| mproving | mplementable M eet-in-the-Middle Attacks
by Ordersof Magnitude

Paul C. van Oorschoaind Michael J. \Wener

Bell-Northern Research,®. Box 351 Station C, Ottawa, Ontario, K14H7, Canada
{paulv,wiener}@bnrca

1996 May 22

Abstract. Meet-in-the-middle attacks, where problems and the secrets being sought are
decomposed into two pieces, have many applications in cryptanalysis. A well-known
such attack on double-DES requireE’Q 2me and memory; a naive key search would take
2112 time. Howeverwhen the attacker is limited to a practical amount of menibey

time savings are much less dramatic. itine cardinality of the space that each half of

the secret is chosen from=Q56 for double-DES), and/ the number of words of memory
available for an attack, a technique based on parallel collision search is described which
requiresO(./n/w) times fewer operations afd(n/w) times fewer memory accesses
than previous approaches to meet-in-the-middle attacks. For the example of double-DES,
an attacker with 1&bytes of memory could recover a pair of DES keys in a known-
plaintext attack with 570 times fewer encryptions andxBJ7 times fewer memory
accesses compared to previous techniques using the same amount of. memory

Key words. Meet-in-the-middle attack, parallel collision search, cryptanalysis, DES, low
Hamming weight exponents.

1. Introduction

Many cryptographic techniques are susceptible to meet-in-the-middle attae&swvell-

known examples are double-DES encryption [5] and discrete logarithms with limited
Hamming weight exponents [8]. A third example is an attack on a scheme for using an
untrusted server to perform most of the work in an RSA computation [2]. A reduction in
the run-time of meet-in-the-middle attacks is thus of wide-ranging interest. Such a
reduction is possible by solving meet-in-the-middle problems using an algorithm based on
collision search, and is the subject of this note.

Parallel collision search [13] based on Pollamthio-methods fI, 12], was introduced as a
means of diciently parallelizing search problems. By formulating a meet-in-the-middle
attack as a collision search problem, the run-time of the attack may be decreased. These
ideas are explored in the remainder of this papganized as follows. In Section 2, a
general meet-in-the-middle attack is described and formulated as a collision search
problem, which is solved in Section 3 using parallel collision search. Section 4 compares
the attack time of the collision search based technique to previous meet-in-the-middle
methods. Sectiob concludes the paper

T Proceedings of Crypto '9@o appear), Springarerlag LNCS, August 1996.



2. Formulating M eet-in-the-Middle Attacks as Collision Search Problems

A general meet-in-the-middle attack involves two functiépandf,, for which there are

two inputs,a andb, such that;(a) = f,(b). The objective is to find andb. There may be
other pairs of inputs which also satisfy this equation, but typically only one particular pair
is the solution being sought. étegin by showing how one would constriycindf, for

three example cryptanalytic problems. Then a single funttsuitable for a variant of
parallel collision search is constructed frénandfs.

The first example is a mode of DES [3] called double-DES where data is DES-encrypted
twice with two independent key,(k,). Diffie and Hellman [5] showed that this is
susceptible to a meet-in-the-middle attack which fikdandk,. Suppose that we are
given a plaintext-ciphertext paiP,(C) such thatP maps toC under double encryption
with the unknown pair of key{, k;). In this case, functiofy is encryption of the
constantP with a DES keyandf, is decryption of the consta@twith a DES key Note
that f;(kq) = fo(ky); hereP andC are implicit constants ify andf, (see Section 4 for a
discussion of previous methods for recovering double-DES keys {ysamglf;). There
may be other false key pairs which nRapo C, but only one pair of keys is correct. One
additional plaintext-ciphertext pair generally fezds to uniquely determine the correct
pair of keys.

The second example is the discrete logarithm problem in the special case where exponents
have low Hamming weight. Given a generatasf a cyclic group and an elemgrt o*

wherex has bitlengthm and Hamming weight;, we wish to findk. This problem can be

solved with a meet-in-the-middle attack (e.g., see Heiman [8] or Pfitzmannaddew

[10]). Observe that all possible valuesxafan be written as the sum of twebit values,

each with Hamming weight 2 (assumeis even). Len = 5"- and leth map integers in

the interval [On) to m-bit values with Hamming weiglit2. Then usind,(i) = a0, and

fo(j) = y/ah(j) (= O(X"h(j)), there exist inputa andb such thaty(a) = f5(b). Finding inputs

a and b (e.g., by a meet-in-the-middle attack) givedecause themx =h(a) + h(b).
Coppersmith observed that this attack could be made mbeeemf by trying (until
success) to partition the exponent bits into two groups/&f bits each with Hamming
weightt/2. By the Mean &lue Theorem there exists a setref2 contiguous bits of the
exponent with Hamming weight exacti2. Therefore, the attack can be completed in at
mostn/ 2 trials withn = HP//ZIE, so that each trial takes less time than the above version.
This approach is guaranteed to give a solution in a fixed period of time, but we note that
the expected number of trials can be reduced to significantly leseuti2aas follows. If

one randomly partitions the bits in the exponent into two sets ofrgi2ethe probability

that each group will have Hamming weight exa¢tlg is EI‘//ZZEZ BIE. Therefore, by
executing independent trials which partition the exponent bits at random, one expects to

complete the discrete logarithm iff- / ET//ZIEZ = Jmt(1-t/m) /2 trials.

The last example is a scheme for using an untrusted server to speed up RSA computations
on a smart card [2]. In this scheme, an RSA private exponent is represented as



d=2, Tl a,d;, whered; is public andy; is a small secret, for1,...,m. To computed, the
untrusted server computr& fori=1,...,mand the smart card computﬁs?l(xdi)a". Let
A=(ay,...,.any2), B=(&w2+1---»am), D=(dq,....dyy2), and E=(dyy2+1,---,0n)- Then
d=AD +B[E. For RSAh=h¥modn, wheree is the RSA public exponem, is the
RSA modulus, and is some positive integer less than This can be rewritten as
h = h¥AD *+BE) modn or h*AP) modn = h1™BE) modn.  Using f;(x) = h®*®) modn
andfy(x) = h1e*E) modn givesf,(A) = f5(B), which allows a meet-in-the-middle attack.

Returning to discussion of the general attéclndf, must have the same range, but need
not have the same domain. It is nofidiflt to handle diierent domains, but to simplify

the discussion belgwve assume the domains are equal (as in all examples above). The
problem is to také;: D - R andf,: D - R and find pairs of inputs,andj, such that

f1(i) = f5(j) until the correct pair of inputg@ndb) is found. If many pairs of inputs give

a collision betweem, andf,, it may be necessary to have a test to determine whether the
“correct” pair @ andb) has been found. In the case of double-DES, this can be done by
verifying the candidate key pair using a second plaintext-ciphertext pair

To use parallel collision search, we require a single fun€soich that (1) its domain and
range are equal; and (2) there are two particular inp@itslicch give the same output and
which, if found, leads to a solution to the problem at hand. gLBt— Dx{1,2} be a
function which maps an element of the rangg ¢&ndf,) to an element db along with a
bit which is used to select betwelgrandf,. We assume here thi| = 2|D|. Now define

f: Dx{1,2} - Dx{1,2} asf(x, i) = g(fi(x)), fori=1,2. Becausg(a) = f,(b), it follows that
9(f1(a)) = g(fo(b)) andf(a, 1) = f(b, 2); this is the collision which is sought.

3. Solving the Collision Search Problem

In this section we show how to use parallel collision search to solve the collision problem
constructed from the general meet-in-the-middle attack in Section 2. An important point
about this use of parallel collision search in the three applications given earlier is that there
are many pairs, j such thatf(i, 1) =f(j, 2), but among them is a unique collision pair

f(a, 1) = f(b, 2) solving the meet-in-the-middle problemypically, a very lage number of
collisions inf must be found in order to find the one particular meaningful collision that is
sought, which we call thgolden collision. For the example of double-DES, the collision
sought id(ky, 1) = f(ky, 2) for the correct key paik{, ky). In contrast, for the hashing and
discrete logarithrh applications of parallel collision search considered byQarschot

and Wener [13], there were many collisions which solved the original problem and
typically a useful collision was found after only a small number of collisions.

For reference, we briefly describe parallel collision search before considering how it
should be modified to find a golden collision. Given a funcfidd— S choose a

1 This previous paper considered the general problem of finding a discrete logarithm in a cyclic group as
opposed to the Section 2 example of the special case of exponents with restricted Hamming weight.



distinguishing properfywhich distinguishes a proportidh of the elements o8 (e.g.,

6 = 2719 when elements with 10 leading zero bits are distinguished). Choose an element
Xo O S and produce the sequence (trail) of poirts f(xi—1), for i=1,2,... until a
distinguished pointy is reached. Store the tripbe)(xy, d) in a table. Repeat this process

for manyxg values. The occurrence in the memory of two triples with the sgwvedue
indicates their trails have collided. By stepping the trails forward again from their
respectivesy values, one can find two inputsandy, tof such thaf(u) = f(v). LetN=|9.

One expects to perform/TiN/2 iterations of f (possibly spread across multiple
processors) before one trail collides with another [13]. As the available memory fills, the
probability of finding a collision grows and the number of collisions found grows
quadratically Findingk collisions is expected to tak¢nkN/ 2 iterations of [13].

Solving the meet-in-the-middle problem requires finding the golden collision out of the
many available collisions. Because there %@%zNZ/Z pairs of inputs and the
probability that both inputs are mapped foyp the same output is 1 M (if f behaves
randomly), one expects that there are abbiz collisions for a given random functién

One may incorrectly reason that collisions will be found at random (with replacement) and
that, on average, abolt=N/2 collisions are required before locating the golden
collision, requiring ~TkN/2 = /TIN/2 iterations off. However this faulty analysis
ignores two important facts. The first is that although the expected time between detected
collisions drops as the memory fills, the expected time required to locate each detected
collision by stepping the two trails forward to the collision point does not decrease. The
second is that, generaliyot all collisions are equally likely to occur; thus some collisions
will be found many times while others will never be found.

To understand this latter point, consider a directed graph whose vertices are the elements
of the sef§ with a directed edge from each verkew the vertex corresponding to element

f(x). A collision is a pair of elements whose edges end at a common third element. The
likelihood that a particular collision will be detected is a function of the sizes of the
predecessor trees of the pair of elements involved in the collision. There is considerable
variation in the sizes of predecessor trees in random mappings; see Flajolet and Odlyzko
[7]. In the worst case, the elemeatandb involved in the golden collision may have no
predecessors at all. The probability of this occurring is aboeft414%. In this case,

the golden collision will not be detected until batlandb are selected as starting points

for trails and both are in memory at the same time.

A solution to these complications in practice is to limit the number of collisions sought
using a particular functioh If the golden collision is not found after a fixed period of
time, construct a new versionfdfnown to contain a golden collision and repeat. Because

! The idea of using a distinguishing property was attributed to Rivest by Dennind.(9)] as a means of
improving Hellmans time-memory trade-bfor attacking block ciphers [9].



f was constructed with a mappiggone could simply choose a hew mappitg make a
new version of.

It remains to be determined what proporti@rof points to distinguish, how long to
continue using each version Hfand how long it is expected to take to find the golden
collision. Another important statistic in highly parallelized attacks is the number of
memory accesses required. Proposition 1 gives an empirical result for these parameters.

Proposition 1 (heuristic): Letn be the cardinality of the domain of functioisandf,
above, so that the cardinality of the domain and ranfes®f = 2n. For a memory which
can holdw triples, the (conjectured) optimum proportion of distinguished points is
8= 2.25/w/N, and one should generate aboutv1fxils per version of The expected
number of iterations of required to complete a meet-in-the-middle attack using these
parameters is 28°2wY2 = 7n32/wl’2 and the expected number of memory accesses

is 4.5\ =9n.

Justification Let us begin with a simple, but flawed, run-time analysis. If the memory is
full with w distinguished points, then the total number of points on the trails leading to
those distinguished points is abeutd. For each trail point generated witim the space

of sizeN, the probability of producing a point on one of the existing trails’ (NG). The
required number of generated points per collision found is Mf&fw. To locate a
collision, each trail involved must be retraced from its start to the colliding point requiring
a total of 26 steps on average. The total cost per collision detect&bisvj + (2/0)
steps. This is minimized at8N/w steps whe® = ./2w/N. The expected number of
collisions generated before the golden collision is foudV' giving a total run-time of
(N/2)./8N/w = ,/2N3/w function evaluations.

The flaws in this analysis are as follows. The memory for holding distinguished points is
empty at the start of the algorithm, and thus not full all of the time. Not all collisions are
equally likely to occur Not all distinguished points in the memory are equally likely to
produce a collision. Howevewe may hypothesize from the flawed analysis that
8 =c./W/N is the optimum proportion for some constenand that the overall run-time

is O(,/N3/w) function evaluations. This hypothesis was confirmed empiricafigr
various values 08, w, andN, simulations were performed to determine the number of
distinct collisions found when using a versionfdbr various lengths of time. (These
simulations were for the general technique as opposed to the specific examples of
Section2.) For multiple simulations with the same parameters (bigrdrit random
input), the results showed very little variation. The number of evaluatidnseodistinct
collision found was a minimum fd¥ = 2.25./w/N, and 10 trails generated per version

of f. Because M triples are written to a memory which can hold onlfriples, after the
memory fills up, triples are simply overwritten. Using the parameters above in
simulations, for 2°<w< N/210 the expected run-time to find the golden collision was
found to be 2.8%2 w2 iterations off, and the expected number of accesses to the
memory was 4.8. i



For double-DESh is the size of the DES key space=(2°%). For limited Hamming
weight exponents) = Et;an for the preliminary version, and= ET//ZZE for the improved
version. For the case of speeding up RSA computations using an untrusteasgher
size of the space that the half-se&dbr B) is chosen from. ypical values ofv depend
on available memory(Tablel in Section 4 considers attacking double-DES with values

of w implying memory size ranging fronf2to 2** bytes.)

4. Comparison to Previous Techniques

A simple approach to performing a meet-in-the-middle attack proceeds as follows.
Computef,(x) for all x O D and store théf,(x), X) pairs in a table (using standard hashing
on thef;(x) values to allow lookup in constant time). For ea€hD, computef,(y) and

look it up in the table. If there is a match, then the candidate pair of xpuidy are
tested to see if they are the correct inpatarfdb). This method requires, on average,
1.5n function evaluations and memory fopairs, wheren = |D|. For double-DES, this is
(1.5)2° DES operations andP2stored pairs. Obviouslyhis is not a practical amount of
memory Suppose that available memory can hold enpairs(f;(x), X). The attack can

be modified as described by Even and Goldreich [6] (Amirazizi and Hellman [1] also
consider this problem). Partition the sp@zento subsets of size. For each subset,
compute and store the paif$;(x), x) for all x in this subset. Then for eagh] D,
computef,y(y) and look it up. The expected run-time for this memory-limited version of
the attack is (A2)(n/w)(w +n) =n?/(2w) function evaluations. A memory access is
required after each function evaluation, and so the expected number of memory accesses
is also aboub®/ (2w).

Comparing the run-time of this previous techniquert327wll2 function iterations and

9n memory accesses (Proposition 1), the parallel collision search method of performing a
meet-in-the-middle attack requires 0.0%w times fewer function evaluations and
n/(18w) times fewer memory accesses.

For concreteness, consider attacking double-DES wieR® and the amount of memory
needed for each triple in memory is 16 bytes. A comparison feralit memory sizes is
shown in Bble 1.

Table 1. Example Improvement of Parallel Collision Search Method over Prevezimigues

Memory Size Ratio of Encryptions Ratio of Memory Accesses
previous techniques / new method previous techniques / new method
w=220 (224 pytes) 291 1 2768 = 18000 291 ) P92 = 3.510°
w=225 (229 pytes) 286 1 2143 = 3200 286 1 P92 = 1 xa10P
w=20 (234 bytes) 2811 2118 = 570 281 P92 = 3. &10P
w=2% (239 pytes) 276 1 £93 = 100 216 | 292 = 1.2a0°

w=240 (2*4 pytes) 211 | #58 = 18 211 | 292 = 3.610°




7

When a small number of processors is used, the total run-time is determined by the
number of encryptions required as per Proposition 1. Howéwera high degree of
parallelism, the main limitation becomes accessing the memory which is common to all
processors (particularly for the previous techniques which require a memory access after
every function evaluation). Optimum performance for a given investment requires a
balance between the memory size and number of processorsgtar i@amories, more
processors should be used. Finding such an optimum for a given budget and fixed costs of
processors, memaregtc., requires a detailed engineering design tailored for a particular
problem, and is beyond the scope of the present.paper

For smaller memories, the amount of improvement is determined by the number of
encryptions required; for lge memories, the amount of improvement is determined by
the number of memory accesses required. For the casews&(or 16Gbytes, which

is considerable for an amatebut not for a determinedfeft), the new method will be
somewhere between 570 andX@@® times faster depending upon the type of processors
and memory used to mount the attack.

5. Conclusion

Meet-in-the-middle attacks involve splitting an operation into two halves witHexetit

secret quantity involved in each half of the operation. If each secret is chosen from a set
of sizen, andw memory elements are available to mount an attack, then a parallel
collision search based method can be used to complete the attack in an expected heuristic
time of M%%/wl/2 operations. This is 0.Qfh/w times faster than previous techniques

for meet-in-the-middle attacks. For the illustrative case of double-DES and an attacker
with available memory fon=23C entries, the new method is between three and six orders

of magnitude faster

Acknowledgments

We would like to thank Burt Kaliski for early discussions regarding multiple encryption,
Don Coppersmith for an observation that allowed golden collisions to be found.&bout
times fasterand Andrew Odlyzko for reminding us about reference [10& wduld also

like to thank anonymous members of the Cryp&® Program Committee whose
comments contributed to an improved presentation of this material.

References

[1] H.R.Amirazizi and M.EHellman, “Time-Memory-Processor rade-Ofs”, |IEEE Transactions on
Information Theory, vol. 34, no.3, May 1988.

[2] J. Burns and C.J. Mitchell, “Parameter Selection for Sekided RSA Computation Schemes$EEE
Transactions on Computers, vol. 43, no.2, Feb. 1994, pl63-174.

[3] “Data Encryption Standard”, National Bureau of Standards (U.S.), Federal Information Processing
Standards Publication (FIPS PUB) 46, Nationathhical Information Service, Springfieldir§inia,
1977.

[4] D.E. DenningCryptography and Data Security, Addison Vsley 1982.



[5] wW. Diffie and M. Hellman, “Exhaustive cryptanalysis of the NBS Data Encryption Standard”,
Computervol.10 no.6 (June 1977) pp. 74-84.

[6] S.Even and OGoldreich, “On the Power of Cascade Ciphe®CM Transactions on Computer
Systemsvol. 3, no.2, May 1985.

[7] P Flajolet and A.M. Odlyzko, “Random Mapping Statistids8ctue Notes in Computer Science 434:
Advances in Cryptology - Enerypt’89 ProceedingsSpringefVerlag, pp. 329-354.

[8] R. Heiman, “A note on discrete logarithms with special structluetue Notes in Computer Science
658: Advances in Cryptology - Eaarypt’92, SpringefVerlag, pp454-457.

[9] M.E. Hellman, “A cryptanalytic time-memory tradefofIEEE Transactions on Information Theory
vol.6 (1980), pp. 401-406.

[10] B. Pfitzmann and MwWaidner “Attacks on Protocols for Servé&ided RSA Computation”Lectue
Notes in Computer Science 658: Advances in Cryptology ccBupt’92, SpringefVerlag, ppl53-
162.

[11] J.M. Pollard, “A Monte Carlo method for factorizatio®!T, vol. 15 (1975), pp. 331-334.

[12] J.M. Pollard, “Monte Carlo Methods for Index Computation (rp@¥d Mathematics of Computation
vol. 32, no. 143, July 1978, pp. 918-924.
[13] PC.vanOorschot and M.JViener “Parallel Collision Search with Application to Hash Functions and

Discrete Logarithms”’2nd ACM Confeance on Computer and Communications SeguFisyrfax,
Virginia, November 1994, pR10-218.



