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Abstract. We consider a problem which can greatly enhance the areas of
cursive script recognition and the recognition of printed character sequences.
This problem involves recognizing words/strings by processing their noisy
subsequences. Let  X* be any unknown word from a finite dictionary H.  Let
U be any arbitrary subsequence of X*. We study the problem of estimating X*

by processing Y, a noisy version of U. Y contains substitution, insertion,
deletion and generalized transposition errors -- the latter occurring when
transposed characters are themselves subsequently substituted. We solve the
noisy subsequence recognition problem by defining and using the constrained
edit distance between X � H and Y subject to any arbitrary edit constraint
involving the number and type of edit operations to be performed. An
algorithm to compute this constrained edit distance has been presented.  Using
these algorithms we present a syntactic Pattern Recognition (PR) scheme
which corrects noisy text containing all these types of errors. Experimental
results which involve strings of lengths between 40 and 80 with an average of
30.24 deleted characters and an overall average noise of 68.69 % demonstrate
the superiority of our system over existing methods.

1  Introduction

A common problem in syntactic pattern recogniton is that of correcting errors in a
string. A package solving this problem is typically used in the recognition of printed
character sequences and cursive script (and more recently, even closed boundaries
[3]) after the individual symbols of the "alphabet" have been hypothesized using
statistical methods. Such a scheme would permit us to recognize strings and
sequences by using only noisy partial (occluded) information.

In this paper we consider a far more general problem. To pose it in its
generality, let us assume that a sender intends to transmit a string X*� H. However,
rather than send the entire string X* he chooses to (randomly or otherwise) delete
characters from it, and merely transmit U, one of its subsequences. U is transmitted
through a noisy channel and is further subjected to substitution, deletion, insertion
and generalized transposition errors.  The receiver receives Y, the garbled form of
U.  We intend to recognize X* by merely processing Y. The reader will be able to
comprehend the difficulty in the PR problem if he observes that any substring
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consisting of the consecutive characters of U, need not be a contiguous substring of
X*, and that whereas there are O(N2) contiguous substrings for a string X of length
N, there are O(2N) subsequences.

Clearly, a syntactic package which achieves this will greatly enhance the
power of OCR systems which recognize printed character sequences and cursive
script. Indeed, we will then be able to recognize strings and sequences, by merely
having as an input a noisy versiuon of any of its subsequences. This could permit the
recognition of strings and sequences which have been "occluded" at multiple
junctures, and thus permit far more noisy environments.

To achieve this we present the first reported solution to the analytic problem
of editing (or more precisely, aligning) one string to another using these four edit
operations subject to any arbitrary constraint involving the number and type of these
operations. Using these algorithms we present a syntactic PR scheme which corrects
the noisy subsequences containing all these types of errors.

The relationship between our present work and the work that has been done in
noisy string processing is found in [8]. The paper [8] also gives references to the
longest common subsequence problem and sequence correction using the GLD as a
criterion for strings, substrings, dictionaries treated as generalized tries and for
grammars. Also,  although some work has been done to extend the traditional set of
SID operations to include adjacent transpositions [5, 9, 10] our work tackles the
unsolved problem for constrained editing for "Generalized" Transposition (GT)
errors.

1.1  Notation

A is a finite alphabet, and A* is the set of strings over A. θ is the null symbol, where

θ  � A,  and is distinct from µ the empty string. Let A ~ = A ≈ {θ}.  A  string X � A*

of the form   X = x1...xN , where each xi � A, and is said to be of length |X| = N.  Its
prefix of length i will be written as Xi, for 1 � i � N.  Uppercase symbols represent
strings, and lower case symbols, elements of the alphabet.

Let Z' be any element in A ~*, the set of strings over A ~. The Compression

Operator  C is a mapping from A ~* to A* : C(Z') is Z' with all occurrences of the
symbol θ removed from Z'.  Note that C preserves the order of the non-θ symbols in
Z'.  For example, if Z'= fθοθr, C(Z') = for.

We now define the costs associated with the individual edit operations. If R+

is the set of nonnegative real numbers, we define the elementary edit distances using
four elementary functions ds(.,.), di(.), de(.), dt(.,.) defined as follows :  (i)  ds(.,.) is

a map from A X A ∅ R+ and is the Substitution Map. ds(a,b) is the distance

associated with substituting b for a, a,b � A ; (ii)  di(.) is a map from A ∅ R+ and is
called the Insertion Map. The quantity di(a) is the distance associated with inserting

the symbol a � A;  (iii)  de(.) is a map from A ∅ R+ and is called the Deletion or
Erasure Map. The quantity de(a) is the distance associated with deleting (erasing)

the symbol a �A, and (iv)  dt(.,.) is a map from A2 X A2 ∅ R+ called the



Transposition Map. The quantity dt(ab,cd) is the distance associated with
transposing the string "ab" into "cd". A formal expression for D(X,Y) in terms
of these elementary edit distances and the set of ways by which X can be edited to Y,
ΓX,Y is given in [8].

2  Permissible and Feasible Edit Constraints

Consider the problem of editing X to Y, where |X| = N and |Y| = M. Suppose we edit
a prefix of X into a prefix of Y, using exactly i insertions, e deletions (or erasures), s
substitution and t GTs. Since the numbers of edit operations are specified, this
corresponds to  editing  Xe+s+2t  = x1...xe+s+2t the prefix of X of length e+s+2t,

into Yi+s+2t  = y1...yi+s+2t , the prefix of Y of length i+s+2t.

To obtain bounds on the magnitude of the variables i, e, s and t, we observe
that they are constrained by the lengths of the strings X and Y. Thus, if r = e + s +
2t, q = i + s + 2t and R = Min [M, N], these variables will have to obey the
following obvious constraints:

0 � t � Min [∈N
2  ∨,∈M

2  ∨] ; Max[0, M-N] � i � q � M ;

0 � e � r � N ; 0 � s � Min[N, M].
Quadruples (i, e, s, t) which satisfy these constraints are termed feasible. Let

Ht = { j | 0 � j � Min [∈N
2  ∨,∈M

2  ∨]}; Hi =

{ j | Max[0, M-N] � j � M } ;
He = { j | 0 � j � N } ; Hs = { j | 0 � j � Min[N, M] } (1)

Ht, Hi, He and Hs are called the set of permissible values of i, e, s and t. A

quadruple (i, e, s, t) is feasible if apart from t � Ht, i � Hi, e � He and s � Hs, the

inequalities {i + s + 2t � M ;  e + s + 2t � N } are also satisfied.
Theorem 1 specifies the permitted forms of the feasible quadruples

encountered in editing Xr, the prefix of X of length r, to Yq, the prefix of Y of

length q.

Theorem 1 To edit Xr, the prefix of X of length r, to Yq, the prefix of Y of length

q, the set of feasible quadruples is given by
{ (i, r-q+i, q-i-2t, t) | Max[0, q-r] � i � q-2t }     (2)

Proof. The proof is included in the unabridged paper [8].
→→→

An edit constraint is specified in terms of the number and type of edit
operations that are required in the process of transforming X to Y. It is expressed by
formulating the number and type of edit operations in terms of four sets Qt, Qi,  Qe
and Qs, which are subsets of the sets Ht, Hi,  He and Hs defined in (1). For every

value of t in the set Qt, we define the sets Qt
i , Q

t
e  and Qt

s   as :

Qt
i   = { i  | i �M-2 t } ↔ Qi  ; Qt

e  = { e  | e � N-2 t  } ↔ Qe ;



and Qt
s   = { s  | s  � Min[N-2 t, M-2t]} ↔ Qs.

These sets represent the number of edit operations given that t GTs had occurred.

Theorem 2 Given a value of t, every edit constraint specified for the process of
editing X to Y can be written as a unique subset of Hi.

Proof. The proof is given in the unabridged paper [8] and involves computing

subsets of Hi  for the various subsets  Qt
i , Q

t
e  and Qt

s .

→→→

The set (the subset of Hi ) referred to above, which describes the constraint

given a value of t will be written as Tt. A detailed example of how these sets are

created is found in the main paper. Also, we shall refer to the edit distance subject to
the constraint Tt as Dt (X,Y). By definition, if Tt = , then Dt (X,Y) = �. The

distance for the optimal edit transformations is denoted by Dc(X,Y) which is the

minimum of all Dt (X,Y).

3  W: The Array Of Constrained Edit Distances

Let W(i,e,s,t) be the constrained edit distance associated with editing Xe+s+2t  to

Yi+s+2t  subject to the constraint that exactly i insertions, e deletions, s substitutions

and t GTs are performed in the process of editing. As before, let r = e+s+2t and q =
i+s+2t. Using the notation in [8], let Γi,e,s,t(X,Y) be the subset of the pairs in

ΓXr
,Yq

 in which every pair corresponds to i insertions, e deletions, s substitutions

and t transpositions. Since we shall always be referring to the strings X and Y, we
refer to this set as Γi,e,s,t. Assuming (i,e,s,t) is feasible for the problem, W(i,e,s,t)

has the expression

        W(i, e, s, t) = 
Min

((X'
r,Y

'
q)� Γi,e,s,t)

  

|X'
r|

Σ
j=1

  d(X'
rj ,Y

'
qj ) (3)

We shall derive the recursively computable properties of the array W(i, e, s, t).

Theorem 3 Let W(i, e, s, t) be as defined in (3) for strings X and Y. Then,

W(i, e, s, t) = Min [ {W(i-1, e, s, t) + d(θ, yi+s+2t )},

{W(i, e-1, s, t) + d(xe+s+2t , θ)},

{W(i, e, s-1, t) + d(xe+s+2t, yi+s+2t )},

{W(i, e, s, t-1) + d(xe+s+2t-1xe+s+2t, yi+s+2t-1yi+s+2t

)}]



for all feasible quadruples (i, e, s, t).
Proof.       The proof is involved and can be found in the unabridged paper [8].
→→→

The computation of the distance Dt (X,Y) from the array W(i, e, s, t) only

involves combining the appropriate elements of the array using Tt. This is proved in

the following theorems whence we derive a computational scheme for Dc(X,Y).

Theorem 4 The quantity Dt (X,Y) is related to the elements of the array

W(i, e, s, t) as follows:

Dt (X,Y) = 
Min
i �Tt

  W(i, N-M+i, M-i-2t, t)

Proof.    The theorem follows from Theorem 1 by setting r = N and q = M.  →→→

Theorem 5 The distance Dc(X,Y), is obtained as follows:

Dc(X,Y) = 
Min

k � Qt
  Dk (X,Y)

Sketch of Proof. Consider the individual Dt (X,Y) quantities. Each is the minimum

edit distance associated with transforming X to Y with a feasible set of operations,
given that there are t transpositions. The minimum of these would be the minimum
edit distance for the optimal edit transformations.
→→→

4  The Computation Of The W-Array And Dc(X,Y)

To compute Dc(X,Y), we make use of the fact that although this index does not itself

seem to have any recursive properties, the index W(.,.,.,.), which is closely related to
it, has the interesting properties proved in Theorem 3. The evaluation of the array
W(.,.,.,.) has to be done in a systematic manner, so that any quantity W(i,e,s,t) must
be evaluated  before its value is required in any further evaluation. This is easily
done by considering a four-dimensional coordinate system whose axes are i, e, s and
t respectively.  Initially, the value associated with the origin, W(0,0,0,0) is assigned
the value zero, and the contributions with the vertices, axes, planes and cubes are
evaluated sequentially in an intelligent manner. Finally, Dc(X,Y) is evaluated by

minimizing over the relevant contributions of W(.,.,.,.) associated with the points
that lie on the four-dimensional line given by the parametric equation :

i = i;   e = N - M + i;   s = M - i - 2t;  t = t
Rather than use this traditional method for traversing the W-array, we shall

develop a compact version of it using a pair of three dimensional arrays instead of a
four-dimensional array. To do this, we shall take advantage of the following fact.
For a particular value of t, in order to compute W(i, e, s, t) for all permissible values



of i, e and s, it is sufficient to store only the values of W (i, e, s, t-1) for all the
corresponding permissible values of i, e and s. Consider the four-dimensional trellis
described above. We shall successively evaluate the array Wc (for current W-array)
in cubes hyper-parallel to the cube t = 0. Two arrays are maintained, namely,

(i)  Wp:  the cube hyper-parallel to t = 0, for the previous value of t, and,
(ii) Wc:  the cube hyper-parallel to t = 1 maintained for the current value of t.

The algorithm, given as Algorithm Gen_Constrained_Distance below, evaluates
these two arrays in a systematic manner.  Initially, the quantities associated with the
individual axes are evaluated. The lines, planes and cubes of the Wc array are
initialized and traversed as described above. Also, prior to updating Wp, its
pertinent component required in the computation of Dc(X,Y),  is used to update the

latter. It is clear that given X and Y, Dc(X,Y) is computed with

O(|X|.|Y|.Min(|X|,|Y|)) space and in O(R.|X|.|Y|.Min(|X|,|Y|)) time, where 0 � R �

Min[∈|X|
2  ∨,∈|Y|

2  ∨].

ALGORITHM GEN_CONSTRAINED_DISTANCE
Input: The strings X = x1x2...xN, Y = y1y2...yM, the edit distances and the

constraint sets Tt . Let R be the largest integer in the set Qt.
Output: The constrained distance Dc(X,Y).
Notation: Values at negative indices of Wc and Wp are set to infinity.

Method :
For t ♦ 0 to R Do

For i ♦0 to M-2t Do
For e ♦0 to N-2t Do

For s ♦0 to Min [M-i-2t,N-e-2t] Do
Wc(i, e, s) ♦Min [ Wc(i-1, e, s) + di(yi+s+2t ),

Wc(i, e-1, s) + de(xe+s+2t ),

Wc(i, e, s-1) + ds(xe+s+2t, yi+s+2t ),

    Wp(i,e,s) + cost ],
where cost = dt(xe+s+2t-1xe+s+2t,yi+s+2t-1yi+s+2t )

If i,e,s,t are all equal to zero then Wc(i,e,s) = 0
EndFor

EndFor
If i � Tt, then Dc(X,Y) ♦Min[Dc(X,Y), Wc(i, N-M+i, M-i-2t)]

EndFor
For i ♦ 0 to M-2t Do

For e ♦ 0 to N-2t Do
For s ♦ 0 to Min[M-i-2t,N-e-2t] Do

Wp(i, e, s) ♦ Wc(i, e, s)
EndFor

EndFor



EndFor
EndFor

END ALGORITHM GEN_CONSTRAINED_DISTANCE

5 Noisy Subsequence Recognition and Experimental Results

Let us assume the characteristic of the noisy channel are known, and further, let Li
be the expected number of insertions introduced in the process of transmitting U.
This figure can be estimated although the actual number of symbols inserted in any
particular transmission is unknown.  Since U can be any arbitrary subsequence of
X*, and since the words of the dictionary can be of completely different lengths, it is
obviously meaningless to compare Y with every X � H using the GLD. Thus, before
we compare Y with the individual words of the dictionary, we have to use the
additional information obtainable from the noisy channel.

Since the number of insertions introduced in any transmission is unknown, it
is reasonable to compare X � H and Y subject to the constraint that the number of
insertions that actually took place is its best estimate.  Of course, in the absence of
any other information, the best estimate of the number of insertions that could have
taken place is indeed its expected value, which we have referred to as Li.  However,
if Li is not a feasible value for the number of insertions, then  the closest feasible

value is used to compare X � H and Y.  An identical argument can be given for the
reason why Lt, the expected number of GTs that take place per transmission, is used
as the best estimate for the number of GTs that took place in yielding Y.  Thus, the
procedure to estimate X* is as follows : If Lt and Li are feasible values, the
constraint set Tt is set with respect to Lt and Li. Otherwise, the constraint set Tt is

set with as the feasible integers closest to Lt and Li. The distance Dc(X,Y) is

computed using Algorithm Gen_Constrained_Distance, for every X � H. X+, the
estimate of X*, is obtained as the string which minimizes Dc(X,Y). The formal

algorithm is in [8].
To investigate the power of our new measure (and its computation) and to

demonstrate the accuracy of our new scheme in the original PR problem various
experiments were conducted. The results obtained were remarkable. The algorithm
was compared with PR results obtained if (i) only SID errors were assumed and
corrected using Wagner & Fischer [11] algorithm, (ii) SID and traditional
transposition errors were assumed and corrected using Lowrance and Wagner [5,10]
algorithm and (iii) SID and generalized transposition errors were assumed and
corrected using a recent unconstrained editing algorithm for all the four operations
[7].

The dictionary, H, used consisted of a hundred strings taken from the
classical book on pattern recognition by Duda and Hart and were randomly
truncated so that the length of the words in H was uniformly distributed in the
interval [40, 80]. Using random deletions as in [6] a set of 500 subsequences were
generated. The resultant subsequence U had an average of 30.24 characters deleted
from the original strings. Each subsequence U was further subjected to insertion,



deletion, substitution and transposition errors using a technique similar to the one
described in [8]. A typical example of a noisy subsequence corrected is given below :

X*: theoriginationofpartiofthisbookisprimarilystatisticalchaptertwostatesthecla
U : theorigiofpartisbookistachartwost
Y : theoriyiopratribdooksitacahrtowst

In this case, the number of errors is 51. The error statistics associated with the set of
noisy subsequences used is given in Table 1. Notice that even though the number of
errors associated with each Y is large, it would be even larger from the perspective
of the set of standard operations where a GT is a combination of two substitution
errors.

The four algorithms were tested with the 500 noisy subsequences. In the case
of our algorithm, rather than have the constraint set use only a single feasible
integer for the number of insertions and transpositions, the algorithm was
marginally modified to include a small range of integers. The details of the
individual inter-symbol edit distance and the distance assignments used are given in
[8]. The results obtained in terms of accuracy are tabulated in Table 2. Note that our
scheme far outperforms the traditional string correction algorithm (94.0 % instead
of 64.2 %). It also outperforms the Lowrance and Wagner algorithm (which had an
accuracy of 75.6 %). Our recent unconstrained distance criterion for all the four
errors [7] yielded an accuracy of 74.6 %. The power of the strategy in PR is obvious
!!

6  Conclusions

In this paper we have considered the problem of recognizing strings by processing
their noisy subsequences.  The solution which we propose is the only known solution
in the literature when the noisy subsequences contain substitution, insertion, deletion
and generalized transposition errors. Given a noisy subsequence Y of an unknown
string X*�H, the technique we propose estimates X* by computing the constrained
edit distance between every X � H and Y.  Experimental results using strings of
length between 40 and 80 and with a high percentage of noise, demonstrate the
power of the strategy in pattern recognition.
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Average Errors
in Y

Number of insertions 2.142
Number of deletions  30.442
Number of substitutions 3.220
Number of transpositions 5.410
Total number of errors  41.214
Percentage error  68.69%

Table 1.  A table showing the average error statistics in the noisy strings.

Algorithm Accuracy
WF 64.20%
LW 75.60%
SID_GT 74.60%
Const_SID_GT 94.00%

Table 2.  The recognition accuracies of the various algorithms tested. The details of the
algorithms used are found in the text.


