical information about the accesses to the various nodes and subtrees

rooted at the corresponding nodes.  The essential differences between Gonnet's scheme [7] and

the technique which we introduce will be apparent in the subsequent sections.

In spite of all their advantages, all of the schemes mentioned above have drawbacks, some of

which are more serious than others. The two memoryless schemes have one major disadvantage,

which is that both the Move-to-Root and splaying rules always move the record accessed up to

the root of the tree. This means that if a nearly-optimal arrangement is reached, a single access of

a seldomly-used record will disarrange the tree along the entire access path as the element is

moved upwards to the root. Thus the number of operations done on every access is exactly equal

to the depth of the node in the tree, and these operations are not merely numeric computations

(such as those involved in maintaining counters and "balancing functions") but rotations. Thus the

Move-to-Root and splaying rules can be very expensive. We seek a heuristic that solves these

problems.

As opposed to these schemes, the monotonic tree rule does not move the accessed element

to the root every time. But as we have seen, the monotonic tree rule does not perform well. Our

aim is to adopt the philosophy taken by this rule, but in doing so, we would like to achieve the

restructuring conditionally, depending on the counters of the nodes of the actual physical tree.

Hopefully, this strategy will overcome the problems with the memoryless schemes, because an

adjustment will not be performed if it brings the structure into a worse state. Also, the weakness

of the monotonic tree, which lies in the fact that it considers only the frequency counts for the

records will be overcome. Thus, we shall avoid the undesirable property that in a rotation a

subtree with a relatively large probability weight may be moved downwards, thus increasing the

cost of the tree.

Numerous simulation results comparing our scheme to a number of BST algorithms are

found in [6].  Although the details of the experiments have not been presented in this paper it is

not inappropriate to add that from the results that we have obtained, we believe that our scheme

produces trees which are typically an order of magnitude closer to the optimal one than those

normally produced by other adaptive BST schemes.

Throughout this paper we assume that the access probability distribution S is time-invariant

and unknown, and that the components of  S sum to unity.

II.    THE CONDITIONAL ROTATION HEURISTIC
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 Before we present our new technique, in the interest of rendering our arguments to be more

easily understandable we shall briefly review the Rotation Operation introduced by Adel'son-

Velski'i and Landis [1] and state its properties. To explain this operation we use the notation that

for a node i in the tree, P(i) is its unique parent node. By definition, P(root) is NIL.
Suppose that there exists a node i in a BST, and it has a parent node j, a left child iL, and a

right child iR. Consider the case that i is a left child (see Figure Ia). A rotation is performed on

node i as follows. j now becomes the right child, iR becomes the left child of node j, and all other

nodes remain in their same relative positions (see Figure Ib). The case that node i is a right child is

done symmetrically. This operation has the effect of raising a specified node in the tree structure

while preserving the lexicographic order of the elements (refer again to Figure Ib). The properties

of this operation are stated as Fact I.

 ****************      Insert Figures Ia & Ib      ****************

Fact I.

The following are the properties of a rotation performed on node i.
(i) The subtrees rooted at iL and iR remain unchanged.

(ii) After a rotation is performed, i and P(i) interchange roles i.e., i becomes the parent of P(i).

(iii) Except for P(i), nodes which were ancestors of i before a rotation remain as ancestors of i

after it.

(iv) Nodes which were not ancestors of i before a rotation do not become ancestors of i after it.

II.1   Principles Motivating the Heuristic

The new heuristic which we introduce requires that each of the records in the BST contains

three integer storage locations. The first location contains the number of accesses to that node,

the second contains the total number of accesses to the subtree rooted at that node, and the third

contains the WPL of the subtree rooted at that node. Every time an access is performed, these

fields are updated for the accessed node, and also along the path traversed to achieve the access.

The accessed node is rotated upwards (i.e. towards the root) once if and only if the WPL of the

entire tree decreases as a result of the operation.

We first introduce some elementary definitions. Let i be any node in the given tree, whose
left and right children are iL and iR respectively. Ti is the subtree rooted at node i. The parent of

node i is P(i), and its unique brother is B(i), where B(i) would be NIL if it is non-existent. We
define αi(n) as the total number of accesses of node i up to and including the time instant n.

Similarly, we define τi(n) as the total number of accesses to the subtree rooted at node i. Clearly

τi(n) satisfies :
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τi(n) =  ∑
j�Ti

   
 αj(n).  (1)

Let λi(n) be the path length of i from the root. By definition, this quantity is at least unity. Then,

κi(n) is defined as the WPL of the tree Ti rooted at node i at time instant n, where :

κi(n) =  ∑
j�Ti

   

 αj(n).λj(n).  (2)

By simple induction τi(n) and κi(n) can be shown to be related by (3) below :

κi(n) =  ∑
j�Ti

   
 τj(n).  (3)

To simplify the notation, where no ambiguity results, we shall omit all references to time 'n'.

Since the τ and κ values need to be updated each time a record is accessed, we need a

method to update them that doesn't require a complete traversal of the tree at every time instant.
Obviously such a traversal is not required in order to update αi, but computational schemes are

necessary for the evaluation of τ and κ.  The following lemma yields the recursively computable
properties of τi and κi (as opposed to their intrinsic definitions given by (2) and (3) respectively),

and these properties shall be used to update them without traversing the entire tree.

Lemma I.
For Ti, the subtree rooted at node i, the following are true :

(a)   τi  =   αi + τiL + τiR (4)

(b)   κi =   αi + τiL + τiR + κiL + κiR (5)

Proof :

(a)  This result is indeed obvious.

(b)  Expanding (2) in terms of the subtrees at each level, we write2 ,
κi = αi + 2αiL + 2αiR + 3α(iL)L + 3α(iL)R + 3α(iR)L + 3α(iR)R + . . . (6)

whence,
κi = ( αi + αiL + αiR + α(iL)L + α(iL)R + α(iR)L + α(iR)R + . . .)

+ ( αiL + 2α(iL)L + 2α(iL)R+ . . .) + (αiR + 2α(iR)L + 2α(iR)R + ...) (7)

Using (1) and (2),  (7) simplifies to
κi = τi + κiL + κiR.

The result follows if we incorporate (4) into the above.

                                               
2 This scenario takes care of the cases when the left and right subtrees are not empty. In the case of empty subtrees, the
expansion is trivially valid since the corresponding α values would be identically equal to zero.
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This lemma implies that to calculate τ and κ for any node, it is necessary only to look at the

values stored at the node and at the quantities stored for the children of the node. Note that the

recursion does not involve the quantities in the entire tree nor the entire subtree rooted at the
node. Now that we have derived the recursive properties of τi and κi, we shall obtain a simple

method to calculate the α, τ, and κ fields of the tree after each access. We shall do this for both

the case in which a rotation is performed and for the case in which no rotation is performed.

Whereas the former is rather straightforward, the latter is a little more involved.

Theorem I.

Let j be any arbitrary node in the entire tree, T. On accessing i�T, the following scheme for

updating scheme α, τ, and κ is consistent whether a rotation operation is performed at i or not.

(a) Updating of αα :
αj := αj + 1 , j = i

αj := αj       , j � i.

(b) Updating of ττ :

(i)    τ values in the subtrees of node i are unchanged.

(ii)   τ values in the subtrees not on the access path from the root to node i  are unchanged.

(iii)  τ values in the nodes on the path from the root to P(P(i)) are updated according to :
τj := τj + 1.

(iv)  τi and τP(i) are updated according to (iii) above, unless a rotation is performed. If a

        rotation is performed they are updated by applying
τj := αj + τjL + τjR, where j � {i, P(i)},

        and τP(i) is computed before τi.

(c) Updating of κ :κ :
(i)    κ values in the subtrees of node i are unchanged.

(ii)   κ values in the subtrees not on the access path from the root to node i are unchanged.

(iii)  κ values in the nodes on the path from the root to node i are updated by applying
κj := αj + τjL + τjR + κiL + κiR

         from node i upwards to the root.

Proof of (a) :
The updating rule for αj is quite clear from the definition of α. Indeed, αi is the number of

accesses to node i, and thus, if node i is accessed, only αi needs to be increased.

Proof of (b)  :

We will consider the cases  (i)  through (iv) separately.

Case (i) : This follows from the definition of τ. Note that τ will not change for nodes in the

subtrees of i even if a rotation is performed. This is by virtue of the properties of a rotation given
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in Fact I. Thus no α value will increase in any node below i, and hence the corresponding values

of  τ will remain unchanged.

Case (ii) :  The result is obvious when no rotation is performed. When a rotation is

performed, no subtree which is not on the access path can contain i, even if a rotation is
performed at i. For every node k, since each τk equals the sum of all αj, j�Tk, and since the only

α-value that is changed is αi, due to Lemma I, the value of τk is unchanged because for all k not

on the access path to i, i � Tk. Consequently, no updating is needed on such subtrees.

Case  (iii)  : The result is again obvious when no rotation is performed at i. Consider the

case when a rotation is performed. Every subtree rooted at a node on the access path to node i
contains node i; hence, by the definition of τ, an access to node i must increase every τj on the

access path by unity. The result follows since, by the properties given in Fact I, ancestors of i up

to P(P(i)) continue to be ancestors of i in spite of the rotation.

Case (iv)  :  If no rotation operation is performed, the proof of case (iii) above leads to the

result. However, if a rotation is performed, then i and P(i) interchange places, i.e., i becomes the

parent of P(i). The application of Lemma I now yields the result except that for the computation
to be consistent τP(i) must be calculated before τi.

Proof of (c)  :

We consider cases (i) and (ii) together, and case (iii) separately.

Cases (i) and (ii) :  These are proved using essentially the same arguments used in cases (i)

and (ii) in part (b) above. Since no α−values change in these same circumstances, the κ values

also remain unchanged. This follows from the definition of κ.

 Case (iii) : To compute the WPL for a node on the access path, we note that this quantity
will change for all subtrees containing node i, essentially because αi changes. Therefore, using

Lemma I, we recalculate this quantity for all ancestors of i by applying
κj = αj + τjL + τjR + κiL + κjR

due to (5). Note that since the value of the WPL at any node depends on the τ and κ values of the

children of the node, the κ values must be updated in a bottom-up fashion.

II.1.1 Remarks

(i)  Note that after a rotation has been performed, our notation can be misleading if the

reader does not realize that the notation refers to the node identities. Observe that we refer to the

accessed node and its parent, j, before the rotation is performed as i and P(i)=j respectively. After

the rotation has been performed, however, we refer to the same nodes as i and j, even though the

original relationship between the nodes has been destroyed -- it is completely reversed. To render

the notation consistent, P(i) will refer to j. However, we introduce the notation that post-

rotational quantities shall have the superscript '. Thus, P(j)' = i in this particular case.
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(ii)  In the case of  the τ values, updating may be performed quite simply on the way down

the tree to node i. However, the κ values cannot be so simply updated on the downward pass, and

so they must be updated from the bottom up using the recursive relationship derived in Lemma I.

For this reason the two cases present in part (b) of Theorem I merge into just one case in part (c).

II.2   Criteria for Performing Rotations

Up to this point we have described the memory locations used for determining whether or

not to rotate, and how these locations may be updated for a node, both in the case when a

rotation is performed and in the case when it is not. What we have not addressed yet is the

question of a criterion to decide whether a rotation should be performed or not.

The basic condition for rotation of a node is that the WPL of the entire tree must decrease

as a result of a rotation. A brute-force method for determining whether or not to rotate suggests

itself immediately as follows. When an access is performed, the record is found, and updating at

the record is done. We then retrace our steps back along the access path to the root of the tree,

updating the values of τ and κ as we go,  simultaneously computing the hypothetical values of

τ and κ that would be obtained if a rotation is performed. On reaching the root of the tree, we

decide whether to perform the rotation or not by comparing the hypothetical κ-value to the actual

κ-value. If the hypothetical value is smaller, then the record is again found, the rotation is

performed, and the τ and κ values are again updated upwards along the access path as described

in Theorem I.

This method achieves exactly the results that we desire, but it is very expensive. In the case

that a rotation is actually performed, a total of four3 passes must be made between the accessed

node and the root of the tree. What we now consider is a method to anticipate at the level of the

rotation itself whether or not the κ-value of the entire tree will decrease if a rotation is

performed, and hence determine if the operation should be performed or not. By applying such a

method, we can reduce the number of passes to two.

Before we proceed we shall clarify our notation. Any primed quantity  (e.g. α',τ',κ') is a

post-rotational quantity. That is, it is the value of the specified quantity after the rotation has

been performed. If close attention is not paid, the notation can be quite misleading. This may be

overcome by noting that when we refer to P(i), we are referring to the node that was actually the

parent of node i, even though after a rotation on i it may not be the parent anymore. In such a

                                               
3Three may be sufficient if the pointers upward towards the root are maintained consistently while the downward traversal to
the accessed node is being performed. However, throughout this paper we shall assume that we will not overwhelm ourselves
with such  additional "book-keeping" operations.
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case we still refer to that node as P(i), but the actual physical parent of i will be referred to as

P(i)'.
We now proceed to define our rotation criterion. Let θi be κP(i) - κi'. θi is a criterion

function which tells us whether performing a rotation at node i will reduce the κ-value at P(i) or
not. We shall prove that the κ-value of the entire tree is reduced by a rotation if and only if θi > 0.

We call such a rotation a κ-lowering rotation.

Theorem II.

Any κ-lowering rotation performed on any node in the tree will  cause the weighted path

length of the entire tree to decrease.

Proof :

We consider three mutually exclusive and exhaustive cases, listed as (i), (ii), and (iii).  We

suppose that node i has been accessed.

Case (i) : Node i is the root of the tree. In this case, the proof is trivial, as P(i) is the null

pointer, and node i will never rotate upwards. Thus no κ-lowering rotation can ever be performed.
Case ((ii) :  P(i) is the root of the tree. Here minimizing θi  is equivalent to minimizing the

WPL of the entire tree and the result follows since the WPLs considered in the decision process

are actually the WPLs of the entire tree.

Case (iii) : Neither i nor P(i) is the root of the tree.

Let j be the node that becomes the parent of the accessed node after the rotation has been

performed (i.e. j = P(i)'). Assume that the quantities α, τ, and κ have been updated at nodes i and

P(i). Observe that j � P(i). Then at node j, due to (5),
κj = αj + τjL + τjR + κjL + κjR.

Consider the case when node i is in the left subtree of Tj. We know from Theorem I that the

quantities αj, τjR, and κjR will remain unchanged as a result of the rotation performed on node i.

We also know that as a result of Theorem I and the properties of the rotation, the latter operation

will not cause a change to the total number of accesses to the left subtree. Hence,
             θi = κj - κj' = (αj + τjL + τjR + κjL + κjR) - ( αj'+ τjL' + τjR' + κjL' + κjR')

= αj + τjL + τjR + κjL + κjR - αj - τjL - τjR - κjL' - κjR

= κjL - κjL'

This implies that if a rotation is performed, then κjL - κjL' is greater than zero, resulting in

the quantity κj - κj' itself being greater than zero. By induction it can be seen that this relationship

between κa - κa' also holds for every ancestor a of j and thus this inequality bubbles itself up

recursively at every level of the tree and ultimately for the root of the entire tree itself. This means



Binary Tree Restructuring Using
Conditional Rotations. Page  13

that a κ-lowering rotation performed anywhere in the tree will lower the WPL of the entire tree.
The arguments are identical if i is in the right subtree of Tj. Combining both of the above cases

yields the desired result.

II.2.1 Remarks

(i)  As stated earlier, the importance of this theorem lies in the fact that the decision to rotate

or not may be made at the level of the rotation itself. It is thus not necessary to backtrack along

the access path up to the root of the tree, and thus we can obtain a significant reduction in the

amount of time required to calculate the α, τ, and κ values and to perform a restructuring

operation. Amazingly enough, the restructuring operation now requires only constant time.

(ii)  For the purpose of deciding whether or not to rotate, the value of κ' at i may be found

without actually performing the rotation. This is done by utilizing the algebraic properties of κ as

given by (3) and Lemma I, and using the values at the nodes that would be the left and right

children of i should the rotation be performed.

For the sake of completeness, we present our access and reorganizing algorithm (called

CON_ROT_Naive) based on these results in Appendix I4. This algorithm is recursive and covers

all the possible cases for any node j. Notice that the τ values are updated on entry, i.e., on the way

down the tree, and the κ values are updated on the path back up. The improvement of this scheme

over the previously developed schemes in that it reorganizes itself only if it results in a decrease in

the WPL of the entire tree, is also clear. Furthermore, the method also takes all of the other

records in the tree into consideration when a decision is made whether or not to reorganize, in

contrast to the monotonic tree scheme, which considers only the accessed record and its parent.

We shall now introduce an optimized version of the conditional rotation heuristic.

III.    THE OPTIMIZED CONDITIONAL ROTATION HEURISTIC

Up to this point we have developed a scheme for dynamically restructuring BSTs by

considering whether the WPL of the entire tree decreases as a result of performing the operation,

and performing any reorganization only if the WPL does actually decrease as a result of the

operation. We also introduced a method to determine whether or not to rotate based merely on a

criterion specified in terms of the path length at the parent of the node that was accessed.

In this section, we shall present a scheme which performs tree reorganization using  the

same heuristic that was used in the preceding section. However, we shall do this by making a

                                               
4Since a space-optimizing version of this technique will be presented in the next section, a formal algorithmic submission of
this version is probably superfluous. Taking the risk of being marginally repetitive we have however opted to include it so that
the reader can understand how the various counters are updated either during the path down the tree or during the path back to
the root.  Also, the strategy by which the usefulness of a rotation can be anticipated can be rendered more explicit.
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single pass through the tree and also by maintaining only a single counter. Thus we will be able to

save greatly in both time and space.

First of all we shall show that we can obtain a criterion function which does involve the κ
values. Furthermore, as it turns out, not only can we remove the κ values, but we can also

eliminate the need for the α values. It is obvious from (1) that the information stored in the α-

values is also stored in the τ values, and may be readily extracted.  This means that the α values

do not have to be explicitly stored. What is not quite so obvious is the fact that the information

stored in the τ fields is sufficient to determine whether or not a rotation should be performed. To

show this we define a new criterion function ψ which is dependent entirely upon the τ values, in

contrast to the previous criterion function θ, which was dependent upon the α, τ, and κ values.
Whereas previously, we performed a rotation if the criterion function θi was positive, we now

perform the rotation if the function ψi is positive. We will show that indeed, performing a rotation

based on the criterion function ψi is equivalent to performing a rotation based on the criterion

function θi.

Theorem III.
Let i be the accessed node of the BST, and let κP(i) be the WPL of the tree rooted at the

parent P(i) if no rotation is performed on node i. Let  κi' be the WPL of the tree rooted at node i if

the rotation is performed. Furthermore, let  ψi be defined as follows:

ψi =αi+τiL-αP(i)-τB(i) if  i is a left child;

ψi= αi+τiR-αP(i)-τB(i) if  i is a right child.

Then, if θi = κP(i) - κi',  ψi � 0    if and only if    θi � 0.

Proof :
It is required to prove that ψi � 0  if and only if θi � 0. This will indeed imply that

performing a rotation operation if ψi � 0 is equivalent to performing a rotation operation if  θi �

0. Actually, we show a stronger result, which is that θi  + ψi.

We give the proof for the case that node i is a left child; the case that node i is a right child

may be proven in exactly the same way.

Suppose that an access is performed on node i, and that the α, τ, and κ values are updated

appropriately for nodes i and P(i). Then from the recursive expression for κ given in Lemma II,
κP(i) = αP(i) + τi + τB(i) + κi + κB(i). (8)

Suppose that at this point, a rotation is applied to node i in an upwards direction. The
resulting tree is that in Figure Ib, and the new expression for κi' is

κi' = αi + τiL + κiL + τP(i)' + κP(i)'. (9)

The quantities τP(i)' and κP(i)' may be expanded to give

τP(i)' = αP(i) + τiR + τB(i)  ,               and, (10)
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κP(i)' = αP(i) + τiR + τB(i) + κiR + κB(i). (11)

Substituting (10) and (11) into (9), we get
κi' = αi + τiL + κiL + 2αP(i) + 2τiR + κiR + κB(i).

But from the recursive formulation of κ, we know :
κi = αi + τiL + τiR + κiL + κiR.

Thus, θi has the form :

θi  = κP(i) - κi' = τi - αP(i) - τiR - τB(i).

Observe now that τi is the value before the rotation was performed. When it is replaced by its

equivalent in terms of quantities which are not changed by the rotation operation, we get
τi = αi + τiL + τiR,

whence, θi = κP(i) - κi' = αi + τiL - αP(i) - τB(i) = ψi

and the theorem is proved.

III.1 Remarks
(i)  As stated in the preamble to this section, we can use the criterion function θi computed

at the node i to decide whether or not to restructure the tree. But now we have shown that
rotating based on the function ψi is equivalent to minimizing the WPL of the overall tree. Unlike

θi, however, ψi only requires the use of the information stored in the α and τ fields in each record.

This implies that we do not need to maintain the κ fields at all, and this in turn implies that after

the search for the desired record and after performing any reorganization (which takes constant

time), we do not need to retrace our steps back up the tree to update the κ values of the ancestors

of i. It also pays to note that at any node i,
τi = αi + τiL + τiR ;  and,   αi = τi - τiL - τiR.

This implies that the α values may be expressed in terms of the τ values, and so the former

are redundant and they too need not be maintained. Thus we have achieved what we had hoped to

by maintaining only one extra memory location per node  and simultaneously rendering the second

upward pass superfluous. This modified algorithm, which is a space optimizing version of

CON_ROT_Naive, is given in Appendix II as Optimized_CON_ROT. Notice that the τ values are
updated on the path down the tree (i.e. on entry) during the search. Also, we have expressed ψi in

terms of τ values by converting the α values to their equivalents in terms of τ.
(ii)   Since we have shown that the decision to rotate may be made equivalently by

considering either the criterion for θi or for ψi , Theorem III has the following corollary.

Corollary I.

Algorithms CON_ROT_Naive and Optimized_CON_ROT are stochastically equivalent.
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Note that it is not just the average performance (or the asymptotic performance) of these

algorithms which is equivalent ; but both of them work in lock-step. Thus given the same initial

tree and the same sequence of accesses, both the algorithms restructure the tree identically.

Thus far we have discussed only the effect of these rotations on the WPL of the tree. We

conclude this section by specifying the effect of reducing the WPL on the cost of the entire tree.

Theorem IV

The normalized weighted path length of a BST asymptotically becomes an arbitrarily good

approximation of the actual cost of the tree with an arbitrarily high probability.

Proof:

The cost of a tree T at time n was shown to be

CT(n) =  ∑
j�T

   

 sj(n).λj(n).  

But by the law of large numbers, si can be estimated by the ratio (αj(n) / ∑
j�T

   
 αj(n)  ).

But  ∑
j�T

   
 αj(n)  is identically equal to τ(n) which is the sum of the α's of the nodes in the tree.

Thus, asymptotically as n tends towards �,
 C T ( n )  =  l i

n  →  ∞
m  (  

τ T ( n )

1
 [  ∑

R i ∈  T

 λ i ( n )  α i ( n )  ] )

 =  l i
n  →  ∞

m  (  
τ

T ( n )

1
   ⋅  κ T ( n )  )

Thus, any algorithm which reduces the normalized WPL of the entire tree,
also asymptotically causes  CT to decrease as well.  

To sum up, we would like to highlight the sequence of theoretical results we have presented

concerning our BST restructuring algorithm. First of all the recursive properties of the three

indices used for conditional rotations have been stated, and the techniques for updating them in

all scenarios have been specified. Subsequently, the existence of a local (nodal) criterion function

has been proven ; using this function a decision rule which reports whether a rotation of the

accessed node is beneficial in reducing the overall cost of the entire tree has been presented. Thus,

we have shown that the effect of a rotation can be anticipated without performing multiple
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traversals on the current BST, and hence the restructuring can be rendered both asymptotically

optimal in terms of the cost and computationally optimal in terms of the local pointer

manipulations. Apart from proving the existence of this function the actual functional form of this

criterion has been derived. Furthermore, the existence and the form of an analogous function

which utilizes only a single index has also been derived. Finally, we have shown that the

algorithms given here asymptotically reduce  the cost of the entire tree.

We have also experimentally compared our scheme to many of the other schemes reported

in the literature. The results which are currently available compare our scheme with (i) Allen and

Munro's Move-to-Root scheme [2],  (ii) Sleator and Tarjan's splay tree [19], (iii) the optimal tree

constructed using Knuth's algorithm [10],  (iv) a height-balanced tree [1],  (v) the monotonic tree

described by Bitner [5], and (vi) the nearly-optimal tree constructed using the technique due to

Walker and Gotlieb [20]. In comparing these algorithms the simulations were conducted for four

types of distributions5 and in each case the number of nodes was varied from 15 to 511. A fair bit

of work has still to be done to compare the scheme with Mehlhorn's D-Tree, the BB[α] tree and

Gonnet's path length balancing tree6 [7].

Our initial experiments [6] seem to indicate that, generally speaking, our scheme

outperforms all of the other static and dynamic BST schemes mentioned above, excepting, of

course, the static optimal tree itself. The results obtained for the Zipf's law distribution are typical.

In this case, for trees with 15 nodes, Allen and Munro's Move-to-Root scheme had a cost which

was approximately 20.5% greater than the static optimal tree, Sleator and Tarjan's splay tree had

a cost approximately 23.5% greater than the static optimal, and the balanced tree was

approximately 17% more expensive than the static optimal tree scheme. The results for the

monotonic tree verified the fact that it is a poor scheme, as it proved to have an average cost

which was 55% greater than the average cost of the static optimal tree. The nearly optimal tree

presented by Walker and Gotlieb was not as nearly optimal as it should have been, giving an

average cost which was 16.1% greater than the optimal tree's cost. Our scheme had an average

cost that was only 3.6% greater than the average cost of the static optimal tree. These results are

typical for each of the distributions used.

Various results are currently also available for the above algorithms when the number of

nodes in the tree is more realistic and realistic versions of the above four distributions are utilized.

In this case too our scheme seems to be far superior to all of the other above-mentioned static and

                                               
5These distributions are the Zipf's, the exponential and two families of wedge distributions. In each simulation 100 parallel
experiments were done for a large number of accesses so that a statistically dependable ensemble average could be obtained.
6Strictly speaking, this comparison would  not be so interesting because Gonnet's scheme is not an "adaptive" scheme.
However, in one sense, our scheme can be thought of as a generalized "adaptive" version of Gonnet's scheme that is valid for
non-uniform distributions. The non-uniformity of the distribution would transform Gonnet's path length criterion to  be our
weighted path length criterion.
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dynamic BST schemes , excepting the static optimal tree. In all brevity we now quote the results

obtained for a "Realistic" Zipf's distribution7 when the number of nodes in the tree is 511. In this

case, Allen and Munro's Move-to-Root scheme had a cost which was approximately 29.45%

greater than the static optimal tree, Sleator and Tarjan's splay tree had a cost approximately

33.89% greater than the static optimal, and the balanced tree was approximately 33.42% more

expensive than the static optimal tree scheme. The monotonic tree behaved very poorly -- it had

an average cost which was 347% greater than the average cost of the static optimal tree.  Our

scheme proved to have an average cost that was only 2.42% greater than the average cost of the

static optimal tree. Indeed, these results seem to indicate that our strategy is at least an order of

magnitude closer to the optimal than the other BST techniques mentioned above.  Indeed, the

results presented for the exponential distribution are even more remarkable, especially when our

method is compared to the Move-to-Root scheme and the splay tree.

It must also be observed that augmented with the fact that the overall expected cost of our

strategy is less than the corresponding cost of the other dynamic schemes simulated, the former

has the advantage that the data reorganization is performed conditionally. Thus, unlike the latter

schemes, a data reorganization is not executed every time an interior node in the tree is accessed.

Furthermore, should such a reorganization be executed, whereas our scheme will perform only

one rotation, the other dynamic schemes could potentially move the accessed element all the way

to the root. Thus, from our experience, it is our stand that our technique is superior in terms of

both the real execution time and the accuracy obtained, where the accuracy is quantified in terms

of the closeness of the tree to the optimal one.  We believe that the current on-going study

comparing our scheme with Mehlhorn's and Gonnet techniques will give us additional insight into

the importance of path length computations and "local" nodal computations in any BST

reorganizing strategy.

V.   CONCLUSIONS AND OPEN PROBLEMS

In this paper we have introduced a new strategy requiring extra memory which attempts to

reorganize a BST to an optimal form. It requires three extra memory locations per record. One

counts the number of accesses to that record, a second contains the number of accesses to the

subtree rooted at that record, and the third contains the value of the WPL of the subtree rooted at

that record. After a record is accessed and these values updated, the record is rotated one level

upwards if the WPL of the entire tree (and not just the subtree rooted at the node) decreases as a

result of the rotation. We have shown that this implies that the cost of the entire tree decreases
                                               
7The term "Realistic" is used because the original distributions would have almost zero probability masses -- less than what the
architecture of the processor would allow --  for the less frequently accessed elements especially when the number of nodes is
large. We have marginally "skewed" the distributions to force the least frequently elements to have the smallest probability
masses permitted by the architecture of the processor.
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asymptotically. To achieve this, we perform a straightforward evaluation of a local criterion

function and anticipate whether a rotation will yield this result. Thus we have succeeded in

presenting a technique by which we can locally decide whether to restructure the tree or not. As

well, we have presented an optimized version of this algorithm which requires us to maintain only

one extra memory location per node. Both these algorithms and are stochastically equivalent.

Among the open problems that still exist are the analysis of the stochastic performance of

this algorithm and its behaviour under various distributions. This problem is by no means trivial.

Unlike the underlying Markov Chains of other techniques that have been analyzed in the

literature, the chain of this technique is conceptually completely different. Since the rotation is

done conditionally, the probability of a tree being transformed into another is conditional on the

time-varying contents of the indices and the criterion functions, and thus the chain is not

stationary. For the first part the number of states of the chain is of the same order as the number

of distinct BSTs. Furthermore, the actual transition probabilities themselves are time-varying

random variables, and to our knowledge there are no known techniques available in the

mathematical literature which even discuss how to tackle such a problem except for some trivial

distributions. The rate of convergence of the scheme is also unknown.  A variation of this scheme

that requires sub-linear memory is currently being investigated.
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APPENDIX I

Conditional Rotation algorithm using τ, α, κ.  The algorithm was discussed in Section II.

Algorithm CON_ROT_Naive { CONditional_ROTation Reorganization }
Input : A binary search tree T and a search key ki assumed to be in T.

Output: (i) the restructured tree T', and (ii) a pointer to record i containing ki
Method :

τj ♦ τj + 1 { increment τ for the present node }

If ki = kj Then { This is the record we want }

αj ♦ αj + 1

calculate κP(j), κj' using Lemma I

If κP(j) - κj' > 0 Then
rotate node j upwards
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recalculate κP(j), κj, τP(j), τj
Endif

Else { Search the subtrees }
If ki < kj Then

perform CON_ROT_Naive on j^.Leftchild
Else

perform CON_ROT_Naive on j^.Rightchild
Endif
recalculate κj

Endif
Return record i

End Method
END Algorithm CON_ROT_Naive.
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APPENDIX II
Space optimized version of the conditional rotation algorithm.

Algorithm Optimized_CON_ROT
Input  : A  binary search tree T and a search key ki assumed to be in T.

Output : The restructured tree T', and a pointer to record i containing ki
Method :

τj ♦ τj + 1 { update τ for the present node }

If ki = kj Then { Found the record in question }

If node j is a left child Then
ψj ♦ 2τj - τjR - τP(j)

Else
ψj ♦ 2τj - τjL - τP(j)

Endif
If ψj > 0 Then

rotate node j upwards
recalculate τj, τP(j)

Endif
return record j

Else
If ki < kj Then { Search the subtrees }

perform Optimized_CON_ROT on j^.Leftchild
Else

perform Optimized_CON_ROT on j^.Rightchild
Endif

Endif
End Method
END Algorithm  Optimized_CON_ROT
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1Bitner's analysis assumes that the set of access probabilities is randomly assigned to the records,

and thus that each permutation of S is equally likely. We are grateful to an anonymous referee

who pointed out that this assumption is unrealistic.

2This scenario takes care of the cases when the left and right subtrees are not empty. In the case

of empty subtrees, the expansion is trivially valid since the corresponding α values would be

identically equal to zero.

3Three may be sufficient if the pointers upward towards the root are maintained consistently while

the downward traversal to the accessed node is being performed. However, throughout this paper

we shall assume that we will not overwhelm ourselves with such  additional "book-keeping"

operations.
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4Since a space-optimizing version of this technique will be presented in the next section, a formal

algorithmic submission of this version is probably superfluous. Taking the risk of being marginally

repetitive we have however opted to include it so that the reader can understand how the various

counters are updated either during the path down the tree or during the path back to the root.

Also, the strategy by which the usefulness of a rotation can be anticipated can be rendered more

explicit.

5These distributions are the Zipf's, the exponential and two families of wedge distributions. In

each simulation 100 parallel experiments were done for a large number of accesses so that a

statistically dependable ensemble average could be obtained.

6Strictly speaking, this comparison would  not be so interesting because Gonnet's scheme is not an

"adaptive" scheme. However, in one sense, our scheme can be thought of as a generalized

"adaptive" version of Gonnet's scheme that is valid for non-uniform distributions. The non-

uniformity of the distribution would transform Gonnet's path length criterion to  be our weighted

path length criterion.

7The term "Realistic" is used because the original distributions would have almost zero probability

masses -- less than what the architecture of the processor would allow --  for the less frequently

accessed elements especially when the number of nodes is large. We have marginally "skewed" the

distributions to force the least frequently elements to have the smallest probability masses

permitted by the architecture of the processor.
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LIST OF FIGURE CAPTIONS

Figure Ia : The tree before a rotation is performed. The contents of the nodes are their data
values, in this case the characters {a, b, c, d, e}.

Figure Ia : The tree after a rotation is performed on node i. Observe the properties stated in
Section II.
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