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ABSTRACT 

Multiaction learning automata which update their action probabilities on the basis of the 
responses they get from an environment are considered in this paper. The automata update the 
probabilities according to whether the environment responds with a reward or a penalty. 
Learning automata are said to possess ergodicity of the mean if the mean action probability is 
the state probability (or unconditional probability) of an ergodic Markov chain. In an earlier 
paper [ll] we considered the problem of a two-action learning automaton being ergodic in the 
mean (EM). The family of such automata was characterized completely by proving the 
necessary and sufficient conditions for automata to be EM. In this paper, we generalize the 
results of [ll] and obtain necessary and sufficient conditions for the multiaction learning 
automaton to be EM. These conditions involve two families of probability updating functions. 
It is shown that for the automaton to be EM the two families must be linearly dependent. The 
vector defining the linear dependence is the only vector parameter which controls the rate of 
convergence of the automaton. Further, the technique for reducing the variance of the limiting 
distribution is discussed. Just as in the two-action case, it is shown that the set of absolutely 
expedient schemes and the set of schemes which possess ergodicity of the mean are mutually 
disjoint. 

I. IN~ODUCTIO~ 

Automata models for learning have been used to model biological learning 
processes. The learning automaton is required to interact with an environment 
and to learn the optimal action which the environment offers. Such learning 
automata have had a variety of applications in parameter optimization, adaptive 
~ntrol~ng of systems, and the routing of telephone calls. 

The learning process of the automaton can be described as follows. Consider 
Fig. 1. The environment with which the automaton interacts offers the latter a 
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Fig. 1. The automaton-environment interaction: h(n) E (0,l) = R. s(n) E {s,, s2,. . s,” ) = S, 

o(n)~(u,,u~ ,..., o,)=A. 

finite set of actions. The automaton is constrained to choose one of these 
actions. Once the action is chosen, the automaton is penalized by the environ- 
ment, the penalty probability being dependent on the action chosen. A learning 
automaton is one which learns the action with the minimum penalty probability 
and which ultimately chooses this more frequently (in some sense) than the 
other actions. 

Of the learning automata studied in the literature we are concerned with 
those which have transition matrices which are both time varying and stochastic. 
With no loss of generahty, we assume that the output matrix is always 
deterministic (31. Such automata are termed variable-structure stochastic (VSS) 
automata. It can be shown that a VSS automaton can be constructed by merely 
formulating a scheme by which the action probabilities can be updated. 

An important class of VSS automata are those which possess ergodic 
properties. Ergodic VSS automata are known for their excellent learning proper- 
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ties when interacting with environments which have time varying penalty 
probabilities. Various ergodic schemes have been proposed and investigated by 

Lakshmivarahan [12], Flerov [13], Tsypkin and Poznyak [14, 151, and El Fatteh 
[15, 161. 

The simplest ergodic scheme known is probably the linear reward-penalty 
(La,) scheme. In this case the action probability decrements are made linearly 
proportional to the probabilities themselves and are made irrespective of the 
response of the environment. The limiting probability vector converges in 
distribution, and the form of this distribution is at present known only for the 
symmetric version of the L,, scheme which is a one-parameter probability 
updating algorithm. 

To help understand the contributions of this paper we need the following 
definition introduced in [ll]. 

DEFINITION I. A learning scheme is said to be ergo&c in the mean (EM) or 

equivalently possess ergo&city of the mean (EM) if the mean action probability 
is the state probability’ of an ergodic Markov chain. 

REMARK. Consider the mean action probability of the automaton at the n th 
time instant. This vector is either stochastically independent of the correspond- 
ing vector at the previous time instants, or dependent on the values it took 
earlier. The former assumption (namely, that of independence) is obviously 
meaningless in the framework of a learning system. To investigate the question 
of the dependence of this vector on its history, the concept of ergodicity of the 
mean (EM) was introduced in [ll]. Observe that such a study is productive, 

inasmuch as the fact remains that an ergodic Markov chain is probably one of 
the simplest ways of describing the dependence of two random vectors. Indeed, 
ergodicity of the mean is a powerful characterization of the set of ergodic 

automata. Further, such a characterization permits the use of many well-known 
techniques involved in the study of ergodic Markov chains, namely those by 
which the limiting distribution and the rate of convergence can be studied. 

Although ergodicity of the mean is an interesting (and possibly one of the 
simplest) ways by which a learning automaton can be characterized, the only 
known algorithm possessing this property is the one known in the literature, as 

the symmetric linear reward-penalty (L,,) scheme. In [ll] we considered the 
general problem of the two-action probability updating scheme possessing 
ergodicity of the mean. The updating algorithm was given in terms of two 
nonlinear functions (p( .) and 8( -). Two necessary and sufficient conditions 
involving these functions were derived for the scheme to be EM. The first of 

‘Also called “absolute” or “unconditional” probability 
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these conditions resembles the one proven to be necessary and sufficient for 
absolute expediency [5,6,8], and the second is a linear constraint involving the 
functions and a constant. The latter constant is the only parameter which 
controls the rate of convergence of the scheme. Further, it was shown in [ll] 
that the other parameters in the scheme can be used to control the variance of 
the limiting action probabilities. The process of designing a nonlinear EM 

automaton superior to the corresponding L,, automaton was also proposed. 
In this paper we consider the problem of the multiaction learning automaton 

being EM. For the R-action environment, the updating scheme is defined using 
two families of functions {+(.)]i=l,...,R} and {e,(.)]i=l,...,R}. These 
functions are explicit functions of the action probability vector. We refer to 
these families of functions as {$(.)} and { 0( .)} respectively. 

The main contribution of this paper are as follows: Necessary and sufficient 

conditionson {+(.)} and {e(.)} h ave been derived which render the automaton 

EM. These conditions can be viewed as vector versions of the corresponding 
conditions imposed in the two-action problem. Further, we show that the 

scheme can be EM if and only if +, (.) and 19~( .) are linearly dependent. The 
vector of coefficients which specify the linear dependence has been shown to be 

the onb set of parameters which influence the rate of convergence of the 
learning automaton. 

We have also suggested a technique by which the variance of the limiting 

action probabilities can be minimized. 
The organization of the paper is as follows. We first introduce the terminol- 

ogy used in the literature and explain the linear reward-penalty (L,,) automa- 
ton. We then present the conditions for the general nonlinear updating al- 
gorithm to be EM and prove some fundamental theorems regarding the rate of 
convergence of EM schemes and of the limiting action probabilities. Finally we 
present simulation results which demonstrate the learning capabilities of the 
automata discussed. 

I.1. FUNDAMENTALS 

The automaton selects an action a(n) at a time instant n. Here a(n) is any 
one of a finite set (a,, . . , uR) and is selected on the basis of an R X 1 
probability vector p(n) whose components are 

R 

p,(~)=Pr[u(n)=u,] with c pi(n) =l. 
r=l 

The selected action interacts with a random environment which gives out a 
response b(n) at the same time instant. b(n) is either 0 or 1, the latter being 
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called the penalty. The quantity c, defined below is referred to as the penalty 
probability: 

ci = Pr[ b(n) =l]a( n) = ai] (i=l ,..., R). 

Thus the environment is characterized by the set of penalty probabilities. The 
automaton updates the vector p(n) on the basis of b(n), and then a new action 
is chosen at n + 1. 

The {c, } are unknown initially, and it is desired that, as a result of the 
feedback received from the environment, the automaton will ultimately choose 
the action with the minimum ci more frequently in the expected sense. 

The average penalty received at the n th time instant is 

M(n) = I? Pi(n)cr 
r=l 

With no a priori information, the automaton chooses the actions with equal 
probability. The expected penalty is thus initially 

iv,= ; pi(o)c,=~ .i: c, [since p,(O) =1/R]. 
r=l r=l 

An automaton is said to learn expediently if, as time tends towards infinity, 
the expected penalty is less than Ma. The automaton is absolutely expedient if 

Note that in this case M(n) is a supermartingale [8]. 

I.2. THE R -ACTION L,, SCHEME 

The R-action linear reward-penalty (Lk,,) scheme, which is a probability 
updating algorithm having two parameters a, b < 1, is given below: 

I 
UP, if a(n)=a, and b(n)=O, 

l-aCp, if a(n)=a, and b(n)=O, 

P,(” +1) = 
j#i 

bpi if a(n)=a, and b(n)=l, 

bp, + E if a(n)=a, and b(n)=l. 
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To simplify the notation, unless explicitly stated we use pi to refer to the 
probability p,(n). The vector p will refer to [ pl, p2,. . , , pR]‘. Note that if the 
action ai is chosen and a penalty is obtained, the decrease in probability is 
shared among the rest. In this Form of the L,, scheme E[ pi (n t 1) {p] has the 
expression 

R 

EIP*t.n+l)lP]=(b-a)Pi C Pjcj3Pz(1-ci+aci) 
I=1 

Observe that E[ p,( n + l)] is not linear in p, It consists of a sum of terms 
quadratic in pip,. Because of this, the form of limiting distribution of the 
general L,, scheme is unknown. However, in the symmet~c case when b = a, 
the quadratic terms disappear, yielding the vector equality 

E[p(n+l)] =A%[p(n)] 

where the stochastic matrix A has elements 

It can be shown that since E[p(n)j possesses the above Markov property, the 
limiting value of the expected action probabilities are 

1 - 

E[ p,(ccl)] =ci 

f” 

j=l cj 

The limiting expected penalty is thus the harmonic mean of the individual 
penalty probabilities. Since the harmonic mean is always less than the arithmetic 
mean, the R-action symmetric L., is expedient in all en~onments. Since the 
R-action symmetric L, scheme is ergodic in the mean, we shall refer to it as 

the LEM scheme. Currently, this is the only R-action scheme known to be EM. 
We now study generalized nonlinear EM automata. 
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II. NONLINEAR SCHEMES ERGODIC IN THE MEAN 

We shall first consider the general problem of designing nonlinear EM 
learning schemes. Two sets of necessary and sufficient conditions for probability 
updating schemes to be EM have been derived. The conditions involve two 
families of arbitrary functions 9, ( .) and 8, ( .) defined for i = 1,. . . , R. The first 
set of conditions is similar to the conditions required to guarantee absolute 
expediency [5, 6, 8, 121. The second set constrains the functions 8, ( .) and +, ( .) 
to be linearly dependent. 

The probability updating scheme for R-actions is given below: 

‘+J(P) if a(n)=a,, b(n)=l, 

l- X%(P) if a(n)=a,, b(n)=l, 

&+l)=( 

i#j 

e,(P) if a(n)=a,, b(n)=O, 
(1) 

l- c O,(P) if a(n)=a,, b(n)=O. 
\ if/ 

The updating scheme is easily comprehended. If the action chosen is a, and a 
penalty is obtained, the probability p, is updated to ad. Once all the other 
action probabilities have been updated, the action probability of the action 

chosen is set to render the sum of the probabilities to be unity. 
In a similar way, if a(n) is a, and the response is a reward, the algorithm 

updates all the other action probabilities to O,(p) for all i f j. Again, p, (n + 1) 
is calculated so that the sum of the action probabilities is unity. 

Note that for the scheme to be strictly of a reward-penalty nature the 

following obvious inequalities must hold for all j: 

We now present some properties of the generalized nonlinear EM scheme. 

THEOREM I. Sufficient and necessary conditions for the probability updating 

scheme defined by (1) to be EM are 

e,(p) e,(P) 4(P) -x-z... =_=L 
Pl P2 PR 

(4 
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and 

~(P)-+,(P) =d,. 

Proof. By virtue of the updating scheme defined by (l), p,( n + 1) has the 
following distribution: 

p,b+O = 

‘+, (PI W.P. c PiC,, 
r#j 

‘- C @i(P) w.P’ Pj’,, 
‘+J 

e,(P) W.P. c P,(l- Ci), 
i+j 

l- C ‘i(P) w’P’ Pj(l-‘,). 
i#j 

To simplify the notation, we shall omit the arguments for &(p) and 0, (p), 
observing they are always p. Then 

E[ Pjtntl)lP] =cjPj( C teim+z)}+( C (4j-8,))pict 
i+j i#j 

“,Pj{ C (ei-+i))+( C (+j-$)Pici} 
i#j i#j 

+ pj i - fJ e, + e,. 
i i i=l 

The first two terms of the above involve the penalty probabilities, thus if 
E[pj(n + l)] is to be a linear function of IQ(n)], each quantity in the 
parenthesis of these terms must be a constant. This is a consequence of the fact 
that cancellations between the first and second terms cannot occur, because the 
updating functions cannot be explicit functions of the unknown penalty prob- 
abilities { ci }. Hence, a set of necessary and sufficient conditions for the scheme 
to be EM is 

e, - f#Bi = di for i =I,..., R. 
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Consider the last two terms 

p, 1- ; ei + e,. 
i 1 r=l 

We contend that these terms are linear in p if and only if 

e e 8 -J-=2=... =.A 
Pl P2 PR 

(3) 

Clearly, if (3) is enforced, 3 = pjEf=ld,, and hence 

Pj - P, 5 4 + 0, = P, 
I==1 

(4) 

Hence (3) is obviously a sufficient constraint. 
We prove necessity of (3) by considering the RHS as a linear function in p. In 

the most general case, for the last two terms to be linear in p, 

R R 

Pj-PjCe,+q= C XjkPk, 
i=l k=l ’ 

(5) 

where { x,, k } is a set of nonnegative constants. Summing (5) over all values of j 
shows the LHS to be 

which is unity. 
The sum of the RHS of (5) over all values of j evaluates to 

j=l 

R 

where X,= c x,,,, 
k=l 

which is unity if and only if every Xj is identically equal to unity. Hence (3) is 
necessary for the system to be EM, and the theorem is proved. 
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REMARK. The linear constraint involving $( .) and @( .) is 

cp,(P)-t(P) =4. 

Since the penalty probabilities are unknown, with no a priori information there 
is no loss in generality in assuming that the constants d, are all equal for 

i=l,..., R. If we use 

we obtain the relationship obeyed by the expected value of the action probabili- 

ties as 

E[ Pj(n+l)] =E[ P,(n)] (‘-(I-d)c,} 

In matrix form, E[p(n + l)] = ATE[p(n)], where the elements of the stochastic 

matrix A are given by 

A,,, =l-(l-d)c,, 

We now prove a theorem concerning the rate of convergence of the limiting 
vector. 

THEOREM II. The rate of convergence of a nonlinear EM scheme is determined 

entirely by the set of parameters { d, 1 i = 1,. . . , R } which relate (p, ( .) and ei( -). 

Proof. Subject to the conditions specified by Theorem I, the expected value 
of the action probabilities obeys the matrix equation specified above. The 
matrix A is Markovian. Hence, the rate of convergence of this Markov chain is 
controlled by the eigenvalue of A (other than unity) of largest magnitude. The 
latter is a function on& of the d, ‘s and not of the functions &( .) and 0, (e). 
Hence the theorem. 

For the rest of this paper we shall assume that the d,‘s are all equal. In any 
particular problem, if there is a reason to prefer one action over the other, the 
di ‘s will be distinct. In such a case the matrix relationship E[p(n + l)] = 
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,4rE[p(n)] will still be obeyed except that the matrix A will involve the set of 

parameters, {d, }, as opposed to a single parameter d. It is our conjecture that 

by suitably choosing the d,‘s, the a priori information about the actions can be 
included to render the scheme e-optimal. This conjecture is currently being 
investigated. However, as stated earlier, for the rest of this paper, we shah 
assume that all the actions are initially equally preferred, and so the d,‘s are all 
equal to a single constant, d. 

THEOREM 111. In the case when the d,‘s ure of1 equal, the limiting expected 

action probabilities are all independent of d and have the value 

1 - 

i=l . . . ..R 

Proof. TO get the limiting expected value of p(o) we solve 

@=A’@. 

p” is thus the eigenvector of the eigenvahte which is unity. Solving, [I - AIT‘p* = 0 

yields for the first row 

(l-d) c,p:-jj-$ i c,p: 
t-2 

whence 

J 
p;=.Rc, 

where J is a constant independent of i and is equal to E,‘_ , p:c,. Similarly, 

J 
P: = Rc, 

Since X:P_, p: is unity, 

J=-R_ 
cpp Il./C, . 
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B. J. OOMMEN AND M. A. L. THATHACHAR 

COROUARY I. The generalized nonlinear EM scheme with di equaijor all the 
actions is expedient. 

Proof. The result is proved from the above theorem by observing that the 
harmonic mean of a sequence of numbers is never greater than the arithmetic 
mean. 

REMARKS. 

(1) The symmetric L,, scheme is obtained by using 6, (p) = api and d = a 
for i=l , . . . , R. Observe that the limiting value of the expected action probabili- 

ties from Theorem III above is identical to the limited value of the correspond- 
ing case in the symmetric L,, scheme. 

(2) An exampIe of a nonlinear function which can be used for 8,(.) is 

8 
l=a+bp,p,*..p,=L. 
J!j 

When b = 0 and d + a, the scheme obtained is 

v,(n) if a(n)=a,, b(n)=O, 

l- a(l-p,) if a(n)=a,, b(n)=O, 
p,(n+l)= 1-i 

OpJ + R-l 
if a(n)=a,, b(n)=l, 

(d-a(l-p,) if a(n)=a,, b(n)=l. 

Note that this is a two-parameter updating scheme which is EM, as opposed to 
the only scheme possible in the format of the L,, scheme described in Section 
I. For this scheme to be of a reward-penalty nature the parameter d must equal 
a. The distinctiveness of the scheme lies in the fact that the scheme is EM and 
yet has two parameters, of which one so/& controls the rate of convergence and 
the second, a, can be used to minimize the variance independently. 

We conclude this section by observing that the set of automata which are EM 
is disjoint from the set of automata which are absolutely expedient. 
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THEOREM IV. The set of absolutely expedient schemes and the set of schemes 

which are EM are disjoint. 

Proof. Lakshmivarahan and Thathachar [6, 8,121 have proved the necessary 
and sufficient conditions for absolute expediency. These conditions do not 
permit the linear dependence of (p( .) and 0( e), which is a necessary and 
sufficient condition for the scheme to be EM. Hence the theorem. 

III. DESIGN CONSIDERATIONS 

Nonlinear EM automata can be designed using functions of the form 
specified by remark (2) above. If the penalty probabilities are known (though 
the actions to which they belong are unknown), the design process is rendered 
easier. A suitable value of d can be chosen so that the eigenvalues of the 
resulting transition matrix are determined by the convergence requirements. 

For the two-action case expressions have been derived for the values of the 
parameters which minimize the variance of the limiting action probabilities. In 
the R-action case no such expressions are available. The rest of the parameters 
in the scheme are determined by trial and error with the intention of minimizing 

the limiting variance. To demonstrate how this is done we study an environment 
with penalty probabilities 

c, = 0.65, c2 = 0.2, c, = 0.5, 

cq = 0.4, cs = 0.85. 

Observe that a2 is the optimal action and this action is chosen asymptotically 
with an expected probability 

1 

p; 0.2 = = 1 1 1 1 1 0.40394 

0.65 + 0.2 + 0.5 + b.4 + 0.85 

The nonlinear scheme which was used had the following form: 

e 
1 = a + hp~p3p4p~ 
Pi 
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To simplify matters, d was set equal to a = 0.6. To study the variation of the 
limiting variance with b, we have plotted the value of 

VA=+ ; (p2,(o+pPf)2 
J=l 

as a function of b. In the above expression, N is the number of experiments, 

o=d=0.6 

R= 5 

1 I I I I I I 

- 1000 -750 -500 -250 0 250 500 750 1003 
b- 

Fig. 2. Nonlinear EM scheme: variation of variance with h. 
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and pzj(cc) is the final value of p2 in the jth experiment. Note that we have 
used the exact value of pz in the computation instead of the sample mean of the 
final value. This is to avoid the errors that would be encountered by ignoring the 
effect of the variance of the sample mean. 

From Figure 2 we observe the variation of I/+ with respect to b. The value of 
the variance seems to be minimized when b is nearly 500. Observe that this 
variance is less than the variance of the corresponding L,, scheme obtained 
when b = 0. 

If we keep both a and b as parameters to be varied, their optimal values, 
which reduce the variance even further, can be obtained. In contrast with the 
two-action EM schemes [ll], however, due to the complexity of the expressions 

involved, we have been unable to obtain an explicit relationship for the limiting 
variance. We have thus to resort to simulation to get the most desirable 
parameters. The problem of deriving a closed-form expression for the variance 
for the family of linear and nonlinear EM schemes remains an unsolved 
problem. 

IV. CONCLUSIONS 

In this paper we have considered the general problem of designing stochastic 
learning automata in which the expected value of the action probabilities is the 
total state probability of an ergodic Markov chain. Automata which possess this 
property are said to be ergodic in their mean (EM). 

We have considered the general problem of designing multiaction variable 
structure stochastic automata which are EM. The automata are fully defined by 
two families of probability updating functions Gi ( .) and 8, (. ). We have derived 
necessary and sufficient conditions on $ ( .) and 19, ( .) that guarantee the scheme 
to be EM. The conditions on (p,( .) and ei( .) require that they be linearly 
dependent. Further, the nonlinear part of these functions must obey a simple 
relationship which is similar to the conditions derived for the two-action EM 
automata [ll]. 

It has been shown that the set of absolutely expedient schemes is disjoint 
from the set of EM schemes. 

In particular we have studied a whole family of linear schemes which are EM. 
Though these are two-parameter schemes, only one of these parameters controls 
the rate of convergence. The other parameter can be used to control the variance 
of the limiting distribution. 

Simulation results have been included which highlight the strategy to be 
followed in the process of designing nonlinear EM automata. 

The’authors would like to express their sincere appreciation to Professor D. 
Dawson of the Department of Mathematics, Carleton University, Ottawa, for some 
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invaluable discussions. It was one of these discussions which helped to solve a 

crucial problem encountered while proving Theorem I. 
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