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Abstract

We present a survey of modern key agreement techniques, and discuss distinguishing character-
istics, including identity (entity) authentication, implicit key authentication, key confirmation, and
key freshness.

1 Introduction

The security of all cryptographic mechanisms depends upon the proper management of keying material,
and thus the management of cryptographic keys is of central importance. Key establishment mechanisms
seek to make a secret key available to two (or more) authorized parties for subsequent cryptographic use.
These can be broken down in two broad categories: key transfer mechanisms, in which a key 1s created
by one party, and securely transmitted to another; and key agreement mechanisms, in which two parties
contribute information which jointly establishes a shared secret key. In this paper, we consider only the
latter. We survey modern key agreement mechanisms which employ public-key techniques and do not
require the use of an online server or trusted third party.

This paper is organized as follows. In Section 2 we discuss in general various properties and charac-
teristics that differentiate key agreement protocols. In Sections 3, 4 and 6, respectively, we discuss the
basic two-pass Diffie-Hellman key agreement protocol [3], ElGamal’s one-pass variation of it [5], and a
three-pass variation based on ISO 9798-3 [8]. Section 5 considers the one-pass key agreement mechanism
of Nyberg and Rueppel [11]. Section 7 examines several protocols of Matsumoto et al. [10]. Section 8
discusses protocols based on self-certifying public keys of Girault [6]. In Section 9 we consider a protocol
based on zero-knowledge techniques, originating from work by Brandt et al. [1]. Section 10 considers
identity-based public key schemes and implicitly certified public keys used in key agreement algorithms,
and examines the requirements for trust in third parties in such schemes, following ideas of Giinther [7],
Girault [6] and Nyberg-Rueppel [11]. Many of the protocols discussed are in the process of becoming
standardized in ISO/TEC CD 11770-3 [9].

2 Properties of Key Agreement Protocols

Key agreement mechanisms can be categorized by many criteria. We focus on protocols involving two
parties, without the requirement of an online trusted third party. An obvious distinguishing characteristic
is the number of message exchanges required between the parties involved in the protocol, called passes.
We consider one-pass, two-pass and three-pass such techniques; protocols with four or more passes exist,
but are often both undesirable and avoidable. Another important property is the freshness of the derived
key — whether the key is new (fresh) for this protocol. If not, the protocol may be subject to replayed
messages resulting in the reuse of an old key from a previous protocol run, potentially to the advantage
of an adversary. The freshness of a derived key may be influenced or controlled by one or both parties;
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the influence of a particular party on the value of a jointly derived key may be dynamic (based on a
per-session parameter) or static (based on a longer-term or fixed parameter).

Another distinguishing feature 1s the type or degree of authentication that results. The basic objective
of all two-party key agreement techniques is that two parties jointly derive a shared key, suitable for
use in subsequent cryptographic communications with each other, in such a manner that no (potentially
malicious) third party be able to deduce the same key. Protocols which satisfy this objective may be said
to provide “secure key establishment”. However, as just described, this concept is somewhat imprecise.
It is clearly important that each party know or learn the true identity of the other party sharing the
key, and it is usually assumed that secure key establishment involves such definite identification; this
should be addressed explicitly. Furthermore, secure key establishment as described above admits two
possibilities: while a second party is presumed by a first to be the only possible party who could feasibly
derive the joint key, that party may or may not actually possess the key, as far as the first party knows.

The feature of entity (identity) authentication provides assurance, in the form of some positive cor-
roboration, of the identity of another party in a protocol; typically it also establishes that that party is
live (or active) at the time the protocol is executing. Some key agreement protocols provide key confir-
mation — corroboration that another party actually knows the jointly established key, involving one party
receiving a message from another demonstrating the latter possesses that key. Such demonstration might
be via a message authentication code (MAC), encryption of a known quantity, one-way hash value on
the key, or by a zero knowledge technique. Key confirmation establishes a type of mutual belief in the
shared secret. Key confirmation seems useful only if key freshness is guaranteed.

Some protocols provide (only) ¢mplicit key authentication — namely assurance to one party that no
one aside from a specifically identified second party could possibly have acquired the shared key, although
possession of such key by such party is not actually known. (As opposed to implicit key authentication,
note that “implicit entity authentication” is a meaningless concept in this terminology, as entity au-
thentication is by our definition explicit, i.e. based on positive corroboration.) Entity authentication,
implicit key authentication, and key confirmation may be provided to both parties (mutual) or to only
one party (unilateral). An intermediate property between key confirmation and secure key establishment
via implicit key authentication is possible, wherein one party claims to possess the joint key, without
actually demonstrating such possession. However, such claimed possession of key does not appear useful
in practice, and is not considered further here.

In the public key agreement techniques we consider, three types of public keys are potentially em-
ployed: public encryption keys (e.g. RSA keys [12], typically used for key transport); public signature keys
(used for verifying digital signatures); and public key-agreement keys (e.g. Difie-Hellman exponentials
used for Diffie-Hellman key agreement). Tn some cases, the public keys are made available to other parties
through use of public key certificates, in which case further distinction can be made based on the nature
of the certificates. Certificates bind a user identity to a public key, in some manner by which other parties
can verify the authenticity of the public key. Conventional public-key certificates, for example as used in
X.509 [2], use digital signatures of a trusted third party to achieve verifiability. Identity-based certificates
and self-certifying public keys, as proposed by Giinther [7]) and Girault [6], provide alternatives; both are
methods which make available copies of implicitly authenticated public keys.

The type of public key certificate used implies certain requirements regarding the degree of trust
required in a trusted third party. Identity-based systems, originally proposed by Shamir [13], involved a
trusted third party T providing a (public, private) key pair (K77, Ky~') to each user U. The public key
Ky is simply U’s identification information (e.g. name and address). The private key Ky~ computed
by T and given to U, is a function of U’s identification information and some secret information known
only to T (e.g. T’s private key of a public key pair); thus the third party T must be trusted not to
disclose U’s private key. Self-certifying public keys [6] are similar, but each user creates its own private
key Kyy~', and T computes the public key Ky from U’s identifying information, a one-way function of
Ky~', and some secret information known only to T. In this case, the trusted party does not learn a
user’s secret key itself (but only a one-way function of it).

Finally, we discuss a more subtle point regarding authentication. Distinction can be made regarding
whether or not one party, say the first, in an authentication protocol, has as an a prior: intention the
objective of authenticating itself to and /for exchanging a key with only a specific second party, or is willing
to do so with any second party. In one case, the service is identity corroboration; in the other, the service



i1s both extraction and corroboration of the identity of an unidentified party. In the latter case, once
the 1dentity becomes known as a protocol outcome, that information could be used to decide whether
to proceed to use the derived key. For example, in mutual authentication, the initiator typically has a
specific second party in mind, but the responder is usually willing to carry out the protocol with any
(possibly unidentified) initiator, the responders’ intended target being no more specific than the (possibly
unidentified) party who initiated. The question of the intended protocol objective may be clouded by
the fact that in authenticated key agreement protocols which specify a target party, it is often unclear
whether targeting originated as a technical detail necessary for the integrity of identity corroboration, or
was an original design goal.

Key agreement protocols may thus differ in many characteristics. A summary of the distinguishing
features is given by the following list of potential properties, each of which may be considered from the
point of view of either party in the protocol.

1. number of passes (one; two; three)

2. entity/identity authentication (mutual; unilateral; none)
key confirmation (mutual; unilateral; none)

implicit key authentication (yes; no)

key freshness (mutual control; unilateral control; replay not controlled)

SO AN

public key certificate type used (conventional; identity-based; self-certifying; none)

3 Basic Diffie-Hellman Protocol

The Diffie-Hellman key agreement protocol [3] establishes in two passes a shared secret key between
entities A and B without prior exchange of keying information. However, neither entity can be sure
about the other’s identity - that is, the mechanism provides neither implicit key authentication nor
(explicit) entity authentication.

Let GF(p) denote the Galois field with p elements, and let g be a primitive element of the field. The
protocol runs as follows:

1. A randomly and secretly chooses r4 € {1,...,p— 2}, computes the key token
g™ mod p
and sends it to B.
2. B randomly and secretly generates rg € {1,...,p— 2}, computes the key token
¢"? mod p
and sends it to A.
3. A computes the shared key as

I{AB — (g'I‘B)'I‘A — grArB HlOdp

4. B computes the shared key as

I{AB — (g'I‘A)'I‘B — grArB HlOdp

A generic version of the DH-protocol is described in ISO CD 11770-3 [9], where a generic commutative
function F'(h,g) is used in place of modular exponentiation as above. More specifically, F(h,g) is an
appropriate function conjectured to be a one-way function of h, and commutative with respect to h
under composition, i.e. F(ha, F(hp,9)) = F(hg, F(ha,g)).



The Diffie-Hellman key agreement mechanism has the following properties. The protocol requires two
passes. The protocol does not provide entity authentication or implicit key authentication. However, it
may be useful in environments where the authenticity of the key tokens is verified using other means.
For instance, a hash code of the resulting key may be exchanged between the entities using a second
communication channel, which offers authenticity. The mechanism provides no key confirmation and
does not protect against replay of the key tokens. Each entity can assure freshness of the key, since each
of them provides one of the inputs of the shared key generation. We assume here that each party checks
that the other’s exponential is not degenerate, i.e. the other party did not choose (or an adversary did
alter messages such that) 74 = 0 or rg = 0. By the one-wayness of discrete exponentiation, neither party
can control the value of the key in advance.

A simple variation of the basic Diffie-Hellman scheme allows mutual authentication. Rather than
using per-session random numbers, consider fixing ¢"4 and ¢"® as the long-term public keys of A and B,
respectively, and allowing for their authenticity to be verifiable (e.g. via public key certificates). This
allows a zero-pass key agreement mechanism (if we assume public keys are available a priori) with mutual
implicit key authentication. Unfortunately, the derived key K = ¢"4"® is time-invariant for the user pair
(A, B), and as such would be best not used as a session key itself. One might consider using this K in
a symmetric cryptographic technique, such as an encryption function E or a keyed hash function H, to
create a time-variant session key: for example, A might choose a random per-session number r, send to
B Ex(r), and use r as the session key; or simply send r cleartext to B, and use Hg(r) as a session key.
Both of these one-pass schemes, however, suffer from the same disadvantage - subsequent compromise of
either r4 or rg compromises the master key K, which is catastrophic as it potentially exposes all past
session keys.

4 ElGamal Variant of DH-Protocol

ElGamal [5] proposed a slight variation of the basic DH-protocol. This variant establishes in one pass a
shared secret key between A and B with implicit key authentication from B to A, but no authentication
from A to B (i.e. B does not know with whom it has established the shared secret key). The protocol
offers no entity authentication. Again a finite field GF(p) and primitive element g are fixed. Tt is assumed
that each entity X has a private key agreement key hx and a corresponding public key yx = ¢"* mod p.
Moreover, each entity has access to authenticated copies of the public key agreement keys of the other
entities. The protocol runs as follows:

1. A randomly and secretly chooses r4 € {1,...,p— 2}, computes the key token
g™ mod p
and sends it to B.
2. A computes the shared key as

Kap = (yp)™ mod p = ¢"#™ mod p

3. B computes the shared key as
Kap = (¢"*)"® = ¢"*"* mod p

The ElGamal variant of the DH-protocol has the following properties. Tt requires one pass (assuming
other party’s public key is available a priori). A generic version of the protocol is described in ISO CD
11770-3 [9]. The mechanism provides implicit key authentication of B (B is the only entity other than
A who can compute the shared secret key), but provides no key confirmation. The mechanism does not
prevent the replay of the key token. An opponent may attempt to force B into using an old shared
secret key. Note however that in the absence of a compromise, the key will only be known and in use
between A and B. A can assure freshness of the key, since it 1s the entity supplying the random value r 4.
However, no guarantee of K 4p’s freshness is given to B by the mechanism. A may precompute the key
K ap before it sends the key token to B. However, A cannot control the value of the key in advance (by
the one-wayness of discrete exponentiation).



5 Nyberg-Rueppel Key Agreement

The basic Diffie-Hellman key exchange protocol requires two passes and does not give authentication.
The ElGamal public key encryption system requires one pass but authenticates only the receiver. In
this section we show that using the signature system of Nyberg and Rueppel [11], the ElGamal protocol
can be extended to achieve mutual authentication in one pass. In this context, authentication of the
receiver B is implicit key authentication - B is the only party that could possibly compute the secret
key correctly from the public message received from the sender A. The authentication of A sender in the
basic protocol is also implicit key authentication. Entity authentication can be provided if timestamps
or sequence numbers are used in addition, but is not provided by the basic protocol outlined below.

Let p be a prime number, and let ¢ = p—1 or a large integer factor of p—1; &« € GF(p) is an element
of order ¢; s4 € 7, is the private key of user A, with corresponding public key k4 = a7*4 mod p. It
1s assumed that each user has access to authenticated copies of the public keys of the other users. The
protocol runs as follows:

1. User A initiates the key agreement protocol. A generates two secret random numbers r and R € 7,
computes

e = o " modp

7+ s4e mod q,

<
(l

and sends (e, y) to B.
2. A computes the shared secret key as

K =k modp

3. Upon receiving (e, y) from A, user B computes the shared secret key

(a¥k%e)™ " mod p = a5 mod p = K.

The Nyberg-Rueppel key agreement has the following properties. Tt requires one pass (assuming other
party’s public key is available a priori). The basic mechanism provides mutual implicit key authentication,
but no key confirmation. If a cryptographic hash code of the key is sent to B then the mechanism also
provides unilateral key confirmation. If a timestamp or sequence number is included in the key token,
then the mechanism provides (explicit) entity authentication of A to B through the signature of the key
token, and prevents the replay of the key token. A may precompute the key K 4p before it sends the key
token to B. However, A cannot control the value of the key in advance (by the one-wayness of discrete
exponentiation). A can assure freshness of the key, since it is the entity supplying the random value r.
But no guarantee of K 4p’s freshness is given to B. A generic version of the protocol is described in ISO

CD 11770-3 [9).

6 Key Agreement using ISO 9798-3

In this section we describe a key agreement mechanism based on the three-pass authentication mechanism
of TSO 9798-3 [8]. The mechanism described involves three passes, and establishes a shared secret key
between A and B with mutual entity authentication. We assume the basic Diffie-Hellman setting with
a prime p and exponentiation modulo p. In addition, it is assumed that each entity X has a personal
asymmetric signature system (Sx,Vx), consisting of a signature transformation Sx and a signature
verification transformation Vx . We also assume that each entity has access to authenticated copies of the
public verification transformations Vx of all other entities. The key agreement protocol runs as follows:

A1l A randomly and secretly generates ra € {1,...,p — 2}, computes ¢"+ mod p, constructs the key
token
KT41 = ¢"* modp

and sends it to B.



B1 B randomly and secretly generates rg € {1,...,p— 2}, computes ¢"5 mod p, constructs the signed
key token
KTp1 = Sp(¢"™® mod p, ¢"* mod p, A)

and sends 1t back to A.

A2 A verifies B’s signature on the key token K7Tp; using B’s public verification transformation Vg,
and checks that the received value ¢"4 mod p agrees with the one sent in step (A1). Tf the check is
successful, A proceeds to compute the shared key as

Kap = (g9"%)"* = ¢"*"" mod p
Then A constructs and sends to B the signed key token
KTas = Sa(¢™ mod p,¢"® mod p, B)

B2 B verifies A’s signature on the key token KT4», using A’s public verification transformation Vy,
and checks that the received value ¢"® mod p agrees with the one sent in step (B1). If the check is
successful, B proceeds to compute the shared key as

I(AB — (grA)rB — grArB HlOdp

The Diffie-Hellman version of the three-pass ISO 9798-3 mechanism requires two types of algorithms:
the Diffie-Hellman key agreement scheme and a public key signature scheme (such as RSA). To save
implementation overhead, both schemes may be based on the same basic function. For instance, the
Digital Signature Algorithm (DSA) and Diffie-Helman are both based on exponentiation mod p.

In its basic form, the mechanism provides mutual entity authentication, but no key confirmation.
Using the shared secret key Kap in a cryptographically secure way in KTp; or KTy42 (e.g. by including
a cryptographic hash value) may provide mutual key confirmation. FEach entity can assure freshness of
the key, since each of them provides one of the inputs of the shared key generation. The mechanism
conforms with ISO 9798-3 [8] — KT41, KTg1, and KTy are identical to the tokens sent in the three
pass authentication mechanism described in Clause 5.2.2 of ISO 9798-3, when the data fields are used as
follows: (a) the data field R4 (which is present in all three tokens of ISO 9798-3, Clause 5.2.2) transmits
the random function value g"4 mod p; (b) the data field Rp (which is present in all three tokens of ISO
9798-3, Clause 5.2.2) transmits the random function value ¢"® mod p. The complete protocol is described
in ISO CD 11770-3 [9]. Further discussion of properties of this protocol may be found in Diffie et al. [4],
where the protocol, modified to include key confirmation, is called the Station-to-Station (STS) protocol.

7 Key Agreement Mechanisms of Matsumoto et al.

In this section we consider several two-pass key agreement protocols discussed by Matsumoto et al.
[10]. All provide mutual implicit key authentication, and are role-symmetric (i.e. both parties carry out
analogous actions).

As before, let ¢ be a primitive element for GF(p). To describe a key agreement between parties be A
and B, let s4 denote A’s long-term private key and y4 = ¢°# be A’s long-term public key; as above, it
is assumed that each party has access to authenticated copies of the public keys of other users prior to
the start of the protocol. r4 1s a per-session random number chosen by A, and z4p is the value A sends
to B in the protocol. Corresponding definitions are made for B, and the resulting key agreement key is
denoted K. A selection of two-pass key agreement schemes examined by Matsumoto et al. is presented
in the following table.

Table 1. Description of key agreement protocols of Matsumoto

| Scheme | ZAB | ZBA | K computed by A | K computed by B | K
A(O) gr‘A gr‘B ZBASAyBrA ZABSByArB gsBrA+5A7'B
B(0) yp"™ ya'”? 2pa*t gt 2ap*® g'" g atre
C(O) yBrA yA'“B ZBASA_er ZABSB_ITB g,«A,«B
C(l) yBrASA yA'“BsB zBA”A zag"® gSASBrArB




Scheme A(0) has the advantage that it requires no additional passes if the public keys of users must be
exchanged, e.g. via certificates, within the protocol itself. Examining the computational complexities of
the above schemes (see [10]), Schemes A(0) and B(0) require 3 exponentiations, whereas Schemes C(0)
and C(1) require only 2. Scheme C(1) has the additional advantage over Schemes B(0) and C(0) that
no inverses are needed; however, the inverses required are fixed long-term and can be precomputed in a
one-time process. Matsumoto et al. also examine the computational complexity of passive eavesdropping
attacks on the session key K. However, these results do not take into account active attacks nor potential
time dependencies between the session keys.

The four schemes of Matsumoto et al. described above share the following properties. They require
two passes. They provide mutual implicit key authentication, but no key confirmation. Assuming that
A begins the protocols, use of additional fields in the message from B to A, containing a hash value of
the shared secret key, provides unilateral key confirmation from B to A. The basic mechanisms do not
provide detection of replayed tokens. FEach entity can assure freshness of the key, since each of them
provides one of the inputs of the shared key generation. ISO 11770-3 [9] contains a generic version of the
C(1) protocol.

8 Key Agreement Mechanisms based on Self-Certifying Keys

In this section we consider key agreement mechanisms based on self-certifying public keys, as proposed
by Girault [6].

Let n be an RSA integer [12], and « an element of maximal order in Z,,. T is a trusted authority
which knows the factorization of n, and has a pair of integers e, d which are a (public, private) RSA key
pair relative to n. Let user A have an identifying string 74 (e.g. A’s name and address). A chooses a
private key s4, and provides a~*4 mod n to T, in some authenticatable manner. T computes A’s public
key (which also serves as A’s public key certificate here) as

Ps= (a4 = IA)d mod n

Consequently, the following is true:
Pif+14=0a""*modn

Similarly, B has private and publicly computable values sgp and a«~*?2 mod n. Note that any party can
recover, from publicly available information, the quantities a«=*4, «=°B, o*4, and «®B.

The idea is to use these publicly computable quantities as the public keys in Diffie-Hellman type
protocols; the corresponding private keys s4 and sp are known only to A and B, respectively. The above
relations can be used to create authenticated key exchange protocols for users A and B as described below.
Protocol G1 is from Girault [6]. Tt consists of basic Diffie-Hellman modified to use long-term certified
key agreement keys as discussed at the end of Section 3; the novel feature is that the certification of
these keys is provided by Girault’s technique. Protocols G2 and G3 are obvious implementations of the
FElGamal variation of Diffie-Hellman, and Matsumoto Scheme A(0), using the same idea.

Protocol G1. This protocol requires zero passes (assuming public keys are available a prior:). A
and B create the time-invariant joint key

K= (PAe + IA)SB = (PBe + IB)SA =a ***F modn

Protocol G2. This protocol requires one pass. A chooses a random integer r4 and sends to B the
value @4 mod n. B computes P4°+ 4 = a*4 mod n, allowing A and B to each compute (via different
methods as shown) the time-variant joint key

K = (ozsAO/A(PAe + IA))SB = (PBe + IB)_TA =a"**% mod n

Protocol G3. This protocol requires two passes. A chooses a random integer r4 and sends to B the
value 7”4 mod n. Analogously, B chooses a random integer g and sends to A the value «™"® mod n.
A and B each compute (via different methods as shown) the time-variant joint key



K= (a7")P(Pa" 4+ 1a)"" = (a777)"4(Pp" + Ip)"™" = a7 *P"47°4"" mod n

The key agreement mechanisms G1, G2 and G3 have properties analogous to those to which they
correspond (as noted above) which do not use self-certifying public keys. Their status regarding stan-
dardization is as per the corresponding mechanisms. Mechanisms G1, G2 and G3 require zero, one and
two passes, respectively. G1 provides mutual implicit key authentication; G2 provides unilateral implicit
key authentication; G3 provides mutual implicit key authentication. In the basic form, they provide no
key confirmation and no replay protection. G1 provides no freshness (it is designed to reuse the same
key); in G2 freshness is controlled by A; in G3 freshness is mutually controlled.

9 Key Agreement based on Zero-knowledge Techniques

This key transport mechanism securely transfers in three passes two secret keys, one from A to B and one
from B to A, which may be combined to form a key agreement. It is derived from the protocol known as
COMSET and is based on zero-knowledge techniques - neither entity learns anything from the execution of
the mechanism that it could not have computed itself (see Brandt et al. [1] for theoretical background).
Both entities are authenticated and obtain (a type of) key confirmation about their respective keys.
More precisely, there is confirmation that other enciphered plaintext in the same message as the key
was properly recovered by the far end party, implying that the key itself was almost surely similarly
recovered properly. The key confirmation here thus might be said to be indirect; this is in line with the
zero-knowledge objectives of the protocol. It is assumed that each entity X has a personal asymmetric
encipherment system with a public encryption transformation F'x and a private decryption transformation
Dx and that each entity has access to authenticated copies of the public encipherment transformations
of all other entities. The protocol is as follows.

A1l A wants to transfer its key K 4 securely to B. A constructs a key block consisting of 1ts distinguished
name A, the key K4, two randomly chosen numbers 714 and rs4 and a time stamp or sequence
number TV P4. A enciphers the key block using entity B’s public encipherment transformation Eg
and appends the random number 7y 4 as validator. The following key token is then sent to B:

KTa = Eg(A, Ka,714,724, TV Pa4), 714

B1 B also wants to transfer its key Kp securely to A. In the same way as A, B constructs a key block
consisting of its distinguished name B, the key Kp, two randomly chosen numbers 715 and r-p
and a time stamp or sequence number 7V Pg. B enciphers the key block using entity A’s public
encipherment transformation F4 and appends the random number 7 g as validator to form the key
token

[{TBI = f’jA(B7 [(B,TlB,TgB,TVPB),TlB

B2 B extracts the enciphered key block from the received key token K74, and deciphers it using its
private decipherment transformation Dg. Then B verifies that A’s distinguished name is present
and that the validator 14 sent openly in K741 1s consistent with the random number 714 in the
deciphered key block. Then B checks the TV P4 for timeliness. If the verification is successful, B
extracts the answer rs4 from the deciphered key block and sends back to A the key token KTpgs

[{TBQ = [(TBl,TQA

A2 A verifies that the answer ro4 extracted from KTgs is consistent with the random number roy4
sent enciphered in KTy to entity B. If the verification is successful, A has obtained corroborating
evidence that the token KT4; has reached entity B intact; this provides a type of (indirect) key
confirmation of key R 4.

A extracts the enciphered key block from the received key token K7Tgs and deciphers it using its
private decipherment transformation D4. Then A verifies that B’s distinguished name is present
and that the validator 1 g contained openly in K'Tg; is consistent with the random number r15 in



the deciphered key block. Then A checks the TV Pp for timeliness. If the verification 1s successful,
A extracts the answer rog from the deciphered key block and sends the key token

](TAg = T2B
back to B. A may compute a shared secret key K 4p using a one-way combination of K4 and Kp.

B3 B verifies that the answer rop extracted from KT43 is consistent with the random number rop
sent enciphered in KTgy to entity A. If the verification is successful, B has obtained corroborating
evidence that the token KTpy (and therefore almost surely key Kp) has reached entity A securely,
and may compute a shared secret key K 4p using a one-way combination of K4 and Kp.

By use of the time-variant parameters, this mechanism provides mutual entity authentication, mutual
(indirect) key confirmation, and prevents the replay of old key tokens. If timestamps are used, secure
and synchronized timeclocks are required; otherwise the ability to maintain and verify pairwise sequence
numbers is required. A can assure freshness of the key K4, since it is the originating entity. But no
guarantee of K 4’s freshness is given to B by the mechanism. Analogously, B can assure freshness of the
key Kp. But no guarantee of Kp’s freshness is given to A by the mechanism.

10 Identity-based Public Keys without Restrictions in Trust

The basic idea of identity-based public key systems 1s that after the registration with a Key Center a user
is able to authenticate himself to any other user without further communication with the Key Center.
However, this property typically requires that the users have to trust the Key Center also to generate
their private keys. In [7], Giinther proposed an identity based public key system, where the Key Center
creates identity-based certificates for identified users with distinguished names. These certificates have
the following properties.

1. A user’s public key can be retrieved by correct combination of the user’s name and the certificate.

2. The authenticity of the certificate is not directly verified, but the correct public key can only be
recovered from an authentic identity-based certificate.

Gunther’s system is very efficient, the certificates are short, but it has one drawback: for the computation
of a certificate the Key Center also has to generate the corresponding private key. That is, the Key Center
requires complete trust by the users. Nyberg and Rueppel [11] have presented a public key system with
properties 1 and 2 that allows the users to generate their own private keys. Let A be the set of names or,
more generally, the set of user credentials. Let F' : A" — Z, be a one-way hash function or a redundancy
generating function. Let Sc be the Key Center’s private signature transformation and let Vi be the
corresponding verification transformation with message recovery (for details of the new signature system
please refer to [11]).

User U who wishes to obtain its public key token from the Key Center is adequately identified to have
namey € N when presenting its public key yr = ¢*¥ mod p to the Key Center. Then the Key Center

1. Computes: (ry, sy) = Sc(F(namey )yy mod p).
2. Delivers the public key token (ry, sp) to U or any other node in the network.
From namey and (ry, sy) the public key yp is recovered as
yo = F(namer)™ Ve (e, sp) mod p

Tt is hard for anybody but the Key Center to produce a valid signature Sc(m) for a given m =
F(namep)yy. If a forger starts with a valid pair (m, Sc(m)) he is faced with the equation

m = F(namey)yr = F(namey)g®™ mod p

to solve for namey and zy. If the forger fixes namey first he will not be able to retrieve the valid
private key xgy. The function F' has to be chosen in such a way that it is not possible to solve for zg



and namey simultaneously. As in [7] the identity-based certificates can be used in combination with a
suitable signature system to create 1dentity based signatures. Similarily a secret session key establishment
mechanism can be made 1dentity-based if the parties use their identity-based certificates to transfer their
public keys to the other party.

The ideas of section 8 are similar to those presented here (unlike Giinther’s scheme, Girault’s technique
does not result in the trusted authority knowing a user’s private key). Both make use of certificates
(actually, public keys) which are indirectly, or implicitly, authenticated by their construction and usage
and where the party’s secret key itself need not be given to the trusted party.

11 Summary
Table 2 surveys the features entity authentication, implicit key authentication and key confirmation pro-
vided by a key agreement protocol, from a unilateral viewpoint. Example protocols, discussed in the

paper, are listed for reference.

Table 2. Types of authentication in key agreement protocols

type entity implicit key key protocol example

authentication | authentication | confirmation
Type 0 | — - - Diffie-Hellman (basic)
Type 1 | yes - - 1SO 9798-3 (key agreement version)
Type 2 | — yes - ElGamal; Matsumoto; Nyberg-Rueppel
Type 3 | yes yes - Nyberg-Rueppel (modified)
Type 4 | — - yes Diffie-Hellman + one-way hash of key
Type 5 | yes - yes Station-to-Station (STS)
Type 6 | — yes yes Type 2 protocol + key confirmation
Type 7 | yes yes yes Type 3 protocol + key confirmation

In Type 1 protocols, a critical point is that the protocol should verify that the party whose identity
is corroborated by entity authentication is the same other party who has knowledge of the established
shared key. This underlines the need to examine the relationship between entity authentication (column
2 in the table) and secure key agreement in protocols of Types 3, 5 and 7 also. Tt is notable that entity
authentication is not necessary to obtain a securely established key, as illustrated by Type 2 protocols;
indeed, implicit key authentication does not establish whether or not the party in question is operative
at execution time. In Type 6 and 7 protocols, entity authentication is an inherent consequence of the
other two features, if key freshness is a protocol feature; in this case, entity authentication is redundant
in the Type 7 protocol.

Regarding key confirmation, given any key agreement mechanism, unilateral key confirmation can be
obtained by appending to the final protocol message an extra field containing a cryptographic hash of
the derived key; and mutual key confirmation can similarly be obtained by an extra message containing a
distinet such hash. Adding key confirmation to a Type 0 protocol (yielding a Type 4 protocol) provides
questionable benefit, in the absence of other means, such as an authenticated channel, for verification of
the identities of the parties involved. Adding key confirmation to a Type 1 protocol (yielding a Type 5
protocol) must be done with care — as noted above, it is desirable to ensure that the party with whom
the secret key is established, which will be the source of the key confirmation, is the same party whose
identity follows from the entity authentication.

Table 2 also helps distill a meaning for a companion to the term implicit key authentication, namely
explicit key authentication — that is, that a specifically identified party actually possesses (i.e., has effec-
tively demonstrated possession of) a specified key. This differs from key confirmation which by itself, as
defined herein, provides no evidence of the identity of the party involved; thus key authentication, rather
than key confirmation alone, is the property actually desired in practice. Explicit key authentication may
be achieved by any combination of two of the three columns in Table 2: (1) implicit key authentication
plus key confirmation; (2) implicit key authentication plus entity authentication; or (3) key confirma-
tion plus entity authentication. Tn each of cases (2) and (3), however, it is also required that there be
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verification by some means that the party implied by the two types of authentication is the same.

Table 3 summarizes some of the properties of the key agreement protocols that have been discussed.

Protocols in which one party requires a certified copy of another party’s public key can accomplish this
via conventional certificates, out-of-band authentic channels, or via self-certifying keys as discussed in
Section 8. The protocols listed listed in Table 3, or variations thereof, are all under consideration for
standardization within ISO/TEC [9].

Table 3. Summary of key agreement protocols and properties®

| protocol | passes’ | EA | TKA | KC | KF* | reference |

DH (basic Diffie-Hellman) 2 no no no ves(AB) | [3]

DH with fixed keys 07 no mutual no no §3
ElGamal variant of DH 1} no unilateral | no ves(A) [5]
Nyberg-Rueppel 17 optional? | mutual no ves(A) [11]

1SO 9798-3 key agreement 3 mutual no optional® | yes(A,B) | §6
Matsumoto A(0) B(0) C(0) C(1) | 27 no mutual no ves(AB) | [10]
COMSET-based protocol 37 mutual mutual indirect’ | yes(A,B) | §9; [1]

KA = entity authentication; IKA = implicit key authentication; KC = key confirmation; KF = key freshness

assuming public key of other party is available a prior: for entries marked “1”

“under control of indicated party (x)

dunilateral entity authentication possible if timestamp used

“mutual key confirmation possible with optional fields, without additional passes (STS protocol [4])
findirect mutual key confirmation, as discussed in Section 9
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