
Enhancing Prototype Reduction Schemes with LVQ3-Type Algorithms�

Sang-Woon Kimy and B. J. Oommenz

Abstract

Various prototype reduction schemes have been reported in the literature. Foremost among these are the

PNN, the VQ, and the SVM methods. In this paper, we shall show that these schemes can be enhanced by the

introduction of a post-processing phase that is related, but not identical to, the LVQ3 process. Although the

post-processing with LVQ3 has been reported for the SOM and the basic VQ methods, in this paper, we shall

show that an analogous philosophy can be used in conjunction with the SVM and PNN rules. Our essential

modi�cation to LVQ3 �rst entails a partitioning of the respective training sets into two sets called the Placement

set and the Optimizing set, which are instrumental in determining the LVQ3 parameters. Such a partitioning

is novel to the literature. Our experimental results demonstrate that the proposed enhancement yields the best

reported prototype condensation scheme to-date for both arti�cial data sets, and for samples involving real-life

data sets.

Keywords : Prototype Reduction, LVQ (Learning Vector Quantization), SVM (Support Vector Machines), VQ

(Vector Quantization), PNN (Prototypes for Nearest Neighbor classi�er), CNN (Condensed Nearest Neighbor)

1 Introduction

1.1 Overview

In statistical pattern recognition, the nearest neighbor (NN) or the k -nearest neighbors (k�NN) classi�ers are widely

used classi�cation rules. Each class is described using a set of sample prototypes, and the class of an unknown

vector is decided based on the identity of the closest neighbor(s) which are found among all the prototypes [1]. This

rule is simple, and yet it is one of the most eÆcient classi�cation rules in practice.

The application of the classi�er, however, often su�ers from the computational complexity caused by the large

number of distance computations, especially as the size increases in high dimensional problems [1], [2]. Strategies

that have been proposed to solve this problem can be summarized into the three following categories: (1) Reducing

�Partially supported by the Natural Sciences and Engineering Research Council of Canada, and Myongji University, Korea.
yMember IEEE. This author can be contacted at: Div. of Computer Science and Engineering, Myongji University, Yongin, 449-728

Korea. This work was done while visiting with the School of Computer Science, Carleton University, Ottawa, Canada : K1S 5B6. e-mail

address : kimsw@mju.ac.kr.
zSenior Member IEEE.This author can be contacted at : School of Computer Science, Carleton University, Ottawa, Canada : K1S

5B6. e-mail address : oommen@scs.carleton.ca.

1

the size of the design set without sacri�cing the performance, (2) Accelerating the computation by eliminating the

necessity of calculating super
uous distances, and (3) Increasing the accuracy of the classi�ers designed with the

set of limited samples.

The �rst solution, which is the main focus of this paper, is to reduce the number of training vectors while

simultaneously insisting that the classi�ers built on the reduced design set perform as well, or nearly as well, as the

classi�ers built on the original design set. This idea has been explored for various purposes, and has resulted in the

development of many algorithms. It is interesting to note that Bezdek et al [3], who have composed an excellent

survey of the �eld, report that there are \zillions!" of methods for �nding prototypes (see page 1459 of [3]). Our

work does not compete with theirs - it merely supplements their results with a hybrid scheme which combines the

salient features of a few families of the reported schemes.

Rather than re-embark on a survey of the �eld, we mention here a few representative methods of the \zillions"

that have been reported. One of the �rst of its kind is the Condensed Nearest Neighbor (CNN) rule [4]. The CNN,

however, includes \interior" samples which can be eliminated completely without changes in the performance.

Accordingly, other methods have been proposed successively, such as the Reduced Nearest Neighbor (RNN) rule

[5], the Prototypes for Nearest Neighbor (PNN) classi�ers [6], the Selective Nearest Neighbor (SNN) rule [7], two

modi�cations of the CNN [8], the Edited Nearest Neighbor (ENN) rule [9], and the non-parametric data reduction

method [10]. Additionally, in [11], the Vector Quantization (VQ) technique was also reported as an extremely

e�ective approach to data reduction.

The above approaches to the problem of obtaining a smaller prototype set can be categorized into two groups

by considering whether or not they can create new prototypes, or whether they, rather, merely select some of the

existing data points as the prototypes. The schemes reported in [6], [11] and [12] create new prototype vectors (and

do not merely select training samples) in such a way that these prototypes represent all the vectors in the original

set in the \best" possible manner. The methods of [4], [5], [7], [8], [9] and [10] are those in which the prototype

vectors are merely selected. It has been proven that the former are partially superior to the latter [3, 11].

In designing NN classi�ers, however, prototypes near the boundary play more important roles than those which

are more interior in the feature space. In creating or selecting the prototypes, therefore, the vector points near the

boundary have to be considered to be more signi�cant, and the created prototypes need to be moved or adjusted

towards the classi�cation boundary so as to yield a higher performance. The approach that we now present is

based on this philosophy, namely that of creating, and adjusting. Indeed, we shall �rst choose a reduced set of

initial prototypes or code-book vectors by any of the known methods, and then learn their optimal positions with

an LVQ3-type algorithm, thus minimizing the average classi�cation error.

On the other hand, Support Vector Machines (SVM) [13] have a capability of extracting vectors that support

the boundary between the two classes, and they thus satisfactorily represent the global distribution structure. Also,

the learning algorithm can be easily expanded to nonlinear problems by employing techniques involving kernel

functions. Thus, apart from the CNN, PNN, and VQ methods, in this paper, we also argue that the SVM can be

used a means of selecting initial prototype vectors, which are subsequently operated on by LVQ3-type methods.

2

The paper is organized as follows: In Section 2, we brie
y review representative prototype reduction methods. A

complete survey is impossible here { the interested reader would �nd more comprehensive surveys in [2, 3]. Section 3

shows how prototype reduction methods can be enhanced using VQ-based (LVQ3) learning methods. Experiments

and discussions are provided in Section 4. Finally, the conclusions are given in Section 5.

1.2 Contributions of the Paper

The main contribution of this paper is the demonstration that data condensation schemes that are of a \hybrid" sort

are superior to those which are based on a single philosophy. Traditionally, data condensation rules utilize a variety

of methods such as the CNN, the PNN, the VQ and the SVM philosophies. Also, the LVQ3 algorithm has been

traditionally used in conjunction with other VQ-type algorithms, namely, the LVQ1 and LVQ2 modules to enhance

classi�cation [15], [16]. First of all, a minor contribution of this paper is to present a marginal enhancement of the

\pure" LVQ3 algorithm. But the more important contribution is the proposed enhancement of post-processing the

output of a traditional data condensation rule with this new LVQ3 rule. The result is a hybrid scheme which �rst

creates/selects reduced prototypes, and then migrates them to enhance the potential classi�cation. To maximize

this classi�cation, each training set is sub-divided into two subsets, which we have called the Placement set and the

Optimizing set. Using these sets, the optimal parameters of the LVQ3-type algorithm are learned. The e�ect of

this hybrid scheme is the following. While the number and initial positions of the prototypes are obtained by the

data condensation rule that is used, their �nal positions (and consequently, the �nal discriminants) are learned by

the mutual interactions of the Placement and Optimizing sets using LVQ3-type operations.

Another contribution of this paper is the demonstration that the SVM Classi�er can be improved by invoking a

1-NN classi�cation after the LVQ3 has operated on the support vectors. This, in our opinion, is signi�cant, because

the LVQ3 has been shown to be one of the best classi�ers, especially for applications operating in a high-dimensional

feature space.

The experimental results on synthetic and real-life data prove the power of these enhancements. The real-life

experiments include two \medium-size" data sets, and two which involve data sets with a large number of points

and a fairly high dimensionality. The results in almost all the cases is conclusive.

2 Prototype Reduction Methods

As mentioned previously, various data reduction methods have been proposed in the literature - two excellent surveys

are found in [2, 3]. To put the results available in the �eld in the right context, we mention, in detail, the contents

of the latter. The survey of [3] contains a comparison of eleven conventional PRS methods. This comparison

has been performed from the view of error rates and the resultant number of prototypes that are obtained. The

experiments were conducted with four experimental data sets which are both arti�cial and real. In summary, the

eleven methods surveyed are : A combination of Wilson's ENN and Hart's CNN (W+H), the Random Selection

(RS) method, Genetic Algorithms (GA), a Tabu Search (TS) scheme, a Vector Quantization-based method (LVQ1),

3

Decision Surface Mapping (DSM), a scheme which involves LVQ with Training Counters (LVQTC), a Bootstrap

(BTS) method , a Vector Quantization (VQ) method, a Generalized LVQ-Fuzzy (GLVQ-F) scheme, and a Hard

C-Means clustering (HCM) procedure. Among these, the W+H, RS, GA, and TS can be seen to be selective PRS

schemes, and the others fall into the category of being creative. Additionally, the VQ, GLVQ-F, and HCM are

post-supervised approaches in which the methods �rst �nd prototypes without regard to the training data labels,

and then assign a class label to each prototype, while the remaining are pre-supervised ones that use the data and

the class labels together to �nd the prototypes. Finally, the RS, LVQ1, DSM, BT, VQ, and GLVQ-F are capable of

permitting the user to de�ne the number of prototypes, while the rest of the schemes force the algorithm to decide

this number.

The claim of [3], from the experimental results, is very easily stated. Based on the experimental results obtained,

the authors of [3] claims that there seems to be no clear scheme that is uniformly superior to all the other PRS.

Indeed, di�erent methods were found to be superior for di�erent data sets. However, the experiments showed that

the creative methods can be superior to the selective methods, but are, typically, computationally more diÆcult

to determine. Also, the experimental results revealed that the Pre-supervised methods are better than the Post-

supervised ones. Furthermore, there seems to be no reason to believe that the auto-de�ned approaches are superior

to the user-de�ned ones.

Our fundamental claim is quite simply that we can enhance any of the \zillions" of methods available by

subjecting it to a LVQ3-type post-processing phase. From this perspective, we do not attempt to compare our new

method to any single currently existing scheme. Rather, we intend to compare any enhanced scheme to its \virgin"

counterpart, namely, the one that has not be subjected to the LVQ3 processing. Essentially, we submit that similar

enhancements can be used to enrich any of the methods that have been currently proposed.

Rather than survey the entire �eld here, we attempt to review some of the most pertinent families. The CNN

and the SVM are chosen as representative schemes of selecting methods - the former is one of �rst methods proposed,

and the latter is historically recent. As opposed to these, the PNN and VQ (or SOM) are considered to fall within

the family of prototype-creating algorithms.

2.1 The Condensed Nearest Neighbor rule (CNN)

The CNN [4] is suggested as a rule which reduces the size of the design set, and is largely based on statistical

considerations. However, the rule does not, in general, lead to a minimal consistent set - a set which contains a

minimum number of samples within it to correctly classify all the remaining samples in the given set. The procedure

can be formalized as follows, where the training set is given by T , and reduced prototypes are found in Tcnn .

1. The �rst sample is copied from T to Tcnn ;

2. Do the following : Increasing i by unity from 1 to the number of samples in T per epoch:

(a) Classify each pattern xi 2 T using Tcnn as the prototype set;

4

(b) If a pattern xi is classi�ed incorrectly then add the pattern to Tcnn , and go to 3.;

3. If i is not equal to the number of samples in T , then go to 2.;

4. Else the process terminates.

2.2 Prototypes for Nearest Neighbor (PNN) Classi�ers

The algorithm of �nding Prototypes for Nearest Neighbor classi�ers (referred to as PNN, here) [6], can be stated

as follows: Given a training set T , the algorithm starts with every point in T as a prototype. Initially, set A

is empty and set B is equal to T . The algorithm selects an arbitrary point in B and initially assign it to A.

After this, the two closest prototypes p in A and q in B of the same class are merged, successively, into a new

prototype, p�, if the merging will not degrade the classi�cation of the patterns in T , where p� is the weighted

average of p and q . For example, if p and q are associated with weights Wp and Wq , respectively, p
� is de�ned

as (Wp � p +Wq � q)=(Wp +Wq), and is assigned a weight, Wp +Wq . Initially, every prototype has an associated

weight of unity. The procedure of PNN is sketched below.

1. Copy T to B ;

2. For all q 2 B , set the weight Wq = 1;

3. Select a point in B , and move it from B to A;

4. MERGE = 0;

5. While B is not empty do:

(a) Find the closest prototypes p and q from A and B , respectively;

(b) If p's class is not equal to q 's class then insert q to A and delete it from B ;

(c) Else merge p of weight Wp , and q of weight Wq , to yield p�, where p� = (Wp � p +Wq � q)=(Wp +Wq).

Let the classi�cation error rate of this new set of prototypes be ";

� If the " is increased then insert q to A, and delete it from B ;

� Else delete p and q from A and B , insert p� with weight Wp +Wq to A, and MERGE++;

6. If MERGE is equal to 0 then output A as the set of trained code-book vectors, and the process terminates;

7. Copy A into B and go to 3.

Bezdek and his co-authors, proposed a modi�cation of the PNN in [19]. First of all, instead of using the weighted

mean of the PNN to merge prototypes, they utilized the simple arithmetic mean. Secondly, the process for searching

for the candidates to be merged was modi�ed by partitioning the distance matrix into submatrices \blocked" by

common labels. This modi�cation eliminated the consideration of candidate pairs with di�erent labels. Based on

5

the results obtained from experiments conducted on the Iris data set, the authors of [19] asserted that their modi�ed

form of the PNN yielded the best consistent reduced set for designing multiple-prototype classi�ers1.

2.3 Vector Quantization and the Self Organizing Map

The foundational ideas motivating VQ and the SOM are the classical concepts that have been applied in the

estimation of probability density functions. Traditionally, distributions have been represented either parametrically

or non- parametrically. In the former, the user generally assumes the form of the distribution function, and the

parameters of the function are learned using the available data points. In pattern recognition (classi�cation), these

estimated distributions are subsequently utilized to generate the discriminant hyper-planes or hyper-quadratics,

whence the classi�cation is achieved.

As opposed to the former, in non-parametric methods, the practitioner assumes that the data must be processed

in its entirety (and not just by using a functional form to represent the data). The corresponding resulting pattern

recognition (classi�cation) algorithms are generally of the nearest neighbor (or k-nearest neighbor) philosophy, and

are thus computationally expensive.

The concept of VQ [14] can be perceived as one of the earliest compromises between the above two schools of

thought. Rather than represent the entire data in a compressed form using only the estimates, VQ opts to represent

the data in the actual feature space. However, as opposed to the non-parametric methods which use all (or a subset)

of the data in the training and testing phases of classi�cation, VQ compresses the information by representing it

using a \small" set of vectors, called the code-book vectors. These code-book vectors are migrated in the feature

domain so that they collectively represent the distribution under consideration. We shall refer to this phase as the

Intra-Regional Polarizing phase[17] explained below.

In both VQ and the SOM the polarizing algorithm is repeatedly presented with a point xi from the set of points

of a particular class. The neurons attempt to incorporate the topological information present in xi. This is done

as follows. First of all, the closest neuron to xi, Yj�, is determined. This neuron and a group of neurons in its

neighborhood, Bj�, are now moved in the direction of xi. The set Bj� is called the \Activation Bubble". We shall

presently specify how this is determined. The actual migration of the neurons is achieved by rendering the new Yj

to be a convex combination of the current Yj and the data point xi for all j 2 Bj�. More explicitly, the updating

algorithm is as follows :

Yj(t+ 1) =

8<
:

(1� �(t))Yj(t) + �(t)xi ifj 2 Bj�(t)

Yj(t) otherwise
(1)

where `t' is the discretized (synchronized) time index.

1We believe that the LVQ3-based enhancement that we propose in this paper, can also be utilized to enhance the scheme proposed

in [19]. We also believe that a similar enhancement can be used for the clustering-based, genetic and random search methods proposed

in [20]. This is currently being investigated. The authors are grateful to Professor Jim Bezdek for the instructive discussions we had in

Spain in April 2002.

6

This basic algorithm has two fundamental parameters, �(t) and the size of the bubble Bj�(t). �(t) is called the

adaptation constant and satis�es 0 < �(t) < 1. Kohonen and others [15], [16] recommend steadily decrementing

�(t) linearly from unity for the initial learning phase and then switching it to small values which decrease linearly

from 0.2 for the �ne-tuning phase.

The activation bubble, Bj�(t), is the parameter which makes VQ di�er from the SOM. Indeed, if the size of the

bubble is always set to be zero, only the closest neuron is migrated, yielding a VQ scheme. However, in the SOM,

the nearest neuron and the neurons within a bubble of activation are also migrated, and it is this widened migration

process which permits the algorithm to be both topology preserving and self-organizing. The size of the bubble is

initially assigned to be fairly large to allow a global ordering to develop. Consequently all the neurons tend to tie

themselves into a knot for a value of �(t) that is close to unity; they subsequently quickly disperse. Once this coarse

spatial resolution is achieved, the size of the bubble is steadily decreased. Consequently only those neurons which

are most relevant to the processed input point will be e�ected by it. Thus the ordering which has been achieved by

the coarse resolution is not disturbed, but the �ne tuning on this ordering is permitted.

2.4 Support Vector Machines

The SVM [13] is a new and very promising classi�cation technique developed at the AT&T Bell Laboratories. The

main motivating criterion is to separate the classes with a surface that maximizes the margin between them. It

is an approximate implementation of the structural risk minimization induction principle that aims to minimize a

bound on the generalization error of a model, rather than minimizing the mean square error over the training data

set, which is the philosophy that empirical risk minimization methods often use.

Training an SVM requires a set of N examples. Each example consists of an input vector xi and its label yi. The

SVM function that has to be trained with the examples contains N free parameters, the so-called positive Lagrange

multipliers �i; i = 1; � � � ; N . Each �i is a measure of how much the corresponding training example in
uences the

function. Most of the examples do not a�ect the function, and consequently, most of the �i are 0. To �nd these

parameters, we have to solve a quadratic programming (QP) problem like:

M inimize
1

2

NX
i;j=1

�iQij�j �
NX
i=1

�i; (2)

Subject to 0 � �i � C;

NX
i=1

yi�i = 0; (3)

where Q is an N � N matrix that depends on xi; yi and the functional form of the SVM, and C is a constant

to be chosen by the user. A larger value of C corresponds to assigning a higher penalty to the errors.

Solving the QP problem provides the support vectors of the two classes, which correspond to the examples of

�i 6= 0. Using these, we get a hyper-plane decision function wT x + b= 0, which separates the positive examples

7

having +10s as their labels from the negative examples whose labels are all �1. The weight vector and the threshold

are w =
P

Ns

i=1
�iyixi and b = 1

2
(wT xp + wTxn), respectively, where Ns is the number of support vectors, wT is

the transpose of w , and xp and xn are support vectors of the positive and the negative classes, respectively.

Usually, to allow for much more general nonlinear decision functions, we have to �rst nonlinearly transform the

input vectors into a high-dimensional feature space by a map �, and then invoke a linear separation in that space. In

this case, minimizing Eq. (2) requires the computation of dot products �(x) � �(y) in the higher-dimensional space.

The expensive calculations, however, can be avoided by using a kernel function K obeying K (x ; y) = �(x) � �(y),

that can be evaluated eÆciently. The kernel K includes functions such as polynomials, radial basis functions or

sigmoidal functions. Details of the SVM can be found in [13], [18] and [21].

3 Enhancing with LVQ3-type Algorithms

3.1 The LVQ3 Algorithm

We had earlier discussed the principles motivating the LVQ and SOM families of algorithms, and discussed the intra-

polarizing phase. In a multi-class problem, the code-book vectors for each region are subsequently migrated so as

to ensure that they adequately represent their own regions and furthermore distinguish between the other regions.

This phase, which we refer to as the Inter-Regional Polarizing phase [17], also implicitly learns the discriminant

function to be used in a subsequent classi�cation module. Note that these discriminant functions are of a nearest

neighbor philosophy, except that the nearest neighbors are drawn from the set of code-book vectors (as opposed to

the entire set of training samples). Thus, they drastically reduce the computational burden incurred in the testing

of traditional non-parametric methods.

In LVQ3, two code-book vectors mi and mj , which are the two nearest neighbors to x , are simultaneously

updated, where x and mj belong to the same class, and x and mi belong to di�erent classes. Moreover, x must

fall into a zone of values called the \window", which is de�ned around the mid-plane of mi and mj . Assume that

di and dj are the Euclidean distances of x from mi and mj , respectively. Then x is de�ned to fall in a window of

relative width w if

min(
di

dj
;
dj

di
) >

�
1� w

1 + w

�
: (4)

The updating rules for mi and mj ensure that the code-book vectors continue to approximate the respective

class distributions and simultaneously enhance the quality of the classi�cation boundary. These rules are:

mi(t+ 1) = mi(t)� �(t)[x(t) �mi(t)]; (5)

mj(t+ 1) = mj(t) + �(t)[x(t) �mj(t)]:

8

Additionally, even when x , mi and mj belong to the same class, the code-book vectors are adjusted to enhance

the improvement as follows for k = i ; j :

mk(t+ 1) = mk(t)� �(t)�(t)[x(t) �mk(t)]: (6)

In (5) and (6), t is the discretized (synchronized) time index, and �(t) and �(t) are called the learning rate and

relative learning rate, respectively.

3.2 The Proposed Data Reduction Algorithm

As mentioned earlier, the heart of the proposed algorithm involves post-processing the conventional data reduction

methods using the LVQ3. This, in itself, is novel. However, the more crucial issue is that of determining the

parameters of the LVQ3. We shall accomplish this by partitioning the training sets into two subsets, which are, in

turn, utilized to optimize the corresponding LVQ3 parameters. We clarify all the relevant issues below.

3.2.1 Specifying the Relevant LVQ3 Criteria

The accuracy achievable in any classi�cation task to which the LVQ3 is applied, and the time needed for learning

depend on the following factors which are discussed in succession.

� An approximately-optimal number of code-book vectors assigned to each class and their initial values.

� The parameters, namely the learning rate, the relative learning rate, and the number of iteration steps.

Initialization of the code-book vectors: Since the class borders are represented piecewise-linearly by segments

of mid planes between the code-book vectors of neighboring classes, it is recommended that the average distances

between the adjacent code-book vectors should be the same on both sides of the borders [15]. To achieve this,

the medians of the shortest distances between the initial code-book vectors of each class are �rst computed. If the

distances turn out to be very di�erent for the di�erent classes, new code-book vectors may be added or old ones

deleted from the deviating classes, and a tentative training cycle is run once. This procedure can be iterated a few

times.

Learning rates: The learning rate �(t) is usually made to decrease monotonically with time. In [15], the rate �

is decremented linearly during the training as below:

�(t) = �(0) �
Number of Iteration

t+Number of Iteration
: (7)

Also, the value of �, the relative learning rate, is recommended to be between 0.1 and 0.5, and the related

window width w is usually set to be a value between 0.2 and 0.3.

9

Number of learning steps: When the learning and test phases are alternated, the recognition accuracy is �rst

improved until an optimum is reached. After that, when learning is continued, the accuracy starts to decrease

slowly due to the so-called overlearning phenomenon. It is therefore recommended that the learning process be

stopped after 50 to 200 times the total number of the code-book vectors [15]. However, the optimum number of

iterations also depends on the input data.

3.2.2 Determining the Relevant LVQ3 Parameters

The algorithm that we propose consists of two steps. We �rst select or create initial prototypes by any one of the

conventional reduction methods described earlier. After this selection/creation phase, we invoke a phase in which

the optimal positions are learned with an LVQ3-type scheme. To achieve this, we assume that for every class, i, we

are given two sets, the Training set, Ti;t , and Validation set, Ti;V .

We �rst partition the training set, Ti;t , into two subsets, called the Placement set, Ti;P , and the Optimizing

set, Ti;O , where, Ti;t = Ti;P [Ti;O . The intention is that the Placement set is used to position the condensed

prototypes using the LVQ3-type algorithm, and the parameters of the LVQ3-type algorithm are, in turn, optimized

by testing the classi�cation eÆciency of the current placement on the Optimizing set, Ti;O . Thus, the training

set plays a triple role: (a) First of all, it is used to obtain the initial condensed vectors; (b) Secondly, one portion

of this set is used by the LVQ3-type algorithm to migrate the condensed vectors; (c) Finally, the other portion

of the training set serves the purpose of \pseudo-testing", so as to obtain the best parameters for the LVQ3-type

algorithm. Using these sets2 the procedure is formalized as below for each class.

1. For every class, j, select an initial condensed prototype set Yj ;Test by using any one of the reduction methods

described earlier, and the entire training sets, Ti;t ;

2. Set YTest = [Yj ;Test , which is the set of the training samples of all the classes.

3. Using YTest as the set of condensed prototype vectors, do the followings using the Placement sets, Ti;P , and

the Optimizing sets, Ti;O for all the classes:

(a) Perform LVQ3 using the points in the Placement set, Ti;P . The parameters of the LVQ3 are spanned by

considering increasing values of w from 0.0 to 0.5, in steps of �w . The sets Yj ;Test (for all j) and YTest

are updated in the process. Select the best value w0 after evaluating the accuracy of the classi�cation

rule on Ti;O , where the NN-classi�cation is achieved by the adjusted YTest ;

(b) Perform LVQ3 using the points in the Placement set, Ti;P . The parameters of the LVQ3 are spanned by

considering increasing values of � from 0.0 to 0.5, in steps of ��. The sets Yj ;Test (for all j) and YTest

are updated in the process. Select the best value �0 after evaluating the accuracy of the classi�cation

rule on Ti;O , where the NN-classi�cation is achieved by the adjusted YTest ;

2Speci�c distinct indices j and i are used just for ease of notation. The training sets are �rst speci�ed in terms of the index j, but

then the Placement and Optimizing Sets are used for every class i.

10

(c) Repeat the above steps with the current w0 and �0, till the best values w
� and �� are obtained;

4. Determine the best prototype set YFinal by invoking the LVQ3 � times with the data in Ti;P , and where the

parameters are w� and ��, where the \pseudo-testing" is achieved by using the Optimizing set, Ti;O .

The actual classi�cation accuracy is obtained by testing the classi�er using the �nal prototype set, YFinal , and

the original testing (validation) data points, Ti;V .

4 Experimental Results : Medium-Size Data Sets

4.1 Experimental Data

The proposed and the conventional prototype reduction methods were evaluated and compared by performing

experiments on a number of design \medium-sized" data sets, both real and arti�cial, summarized in Table 1.

The dataset described as \Random", was generated randomly with a uniform distribution, but with irregular

decision boundaries as indicated in Figure 1 (a). The irregularity of the boundary is clear. On the other hand, the

datasets \Iris2" and \Ionosphere", which are real benchmark data sets, are cited from the UCI Machine Learning

Repository [22]. Originally, the \Iris" dataset consists of three classes : Setosa, Versicolor, and Virginica. However,

since the subset of Setosa samples is completely separated from the others, it is not diÆcult to classify it from

the other two. Therefore, we have opted to employ a modi�ed set \Iris2", which consisted only of the two classes,

Versicolor and Virginica.

In the above data sets, all of the vectors were normalized within the range [�1; 1] using their standard deviations,

and the data set for class j was randomly split into two subsets, Tj ;t and Tj ;V , of equal size. One of them was used

for choosing initial code-book vectors and training the classi�ers as explained above, and the other one was used

in the validation (or testing) of the classi�ers. Later, the role of these tests were interchanged. Figure 1 shows a

training and a testing data set for the \Random" dataset, where the 200 vectors of each class were represented by

`�' and `�', respectively.

4.2 Selecting Initial Prototypes

In order to evaluate the reduction methods, we selected the initial prototypes from the datasets using the CNN, the

PNN, the VQ and the SVM algorithms. First, we chose prototype vectors from the training datasets. Subsequently,

the test datasets were classi�ed with the 1-NN rule, where the chosen vectors were utilized as the code-book vectors.

Finally, the experiment was repeated by exchanging the roles of the data sets.

As an example, Figure 2 shows the initial prototypes selected with the CNN, PNN, VQ and SVM methods. In

the experiments, for the SVM program, we utilized a publicly-available software package [21] , where a polynomial

of degree 3 was chosen as its kernel function.

11

Although no signi�cant di�erences between the distributions of the selected vectors is obvious, in Figure 2, it is

clear that the SVM method can choose an appropriate number of support vectors which occur near the boundary,

and represent its structure appropriately. Table 2 tabulates the values of Re(�), the data reduction rates on the

datasets, computed as Re(�) = jTotal vectorsj � jChosen vectorsj

jTotal vectorsj
, where j � j is the cardinality of the corresponding set.

Using the set of selected vectors as a representative set of the sample prototypes, which is considerably smaller

than the original training dataset size, the 1-NN classi�cation was used to test the testing datasets. Table 3 shows

the classi�cation error rates on the experiments, where the row termed of ORG shows the classi�cation error rate

when all vectors of the training dataset were used as the prototypes for classifying the test dataset. Also, the row

SVMy, shows the classi�cation error rates of the pure SVM classi�er, not the 1-NN classi�er, when it was biased

and used a cubic polynomial as its kernel.

Originally, the SVM had been developed to be suitable for the solution of binary classi�cation problems. There-

fore, in this setting, when we are dealing with k-classes, we recommend its use as a one-against-all classi�er, where

the j th classi�er constructs a hyper-plane between the j th class and the remaining k � 1 classes.

4.3 Adjusting Prototypes with LVQ3

We also did numerous experiments to determine the classi�cation error rates of the 1-NN classi�ers after adjusting

the initial prototypes with our modi�ed LVQ3 algorithm. Four types of prototypes (initialized by the CNN, PNN,

VQ and SVM, respectively) as shown in Figure 2, were post-processed (adjusted) by the LVQ3 algorithm. Beside the

initial values and the number of code-book vectors, the parameters of the post-processing phase were determined

as described earlier. In all the �gures, the reported error rate was obtained as the average after repeating the

classi�cation 100 times each obtained by random presentations of the training vectors in the various epochs. As

in the case of other learning problems, where the size of the sample patterns set plays a signi�cant role, the same

phenomenon is seen in the case of the LVQ3-adjusting learning phase. To overcome the small-sample problem, we

utilized a simpli�ed version of the scheme in which jTi;Oj = 1, namely, a variant of the leave-one-out method.

We report here the results of performing the experiment on three kinds of data sets. Additionally, for a complete

comparison, the LVQ3 learning was also achieved with the code-book vectors initialized by Kohonen's method [15].

Figures plotting the classi�cation error rates of LVQ3, CNN+LVQ3, PNN+LVQ3, VQ+LVQ3 and SVM+LVQ3

for the \Random", \Iris2" and \Ionosphere" datasets, respectively, show that the classi�cation accuracy increases

to a certain extent and then tends to decrease. Thus, in every case, it was expedient to invoke the LVQ3-type

algorithm which learned the LVQ3 parameters by partitioning the training sets Ti;t and using the sets Ti;P and

Ti;O , as opposed to using the straightforward LVQ3 algorithm.

The lowest classi�cation error rates obtained from performing the experiments are summarized in Table 4. An

overall comparison shows that every method augmented by the LVQ3 performs better than an LVQ-based method

alone. Also, an overall comparison of Tables 3 and 4 shows that the accuracy of every method is improved when

augmented by the LVQ3 post-processing. It is particularly worth mentioning that the pure SVM classi�er can be

12

improved by utilizing a 1-NN classi�er, after the LVQ3-learning has been invoked on the vectors extracted by the

SVM algorithm. It should also be observed that this increase in classi�cation accuracy is obtained without forfeiting

excessive computational time.

5 Experimental Results : Large Data Sets

In order to further investigate the advantage gained by utilizing the proposed hybrid methods for high dimensional

applications, we conducted experiments on \large-sized" data sets, namely, the \Sonar" and the \Arrhythmia", also

obtained from the UCI Machine Learning Repository [22]. The data sets are summarized in Table 5.

The \Sonar" data set contains 208 vectors. Each sample vector, of two classes, has sixty attributes which are all

continuous numerical values. The "Arrhythmia" data set contains 279 attributes, 206 of which are real-valued and

the rest are nominal. In our experiments, the nominal features were replaced by the zeros. The aim of the pattern

recognition exercise was to distinguish between the presence and absence of cardiac arrhythmia and to classify the

feature into one of the 16 groups. In our case, in the interest of simpli�cation, we merely attempted to classify the

total instances into two category, namely, \normal" and \abnormal".

5.1 Experimental Results

We performed experiments to determine the classi�cation accuracy rates of the 1-NN classi�ers after adjusting the

initial prototypes with our modi�ed LVQ3 algorithm. First of all, the best values of the parameters ��, w� and

�� were determined as described earlier with the training set, Ti;t . After that, the classi�cation rates of the 1-NN

classi�ers were evaluated with the validation set, Ti;V . The experimental results of the \Sonar" and \Arrhythmia"

datasets are shown in Table 6 and Table 7, respectively.

As in the case of the medium-size data sets, we partitioned the given set into two subsets. The �rst was used

for choosing the initial prototype vectors, selecting the best parameter values, and training the classi�ers. The

second set was used in the validation of the classi�ers. Later, the roles of these sets were interchanged. In Table 6

and Table 7, the �rst and second rows of the each scheme are the experimental results of the two subsets and the

third row (bold-faced �gures) is their averaged values. The best values of �� and �� were determined as mentioned

earlier, and those of w� and �� were selected by considering increasing values of w from 0.0 to 0.5, in steps of 0.01,

and of � from 1000 to 10,000, in steps of 200, respectively.

From these tables we see that the philosophy of hybridizing almost uniformly gives us an enhanced performance.

We �rst analyze the results for the \Arrhythmia" set. In this case, the classi�cation accuracy increases in almost

every scenario. Here, the classi�cation problem is very diÆcult because of the large dimensionality, and so the

advantage gained my hybridizing is not so prominent. Observe that although the basic CNN method yielded a

96.47 % accuracy, the method when enhanced with LVQ3 yielded an improved classi�cation of 97.62 % accuracy. It

should be observed that in any pattern classi�cation problem, when the recognition accuracies are high, obtaining

an even higher accuracy is a much more diÆcult task. Thus, improving the accuracy from 96 % to 97 % is often

13

much more diÆcult than increasing the accuracy from 50 % to 60 %. Enhancing the techniques with LVQ3 seems

to be able to achieve these second-order e�ects. We observe, though, that the accuracy of the SVM method fell

marginally - but we attribute this fall to the fact that the testing was done using a NN-based (not SVM-based)

philosophy. The way by which we can rectify this for SVM-based testing is currently being investigated.

In the case of the \Sonar" data set, we see that the classi�cation accuracy increases in almost every scenario

- often yielding a marked improvement. Thus, while the basic CNN method yielded only 79.81 % accuracy, the

method when enhanced with LVQ3 yielded 82.08 % accuracy. The most marked improvement was obtained for the

PNN scheme, whose accuracy increased from 72.12 % to 83.08 %.

Finally, it is also observed that every method, augmented by the LVQ3, performs better than an LVQ-based

method alone. This can be seen by comparing the Acc0 and Acc3 columns in the respective tables. The power of

hybridizing is clear !

6 Conclusions

In designing nearest neighbor classi�ers, prototypes near the boundary play more important roles than those which

are more interior in feature space. Based on this idea, we have proposed an improved prototype reduction scheme,

which �rst generates potential prototypes using a conventional method, and later yields superior prototypes by

invoking a post-processor which is an LVQ3-type algorithm. In this paper, the initial prototype vectors were selected

by using conventional methods such as the CNN, PNN, VQ and SVM. The proposed method has been tested on

arti�cial and real-life benchmark datasets, and compared with the conventional ones. From the experimental results,

we see, �rst of all, that 1-NN classi�ers designed with the prototypes are faster and more accurate than either pure

1-NN, or the SVM classi�er. In contrast to the prototypes produced by CNN, PNN, VQ and SVM, the prototypes

post-processed by LVQ3 seem to better (globally and more exactly) represent the distribution of pattern examples,

and also the properties that di�erentiate them. However, the classi�cation error rates of the classi�ers designed with

the prototypes vary with the dataset. We recommend that this issue be tackled on a case-by-case basis, depending

on the problem domain. We believe that the hybrid scheme presented here has powerful potential applications in

data mining and text categorization.

References

[1] A. K. Jain, R. P. W. Duin and J. Mao, \Statistical pattern recognition: A review", IEEE Trans. Pattern Anal.

and Machine Intell., vol. PAMI-22, no. 1, pp. 4 - 37, Jan. 2000.

[2] D. V. Dasarachy, Nearest Neighbor (NN) Norms: NN Pattern Classi�cation Techniques, IEEE Computer Society

Press, Los Alamitos, 1991.

14

[3] J. C. Bezdek and L. I. Kuncheva, \Nearest prototype classi�er designs: An experimental study", International

Journal of Intelligent Systems, vol. 16, no. 12, pp. 1445 - 1473, 2001.

[4] P. E. Hart, \The condensed nearest neighbor rule", IEEE Trans. Inform. Theory, vol. IT-14, pp. 515 - 516, May

1968.

[5] G. W. Gates, \The reduced nearest neighbor rule", IEEE Trans. Inform. Theory, vol. IT-18, pp. 431 - 433, May

1972.

[6] C. L. Chang, \Finding prototypes for nearest neighbor classi�ers", IEEE Trans. Computers, vol. C-23, no. 11,

pp. 1179 - 1184, Nov. 1974.

[7] G. L. Ritter, H. B. Woodru�, S. R. Lowry and T. L. Isenhour, \An algorithm for a selective nearest neighbor

rule", IEEE Trans. Inform. Theory, vol. IT-21, pp. 665 - 669, Nov. 1975.

[8] I. Tomek, \Two modifcations of CNN", IEEE Trans. Syst., Man and Cybern., vol. SMC-6, no. 6, pp. 769 - 772,

Nov. 1976.

[9] P. A. Devijver and J. Kittler, \On the edited nearest neighbor rule", Proc. 5th Int. Conf. on Pattern Recognition,

pp. 72 - 80, Dec. 1980.

[10] K. Fukunaga and J. M. Mantock, \Nonparametric data reduction", IEEE Trans. Pattern Anal. and Machine

Intell., vol. PAMI-6, no. 1, pp. 115 - 118, Jan. 1984.

[11] Q. Xie, C.A. Laszlo and R. K. Ward, \Vector quantization techniques for nonparametric classi�er design",

IEEE Trans. Pattern Anal. and Machine Intell., vol. PAMI-15, no. 12, pp. 1326 - 1330, Dec. 1993.

[12] Y. Hamamoto, S. Uchimura and S. Tomita, \A bootstrap technique for nearest neighbor classi�er design",

IEEE Trans. Pattern Anal. and Machine Intell., vol. PAMI-19, no. 1, pp. 73 - 79, Jan. 1997.

[13] C. J. C. Burges, \A tutorial on support vector machines for pattern recognition", Data Mining and Knowledge

Discovery, vol. 2, no. 2, pp. 121 - 167, 1998.

[14] Y. Linde, A. Buzo and R. Gray, \An algorithm for vector quantizer design", IEEE Trans. Commun., vol.

COM-28, no. 1, pp. 84 - 95, Jan. 1980.

[15] http://cochlea.hut.�/research/som lvq pak.shtml

[16] T. Kohonen, Self-Oganizing Maps, Berlin, Springer - Verlag, 1995.

[17] N. Aras, B. J. Oommen and I. K. Altinel, \The Kohonen network incorporating explicit statistics and its

application to the travelling salesman problem", Neural Networks, vol. , pp. 1273 - 1284, Dec. 1999.

[18] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.

15

[19] J. C. Bezdek, T. R. Reichherzer, G. S. Lim, and Y. Attikiouzel, \Multiple-prototype classi�er design", IEEE

Trans. Systems, Man, and Cybernetics - Part C, vol. SMC-28, no. 1, pp. 67 - 79, Feb. 1998.

[20] L. I. Kuncheva and J. C. Bezdek, \Nearest prototype classi�cation: Clustering, genetic algorithms or random

search?", IEEE Trans. Systems, Man, and Cybernetics - Part C, vol. SMC-28, no. 1, pp. 160 - 164, 1998.

[21] http://svm.�rst.gmd.de/.

[22] http://www.ics.uci.edu/mlearn/MLRepository.html.

16

Figure 1: A training data Tj ;t (a) and a test data Tj ;V (b) for the \Random" dataset. The 200 vectors of each

class are represented by `�' and `�', respectively.

17

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) CNN
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) PNN

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c) VQ
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(d) SVM

Figure 2: Initial prototypes of the \Random" dataset, which are selected by the CNN, PNN, VQ and SVM. In the

pictures, selected vectors are indicated by the circled `�' and `�' respectively. The numbers of selected vectors in

(a), (b), (c) and (d) are 36, 30, 32 and 18, respectively.

18

Table 1: The benchmark data sets for experiments. The vectors are divided into two sets of equal size, and used

for training and validation, alternately.
Dataset Total No. of No. of

Names Patterns Features Classes

Random 400 (200,200) 2 2

Iris2 100 (50,50) 4 2

Ionosphere 351 (176,175) 34 2

19

Table 2: The prototype compression rates of the various conventional methods on the design datasets.

Selection Methods Random Iris2 Ionosphere

CNN 0.83 0.71 0.74

PNN 0.86 0.83 0.80

VQ 0.84 0.68 0.98

SVM 0.92 0.85 0.80

20

Table 3: The classi�cation error rates (%) on the datasets.

Selection Methods Random Iris2 Ionosphere

ORG 3.00 7.00 21.35

CNN 3.75 11.00 16.80

PNN 4.25 6.00 17.37

VQ 3.25 4.00 14.25

SVMy 2.75 8.00 17.37

21

Table 4: The classi�cation error rates (%) of the various reported schemes after the LVQ3 post-processing.

Reduction Methods Random Iris2 Ionosphere

LVQ3 6.32 4.24 17.18

CNN+LVQ3 3.12 7.87 18.19

PNN+LVQ3 3.03 10.40 15.97

VQ+LVQ3 2.95 4.00 15.33

SVM+LVQ3 1.90 7.01 17.00

22

Table 5: The \large-sized" data sets used for experiments. The vectors are divided into two sets of equal size, and

used for training and validation, alternately.
Dataset Total No. of No. of

Names Patterns Features Classes

Sonar 208 (104,104) 60 2

Arrhythmia 452 (226,226) 279 16

23

Table 6: The experimental results of the \Sonar" dataset. In these tables, CB size is the size of the set of code-book

vectors - which is the number of prototypes. Also, �� , w� and �� are the best values of the relative learning rate, the
window width and the number of iteration steps, respectively. Acc0 is the classi�cation accuracy (%) of the initial

prototype YTest , before performing the post-processing; Acc1 and Acc2 are the classi�cation accuracies obtained

while learning the optimal values for w� and ��. Finally, Acc3 (standard deviation) is the averaged accuracy of the

trained prototype YFinal for the evaluation data set Ti;v .

Reduction Methods CB size Acc0 �� Acc1 w� Acc2 �� Acc3

LVQ3 53 69.23 0.06 83.65 0.27 83.65 1,200 77.57 (1.2014)

59 73.08 0.06 85.58 0.10 88.46 1,200 76.60 (0.5477)

71.16 77.09

CNN+ LVQ3 52 78.85 0.06 99.00 0.15 100.0 1,200 81.14 (0.9605)

53 80.77 0.06 100.0 0.44 100.0 1,200 83.02 (0.9443)

79.81 82.08

PNN+ LVQ3 34 72.12 0.06 96.15 0.19 100.0 1,400 83.56 (0.6731)

33 72.12 0.06 93.27 0.06 98.08 1,200 82.60 (1.1971)

72.12 83.08

VQ+ LVQ3 32 78.85 0.06 87.50 0.11 92.31 1,800 78.44 (1.0009)

32 77.88 0.06 89.42 0.06 91.35 6,400 84.16 (0.9754)

78.37 81.30

SVM+ LVQ3 53 82.69 0.06 95.19 0.35 95.19 5,600 80.42 (1.1091)

59 85.58 0.06 100.0 0.32 99.04 6,400 81.29 (1.0829)

84.14 80.86

24

Table 7: The experimental results of the \Arrhythmia" dataset. In these tables, CB size is the size of the set of

code-book vectors - which is the number of prototypes. Also, �� , w� and �� are the best values of the relative

learning rate, the window width and the number of iteration steps, respectively. Acc0 is the classi�cation accuracy

(%) of the initial prototype YTest , before performing the post-processing; Acc1 and Acc2 are the classi�cation

accuracies obtained while learning the optimal values for w� and ��. Finally, Acc3 (standard deviation) is the

averaged accuracy of the trained prototype YFinal for the evaluation data set Ti;v .

Reduction Methods CB size Acc0 �� Acc1 w� Acc2 �� Acc3

LVQ3 65 96.90 0.06 100.0 0.36 100.0 1,000 97.12 (0.2540)

69 97.35 0.06 98.67 0.16 98.67 1,000 98.11 (0.2175)

97.07 97.62

CNN+ LVQ3 32 95.58 0.06 100.0 0.07 100.0 1,000 96.69 (0.2211)

28 97.35 0.06 99.56 0.11 99.56 3,000 98.54 (0.3233)

96.47 97.62

PNN+ LVQ3 8 98.67 0.06 100.0 0.1 100.0 5,000 98.94 (0.5663)

7 99.56 0.06 99.56 0.17 99.56 5,000 98.86 (0.4563)

99.12 98.90

VQ+ LVQ3 64 99.12 0.06 100.0 0.06 100.0 3,000 99.40 (0.2373)

64 98.67 0.06 100.0 0.06 100.0 3,000 98.61 (0.2110)

98.90 99.01

SVM+ LVQ3 65 99.56 0.06 99.56 0.17 99.56 9,000 99.07 (0.4031)

69 99.56 0.06 99.12 0.21 99.12 6,000 98.97 (0.2414)

99.56 99.02

25

