
Addressing Online Dictionary Attacks

with Login Histories and Humans-in-the-Loop

(Extended Abstract)

S. Stubblebine1 and P.C. van Oorschot2

1 Stubblebine Research Labs, Madison, NJ, USA
2 Computer Science, Carleton University, Ottawa, Canada

Abstract. Pinkas and Sander’s (2002) login protocol protects against
online guessing attacks by employing human-in-the-loop techniques (also
known as Reverse Turing Tests or RTTs). We first note that this, and
other protocols involving RTTs, are susceptible to minor variations of
well-known middle-person attacks, and suggest techniques to address
such attacks. We then present complementary modifications in what we
call a history-based protocol with RTT’s. Preliminary analysis indicates
that the new protocol offer opportunities for improved security, improved
user-friendliness (fewer RTTs to legitimate users), and greater flexibility
(e.g. in customizing protocol parameters to particular situations).

1 Introduction

Recent interest has arisen in tests which distinguish humans from computers, and
in using such tests to ensure human involvement in a wide range of computer-
based interactions. The idea is to find simple tasks which are relatively easily
performed by a human, but which appear difficult or infeasible for automated
programs to carry out – for example, visually recognizing distorted words. Mech-
anisms involving such tests have been referred to as human-in-the-loop protocols,
mandatory human participation schemes, and Reverse Turing Tests (RTTs) [19,
5, 22].

One specific purpose for which RTT challenges have been proposed is pro-
tecting web sites against access by automated scripts. RTTs are currently being
used to protect against database queries to domain registries, to prevent sites
from being indexed by search engines, and to prevent “bots” from signing up for
enormous numbers of free email accounts [5]. They have also been proposed for
preventing more creative attacks [4].

Our main interest in RTTs is their use to protect web servers against online
password guessing attacks (e.g. online dictionary attacks). The idea is that auto-
mated attack programs will fail the RTT challenges. A specific instance of such
a protocol was recently proposed by Pinkas and Sander [20] (see §3). While this
protocol appears to be quite simple, closer inspection reveals it to be surprisingly
subtle and well-crafted. Simpler techniques preventing online dictionary attacks
are not always applicable. For example, account lock-out after a small number

A. Juels (Ed.): FC 2004, LNCS 3110, pp. 39–53, 2004.
c© IFCA/Springer-Verlag Berlin Heidelberg 2004

40 S. Stubblebine and P.C. van Oorschot

ebay.com

malicious
software

regular
software 1. user login attempt

5. RTT response

4. relayed challenge user3. RTT challenge

2. malicious login

6. relayed response
CNN.com

Fig. 1. RTT Relay Attack

of failed password attempts may result in unacceptable side effects, such as in-
creased customer service costs for additional telephone support related to locked
accounts, and new denial of service vectors via intentional lock-out of other users
[24]. Another standard approach is to use successively longer delays as the num-
ber of successive invalid password attempts on a single account increases. This
may lead to similarly unacceptable side effects.

In this paper, we begin by noting that many RTT-based protocols, including
that of Pinkas and Sander, are vulnerable to an RTT relay attack : RTT chal-
lenges may be relayed to possibly unsuspecting parties, who generate responses
which are then relayed back to the challenger. We explore this threat and mech-
anisms to address it, and propose additional (orthogonal) enhancements to the
Pinkas-Sander protocol.

This paper is organized as follows. §2 presents the RTT relay attack. §3 dis-
cusses background context and assumptions, including a reference version of the
basic RTT-based login protocol. §4 presents a new variation, with enhancements
aimed towards usability, security against online dictionary attacks, and param-
eter flexibility. §5 discusses standard techniques to augment general RTT-based
login protocols to prevent, detect or deter attacks including the relay attack.
§6 provides background and a summary of related work. §7 contains concluding
remarks.

2 RTT Relay Attack

A relay attack (see §6) may be carried out on online protocols involving an RTT
by relaying the RTT challenge to an auxiliary location or “workforce” which
generates responses, which are relayed back to the challenger. The original RTT
target thus escapes computing RTT responses.

One attack variant might proceed as follows (see Fig. 1). Assume there are
two web sites1. The first, say ebay.com, is assumed to be the target of regular
online dictionary attacks, and consequently requires correct responses to RTT
challenges before allowing access. The second, say CNN.com, is a popular high
volume web site, which for our purposes is assumed to be vulnerable to compro-
mise. The attack begins with an adversary hacking into the CNN.com site and
installing attack software.
1 The authors have no affiliation with ebay.com or CNN.com, and no reason to believe

either site is insecure. These sites are used as examples simply due to their popularity.

Addressing Online Dictionary Attacks 41

Upon a user initiated HTTP connection to CNN.com, the attack software
receives the request and initiates a fraudulent login attempt to ebay.com. The
attack software, presented with an RTT challenge from ebay.com, redirects it to
the CNN.com user connection, instructing that user to answer the RTT to get
access to CNN.com. (Many users will follow such instructions: most users are
non-technical, unsuspecting, and do as requested.) The CNN.com user responds
to the RTT challenge. The attack software relays the response to ebay.com,
completing the response to the challenge to the fraudulent login attempt. In
conjunction with replying to eBay’s RTT challenge, after a sufficient number
of passwords guesses (e.g. dictionary attack), an eBay account password can be
cracked. The procedure is repeated on other accounts, and the attack program
summarizes the online dictionary attack results for the adversary.

The attack is easy to perform if the adversary can control any high volume
web site – e.g. a popular legitimate site the attacker compromises (as above),
or an owned malicious site to which traffic has been drawn, e.g. by illegally
hosting popular copyrighted content, a fraudulent lottery, or free software. A
related attack involves attack software which relays RTTs to groups of human
workers (“sweatshops”), exploiting an inexpensive labor pool willingly acting
as a mercenary RTT-answering workforce. An unconfirmed real-world variant
reported [21] to involve an “adult web site” requiring users to solve RTTs before
being served the content; presumably those running the site relayed the answers
to gain access to legitimate sites which posed the original RTT in the hope of
preventing automated attacks. Our discussion of mechanisms to counteract such
threats continues in §5.

3 Background, Constraints, Assumptions, and Objectives

For reference, Fig. 2 provides a simplified description of the original RTT-based
login protocol (for full details, see [20]). The system parameter p is a probability
which determines the fraction of time that an RTT is asked, in the case that
an invalid userid-password pair is entered. In the case of a successful login, the
protocol stores a cookie on the machine from which the login occurred; the cookie
contains the userid (plus optionally an expiration date), and is constructed in
such a way (e.g. using standard techniques involving symmetric-key encryption
or a MAC) that the server can verify its authenticity.

For context, we next state a few assumptions and observations relevant to
both the original and new protocols. We begin with a basic constraint.
Constraint 1: Account Lock-out Not Tolerable. We are interested in protocols
for systems where locking-out of user accounts after some number of failed lo-
gin attempts is not a viable option. (Otherwise, online login attacks are easily
addressed – see §1.)
Trust Model Assumptions: Trusted Host and Ephemeral Memory. We assume
that client computers, and any resident software at the time of use, are trusted
(e.g. no keyboard sniffers or malicious software run on the machine). This is
standard for (one-factor) password-based authentication protocols – otherwise,

42 S. Stubblebine and P.C. van Oorschot

1 fix a value for system parameter p, 0 < p ≤ 1 (e.g. p = 0.10)
2 user enters userid/password
3 if (user PC has cookie) then server retrieves it
4 if (entered userid/password pair correct) then
5 if (cookie present & validates & unexpired & matches userid) then
6 login passes
7 else % i.e. cookie failure
8 ask an RTT; login passes if answer correct (otherwise fails)
9 endif
10 else % i.e. incorrect userid/password pair
11 set AskAnRTT to TRUE with prob. p (otherwise FALSE) †
12 if (AskAnRTT) then
13 ask an RTT; wait for answer; then say login fails
14 else
15 immediately say login fails
16 endif
17 endif

† This setting is a deterministic function of the userid/password pair [20]

Fig. 2. Original RTT-based Login Protocol (simplified description)

the password is trivially available to an attacker. For similar reasons, we assume
client software leaves no residual data on user machines after a login protocol
ends (e.g. memory is cleared as each user logs out). In practice it is difficult to
guarantee these assumptions are met (e.g. for borrowed machines in an Internet
cafe); but without them, the security of almost all password protocols seems
questionable.

Observation 1: Limited Persistence by Legitimate Users. A typical legitimate
user will give up after some maximum (e.g. C = 10) of failed logins over a fixed
time period, after which many will check with a system administrator, colleague
or other source for help, or simply stop trying to log in. Large numbers of suc-
cessive failed logins, if by a legitimate user, may signal a forgotten password or
a system availability issue (here login failures are likely not formally recorded by
the system); or may occur due to an attacker, as either a side effect of attempting
to crack passwords, or intentionally for denial-of-service in systems susceptible
to such tactics.

Observation 2: Users Will Seek Convenience. If a login protocol is necessary to
access an online service, and users can find a similar alternate service with a
more convenient login (though possibly less secure), then many users will switch
to the alternate service. User choices are rarely driven by security; usability is
usually a far greater factor, and poor usability typically leads to loss of business.

These observations lead us to our usability goal; we state it informally.

Usability Goal – Minimal Inconvenience to Users. Relative to standard userid-
password schemes, we wish to minimize additional inconvenience experienced by
a user.

Addressing Online Dictionary Attacks 43

As usual, the usability goal must be met in a tradeoff with security, and
we have a two-part security goal. One part is protecting specific accounts (e.g.
certain users may be more concerned about, or require more, protection; or a
service provider may worry more about specific accounts – say those with high
sales ratings, or high account values). The second is protecting all accounts
in aggregate (e.g. a web service provider might not want any user accounts
misapropriated to host stolen software; a content service provider might want to
protect access to content available to authorized subscribers).
Security Goal – Control Access to both Specific Accounts and Non-specific Ac-
counts. Constrain information the adversary learns from trial password guesses
before being “stopped” by an RTT challenge in the context of fully-automated
attacks directed towards a specific account (single-account attack) and towards
any account (multi-account attack).

In practice, for authentication schemes based on user-selected passwords, pre-
vention of unauthorized access cannot be 100% guaranteed for a specific account
or all accounts in aggregate, due to the non-zero probability of correctly guess-
ing a password, and the ubiquity of poor passwords. Nonetheless, the quality of
a login protocol may be analyzed independent of particular password choices,
and this is what we pursue. For a given password, we are interested in how
effectively a given protocol allowing online interaction prevents extraction of
password-related information. As little information as possible should be leaked.

Requiring mandatory human participation increases the level of sophistica-
tion and resources for an attack. If RTTs are effective and RTT relay attacks
are countered (e.g. by means such as embedded warnings – see §5.1), then con-
straining information leaked before being “stopped” by an RTT challenge is an
important security characteristic of a password-based login protocol.

4 History-Based Login Protocol with RTT’s

Here we modify the original protocol, intending to both improve the user ex-
perience and increase security, e.g. to increase the percentage of time that an
adversary is challenged with an RTT, without further inconveniencing legitimate
users2. The modifications do not themselves prevent RTT relay attacks (§2), but
are complementary to those in §5 that do, and can thus be combined. We also
provide analysis of the new protocol.

4.1 New Protocol

We assume familiarity with the original protocol (§3). The new protocol is given
in Fig. 3. Line changes from the original protocol (Fig. 2) are: lines 7.1-7.6
replace 8; and 11.1 replaces 12. The new protocol with failed-login thresholds
(b1 = 0, b2 = ∞) behaves the same as the original protocol.
2 One might try to improve usability by allowing a small number of trial passwords

per userid without triggering an RTT. While this reduces security only minorly for a
single-account attack (see §4.2), the problem is greater with multi-account attacks.

44 S. Stubblebine and P.C. van Oorschot

1 fix values for 0 < q ≤ 1 (e.g. q = 0.05 or 0.10) and integers b1, b2 ≥ 0
2 user enters userid/password
3 if (user PC has cookie) then server retrieves it
4 if (entered userid/password pair correct) then
5 if (cookie present & validates & unexpired & matches userid) then
6 login passes
7 else % i.e. cookie failure
7.1 set AskAnRTT to TRUE if account is in owner mode (otherwise FALSE)
7.2 if (AskAnRTT) OR (FailedLogins[userid] ≥ b1) then
7.3 ask an RTT; login passes if answer correct (otherwise fails)
7.4 else
7.5 login passes
7.6 endif
9 endif
10 else % i.e. incorrect userid/password pair
11 set AskAnRTT to TRUE with prob. q (otherwise FALSE) †
11.1 if (AskAnRTT) OR (FailedLogins[userid] ≥ b2) then
13 ask an RTT; wait for answer; then say login fails
14 else
15 immediately say login fails
16 endif
17 endif

† This setting is a deterministic function of the userid/password pair [20]

Fig. 3. New Protocol (History-based Login Protocol with RTT’s). FailedLo-
gins[userid] is set to the userid’s number of failed logins in a recent period T , and
updated (not shown). See §4.1 re: handling cookies and definition of owner mode

We next discuss some differences between the new and original protocols,
including: cookie-handling (related to owner and non-owner mode) – cookies are
now stored only on trustworthy machines; per-user tracking of failed logins; and
setting failed-login thresholds. The idea of dynamically changing failed-login
thresholds has been previously mentioned [20, §4.4-4.6]; we detail a concrete
proposal and comparison.

Handling cookies. The original protocol stores a cookie on any device after suc-
cessful authentication; the new protocol does not. Optional user input controls
cookie storage similar to web servers using a login page checkbox asking if users
want to “remember passwords”, e.g. “Is this a trustworthy device you use regu-
larly? YES/NO”. This part of the page appears if no cookie is received by the
server. Upon a YES response, a cookie is pushed to the user device only after
the user successfully authenticates (requiring a successful RTT response, if chal-
lenged). This cookie approach reduces exposure to cookie theft vs. the original
protocol, with negligible usability downside because the question appears on the
same screen as the login prompt (default answer NO).

The original protocol requires that cookies be tracked by the server and
expire after a limit of failed login attempts with the particular cookie [20, §4.5].
We follow a similar approach. Each time a login fails (e.g. lines 7.3, 13, and 15),

Addressing Online Dictionary Attacks 45

we increment the failed login count associated with the cookie if a valid cookie
was received. If the cookie exceeds a failed login threshold, we invalidate it. Line
5 includes a check that the cookie hasn’t been invalidated. The cookie failure
threshold is the number of failed logins allowed before a cookie is invalidated.
We recommend setting this to the minimum of b1 and b2.

Definition of owner, non-owner. A user is more likely to login from “non-owned”
devices when traveling (e.g. borrowing an Internet access device in a library,
guest office, conference room, or Internet cafe). Also, a user submitting a login
request which does not include a cookie is likely to be using a non-owned device.
As a consequence of how cookies are handled, we can assume (with small error)
that a user is on a non-owned device if their most recent successful login does not
include a cookie. We initially define a user account to be in “owner” mode, and
expect an account to be in owner mode most of the time if most of the time they
use their regular device (e.g. one of the devices they own). An account transitions
to “non-owner” mode when a login is successfully authenticated without the
server receiving a valid cookie (Fig. 3, line 7.5), and returns to owner mode
after a specified time-out period W (e.g. 24 hours) or a successful login with
a cookie present. The timeout period is restarted, and the account remains in
non-owner mode, if there is another cookieless successful login. The time-out
period reduces the number of accounts in non-owner mode, which lowers the
security risk; accounts in non-owner mode are more susceptible to multi-account
dictionary attacks (see §4.2).

Tracking failed logins. We define FailedLogins[userid] to be the number of failed
login attempts for a specific userid within a recent period T (e.g. 30 days). Here
failed login attempts includes: non-responses to RTT challenges, incorrect re-
sponses, failed userid-password pairs, and outstanding authentication attempts
(e.g. the adversary may simultaneously issue multiple login attempts; one strat-
egy might be to issue a very large number, and respond to only a subset of
resulting RTT challenges, perhaps being able to exploit some “weak sub-class”
of RTTs for which computer-generated responses are feasible).

Setting the failed-login thresholds (bounds b1, b2). Low values for b1, b2 maximize
security at the expense of usability (e.g. for users who frequently enter incorrect
passwords). A reasonable bound may be b1, b2 ≤ 10 (perhaps larger for large
T). In the simplest case the protocol bounds b1, b2 are fixed system variables;
in a more elaborate design, they (and q) are dynamic and/or set on a per-user
basis (varying for a particular userid, based on a history or profile and possibly
subject to system wide constraints e.g. maximum bound on b2). For example,
certain users who regularly enter a password incorrectly might be given a higher
failed-login threshold (to increase usability) compared to users who almost al-
ways enter correct passwords. If it is expected or known from a historical profile
that a user will log in L times over a period T , and that say 5% of legitimate
login attempts fail, then b2 might be set somewhat larger than (0.05) ∗ L (e.g.
T = 30 days, L = 100, b2 = 5). Over time, per-user rates of legitimate failed lo-
gins (e.g. mistyped or forgotten/mixed up passwords, perhaps more frequent on
unfamiliar machines) can be used to establish reasonable thresholds. To simplify

46 S. Stubblebine and P.C. van Oorschot

presentation, updating of per-user table entries FailedLogins[userid] in Fig. 3 is
not shown. Note that while per-user values require server-side storage when these
values cannot be user-stored via cookies, a small amount of per-user server-side
storage is already required in both the original and new protocol to ameliorate
cookie theft (see above). (Optionally, setting the RTT challenge probability q
on a per-user basis also allows flexibility for tuning usability and security on a
per-account basis.)

4.2 Comparitive Analysis – Security and Usability
For a comparitive analysis of the new protocol with the original protocol, we first
focus on the analysis for a single account, with respect to security and usability.
We generally follow the assumptions from the original protocol [20], including
that passwords are from a fixed set (dictionary) of cardinality N , and that for
analysis purposes they are equally probable. The probabilities p and q are as
defined in the protocols.

Discussion of Security (Single-Account Attacks). To aid our single-ac-
count security analysis, we use the following questions (and assume for now no
cookie theft, i.e. an attacker knows a userid but has no corresponding cookie).
For a single user account, for the original and new protocols, what is the ...
Q1: expected number of passwords eliminatable from the space, answering no
RTT’s? Q2: expected number of RTT’s an attacker must answer to correctly
guess a password? Q3: probability of a confirmed correct password guess for
attacker willing to answer c RTT’s?

The answers summarized in Table 1 are based on the best attack strategies
known to us3. For Q2 and Q3, perhaps surprisingly, this involves an attacker
simply answering the first c RTT’s sent4. Since better attack strategies may
exist, e.g. our answers to Q3 should be interpreted as lower bounds, albeit under
conditions favorable to the attacker: we assume that failed login counts are 0 at
the start of an attack.

Some observations follow. Rows Q1 and Q2 indicate that the number of
passwords that an attacker is able to eliminate “for free” (without any RTT’s) is
substantially greater in the original protocol5. A second observation favoring the
new protocol is evident from rows Q3b and Q3c: the probability of a successful
attacker guess in the new protocol (on the order of 1/N) is generally significantly
smaller than in the original (on the order of 1/pN), except that when b2 is
relatively large the new protocol’s behaviour effectively becomes that of the
original, with probability c/qN matching the table entry c/pN for the Original
Protocol; when b2 is small, b2 + c is less than c/q, so the probability in the new
protocol is better, i.e. less than the original.
3 Currently, we make a simplifying assumption: an account is in one of the two modes.
4 Additional details on attack strategies and Table 1 will be provided in the full paper.
5 For the new protocol, these figures are per time period T . However for a sophis-

ticated multi-period attack, the new protocol remains better (fewer passwords are
eliminatable), assuming p = q, unless at least N/b2 time periods are used (e.g. about
1600 years for T = 1 month, N = 100 000 and b2 = 5).

Addressing Online Dictionary Attacks 47

Table 1. Tabular data for comparitive analysis (single-account attack). q is used for p
in the new protocol to emphasize possible use of different values (p = q is also possible).

Question Original Protocol New Protocol

Account Mode
Owner Non-owner

Q1 (1 − p)N z1 = (1 − q)b2 z2 =max(b1, (1 − q)b2)

Q2 1
2
pN 1

2
(N − z1) ≈ N/2 1

2
(N − z2)

Q3a (c = 0) 0 0 b1/N

Q3b (c = 1) 1/pN (1 − (1 − q)b2+1)/qN (b1 + 1)/N

Q3c (c ≥ 2) c/pN min(c
q
, b2 + c)/N † (b1 + c)/N

†Upper bound

Table 2. Fraction of the time a legitimate user must answer an RTT (1.0 = 100%).
As in Table 1, q is used in place of p in the new protocol.
†After the failed login bound is crossed in the new protocol, in several cases – e.g. on
incorrect passwords, and correct passwords without valid cookies – RTT’s occur more
frequently (i.e. 100% of the time after the bound is crossed within period T). However
for accounts in owner mode we expect a large number of users select a “Remember
password” option (standard in many applications) which stores passwords locally on
their regular machines. No failed passwords are expected from such users; but note
their failed login thresholds may still be crossed due to attacker activities.

Original Protocol New Protocol

Account Mode
Owner Non-owner

Incorrect password p q† q†
Correct password - valid cookie 0 0 0

Correct password - no valid cookie 1.0 1.0 0†

Note: for both c = 1 and c ≥ 2, the table gives a probability (i.e. an expec-
tation over a large number of runs). The new protocol has a guaranteed upper
bound on the probability: (b2 + c)/N .

According to row Q3a, for an attacker unwilling to answer any RTTs, the
security is the same in both protocols except we relax security (i.e. to b1/N)
for some small number of accounts in non-owner mode to improve usability (see
usability improvement in Table 2, bottom row).

A security analysis for multi-account attacks (wherein an attacker’s goal is
to break into any one of many accounts, not necessarily a specific account) and
parallel login attacks (wherein an attacker may try to simultaneously login to
one userid a large number of times on different servers) is left for the full version
of this paper.

Discussion of Usability. For comparing usability between the original and
the new protocols, Table 2 notes the proportion of time a legitimate user is
queried with an RTT on entering a correct or incorrect password, with and
without a valid cookie. A case of particular focus for the new protocol is the

48 S. Stubblebine and P.C. van Oorschot

legitimate “travelling user”, who generally operates with an account in non-
owner mode and without a valid cookie. The new protocol is significantly more
user-friendly to such users. We also believe that such users are typically more
likely to enter incorrect passwords (see discussion in caption of Table 2), and
therefore increasing usability in this case is significant as one would expect that
“incorrect password” cases occur far less often in owner mode.

Also related to usability – the value of the parameter q may be reduced in
the new protocol without loss of security, due to the use of the failed login bound
b2 and depending on its value relative to q (see Table 1). This further increases
usability in the incorrect password case, independent of the discussion in the
paragraph above.

Discussion of Cookie Theft. The above analysis assumes that no cookie theft
occurrs; here we make a few observations in the case cookie it does.

1. New Protocol. If a cookie is stolen, then within the cookie’s validity period,
under the recommended cookie failure threshold, the attacker gets min(b1, b2)
password guesses on the userid. The attack we consider is one where the
attacker quits all guesses that return an RTT, and having a good cookie,
hopes to reach line 6 with a lucky guess6.

2. Original Protocol. Similarly, the attacker gets free guesses up to the cookie
failure threshold. A correct password guess on any of these trials allows a
successful login without having to answer an RTT.

Comments. (a) It is less likely that a cookie is stolen under the new protocol, since
they reside in fewer places – e.g. cookies of the original protocol would show up in
airport Internet rooms. (b) A combined cookie and non-cookie attack against a
single account is less likely to be successful in the new protocol, primarily because
the attacker can reduce the password space to a p-fraction in the original protocol
even before using the stolen cookie (see related discussion on questions Q1 and
Q2).

5 Additional Techniques Augmenting
RTT-Based Authentication

Here we propose a number of techniques to augment the original protocol (Fig. 2),
without changing its basic functionality. This includes addressing RTT relay at-
tacks (§2). These techniques are intended primarily to improve security, and are
independent of (orthogonal to) the changes proposed in §4. We present them
briefly without additional analysis.

5.1 RTT with Embedded Warning

Here we propose a simple method to prevent RTT relay attacks. A drawback
of the proposal is that it requires some thought on behalf of users (which is, in
6 This attack may take place in conjunction with one that reduces the password space

without answering an RTT, or one where the adversary answers c RTTs.

Addressing Online Dictionary Attacks 49

some cases, unfortunately unrealistic). However, we believe the general idea may
be adapted to significant advantage.

The general idea is to rely upon self-awareness of legitimate users to pre-
vent unwitting participation in an RTT relay attack. One approach is to make
RTT challenges user-directed by incorporating a user’s specific userid within the
RTT itself. Preferably, removing this information is of comparable difficulty as
answering the RTT itself.

For example, as part of answering a text RTT, a portion of the text is a
userid field7, which the user is warned to compare to their own userid, thereby
confirming that the RTT is targeted specifically at them (within the embedded
warning the user is instructed to not answer the RTT if the match fails). As
an additional optional feature, the RTT might also contain an embedded short
“help URL”, for a site giving further instructions on the use of this type of RTT.

This idea is analogous to the now generally accepted, and recommended,
practice in authentication protocols of putting party identifiers within the pro-
tected (i.e. signed or MAC’d) region of protocol messages. It is also analogous
to the typical automated check, when using secure browser cookies, that cookies
match a particular userid or IP address; and to the matching userid check in the
original protocol (line 5, Fig. 2).

5.2 Notification Regarding Failed Logins
Here we propose a simple method to detect automated dictionary attacks and
trigger counter-active measures8. Once a small threshold (e.g. 3-10) login failures
occurs for any single account, an automated, out-of-band communication (e.g.
email) is sent to an address-on-record of the associated legitimate user. If the
failed logins resulted from the user’s own actions, the user will be aware of the
failures and can safely ignore the message; otherwise, it signals malicious activity,
and may lead the user to take such actions as to request9 changes to server-side
user-specific login protocol parameters (see §4), or to change their own password
to a more secure password using the normal change password method.

As an alternative, albeit less desirable10, after some larger number of failed
logins (e.g. 25), the system might automatically reset the user’s password to a
computer-generated secure password emailed to the user. This would prevent a
user’s typically weak self-chosen password from being cracked through standard
dictionary attacks. (Depending on the security policy in use, the user might be
allowed to change the password back to a weak one if they wish, but at this
point they may also be motivated to follow recommended password rules.)
7 A variant instead includes the name of the site being visited, with similar explana-

tion. (An anonymous referee suggested this.) The choice between web site name and
userid could be made dynamically, e.g. selecting the shorter of the two.

8 This expands on administrators manually sending out-of-band messages [20, §4.4].
9 For example, through an authenticated channel such as an email to an un-advertised

pre-arranged address, or a hidden URL provided in the email alert to the user.
10 This may raise customary issues related to system-generated passwords and system-

initiated password changes. If used, this alternative must be crafted so as not to
generate additional customer service calls, which are not tolerated within our scope.

50 S. Stubblebine and P.C. van Oorschot

This proposal is less effective against multi-target attacks, and slow-channel
dictionary attacks wherein an automated program tries passwords on a certain
account after there is likely to have already been a successful login attempt
(e.g. waiting for a random but minimal delay, such as one-day intervals). In
some systems, an attacker can confirm if a user has logged in recently (e.g. an
eBay user), and mount only a limited number of trial password guesses some
fixed period after each such successful login. This proposal may nonetheless be
helpful, and other parameters may limit the success of slow-channel attacks. A
small amount of per-user server-side state is needed, but the original protocol has
a similar requirement to address cookie-theft [20, §4.5]. A remaining drawback
of this proposal is degraded usability (additional user attention is required).

5.3 Consuming Client Resources
Using Zero-Footprint Software Downloads

We propose that login protocol variants (e.g. see §4) be augmented by known
techniques requiring that clients solve “puzzles” consuming client resources, and
return answers prior to the server verifying a login. This follows research lines
to combat junk mail (e.g. [8, 1]) and denial-of-service attacks [15]. Another aug-
menting technology is to harden passwords with auxilliary protocols that can
interact directly with the server [11].

Since functionality for performing client puzzles is not resident in standard
client software (e.g. browsers), this proposal requires allowing Java applets,
Javascript, or other zero-footprint downloads. We no longer agree with dismissing
special client-side software outright (cf. [20]); rather, we see opportunity for ad-
vantageous use. Though perhaps worrisome, most users and organizations now
operate under the assumption that Java, and certainly Javascript, are turned
on11. Nonetheless, since popular web services should work for 100% of potential
users, to accommodate those who cannot use zero-footprint software, RTT-based
login protocols can be designed as follows. Client puzzles (or the like) are sent
to users. For those unable to answer the puzzles for any reason (in some case the
server may learn this a priori), the protocol branches to a path replacing the
puzzle by an (extra) RTT. This RTT will be less convenient to the user (requir-
ing user attention, vs. machine resources), but we expect this to be a relatively
small percentage of users, and therefore viable.

6 Background and Related Work

The RTT relay attack of §2 is related to general classes of middle-person at-
tacks and interleaving attacks involving an active attacker inserting itself be-
tween legitimate parties in a communications protocol, and/or using information
from one instance of a protocol to attack a simultaneous instance. Such attacks

11 These are in fact the settings that result from the Internet Explorer default
(“medium” security), and which we expect remain unchanged by most users.

Addressing Online Dictionary Attacks 51

are well-known in cryptographic protocols and have a long history ([6, 7]; [18,
pp.530-531]).

For example, challenge-response protocols have long been used to identify
military aircraft in identify-friend-or-foe (IFF) systems. IFF challenges from en-
emy challengers have reportedly been forwarded in real-time to the enemy’s own
planes, eliciting correct responses which were then successfully used as responses
to the enemy’s original challenges [2, pp.19-20]. Note that responses in such sys-
tems are typically automatic; the protocols do not involve entity authentication
of the querying party.

Related to this is the well-known grandmaster postal-chess attack: an am-
ateur simultaneously plays two grandmasters by post, playing white pieces in
one game and black in the other, using the moves of his opponents against each
other, resulting in an overall outcome better than the two losses he would have
achieved on his own.

The term strong authentication protocols is often used for protocols designed
to preclude attacks which first obtain appropriate data related to one or more
protocol runs, and then proceed to crack passwords offline (i.e. without further
interaction). This line of research began with the early work of Gong and co-
authors [17, 12, 13]; Bellovin and Merritt’s EKE protocol [3] then inspired a
number of others (e.g. Jablon’s SPEKE [14]; Wu’s SRP [23]; see also [16]).

Offline exhaustive password-guessing attacks typically proceed by trying po-
tential passwords in order of (perceived) decreasing likelihood. The most prob-
able passwords are often in conventional dictionaries, or modified dictionaries
specially tailored to this task. Offline attacks are thus often called dictionary
attacks, although dictionaries are also used in online attacks (if account lock-out
and time-delays are not used; see §2).

Use of system-generated passwords can provide higher security (by better
password choices), but suffers severe usability issues. Passphrases have also been
proposed (e.g. see [27, 26]). Other approaches include system administrators run-
ning password-crack tools on their own systems (re-active password checking);
enforcement of simple password rules or policies at the time of new password
selection; and at such time, checking for its presence in large customized dictio-
naries built for this purpose (pro-active password checking, e.g. see Yan [25] for
a recent summary).

7 Concluding Remarks

We expect that a large number of human-in-the-loop and mandatory human
participation schemes, unrelated to the RTT-based login protocol discussed here,
are also subject to the RTT relay attack of §2.

A major feature of our new protocol (§4) is the additional flexibility and
configurability, including failed login thresholds and potentially lower RTT chal-
lenge probabilities (e.g. for suitable b2 lowering q does not decrease security).
This allows the protocol to be tailored to match particular environments, classes
of users, and applications; while determining the optimal parameters for spe-

52 S. Stubblebine and P.C. van Oorschot

cific user profiles appears non-trivial, we expect further analytical study will be
fruitful. Another new aspect is storing cookies only on trustworthy machines. As
mentioned earlier, the new protocol can be parameterized to give the original
protocol as a special case. While the configurability does complicate protocol
implementation somewhat, we note that a number of the parameters which are
optionally dynamic can be managed by automated tools; thus the additional
human administrative costs are relatively minor. For example, an automated
tool can keep a running ratio of successful logins to failed logins for the entire
system, and alter system wide (or account-specific) parameter q, or system-
wide (or account-specific) failed login thresholds b1 and b2, based on this ratio.
A significant improvement of our protocol over prior work concerns protecting
against relay attacks by forcing an RTT challenge on all login attempts after
the number of failed logins reaches a threshold. Previous work enabled a signifi-
cant fraction of the password space to be eliminated with an automated attack.
Per-user failed-login counts (as used in Fig. 3) also provide protection against
sweatshop attacks and RTT relay attacks, especially such attacks targeting a
particular account. Note that embedding warnings within RTTs (§5.1) does not
by itself protect against sweatshop attacks.

For practical protection in Internet-scale live systems, we recommend com-
bining techniques from §5 with those of §4. We see a large number of ways to
expand on the ideas of §4. In particular, we encourage others to explore the
use of dynamic parameters (ideally managed by automated tools), and other
ways to gain advantage by treating users logging in from non-owned devices
(e.g. traveling users) different from those continually using their regular login
machines.

Acknowledgements

We thank anonymous referees for helpful comments. The second author acknowl-
edges the generous support of the National Sciences and Engineering Research
Council of Canada for support as Canada Research Chair in Network and Soft-
ware Security, and under an NSERC Discovery Grant.

References

1. M. Abadi, M. Burrows, M. Manasse, T. Wobber, “Moderately Hard, Memory-
bound Functions”, NDSS’03, San Diego, February 2003.

2. R. Anderson, Security Engineering: A Guide to Building Dependable Distributed
Systems, Wiley, 2001.

3. S. Bellovin, M. Merritt, “Encrypted Key Exchange: Password-Based Protocols Se-
cure Against Dictionary Attack”, Proc. IEEE Symp. Research in Security and
Privacy, Oakland, May 1992.

4. S. Byers, A. Rubin, D. Kormann, “Defending Against an Internet-based Attack on
the Physical World”, Workshop on Privacy in the Electronic Society (WPES’02),
November 21 2002, Washington D.C.

5. CAPTCHA Project web site, http://www.captcha.net/ (first appeared: 2000).

Addressing Online Dictionary Attacks 53

6. W. Diffie, M. Hellman, “New Directions in Cryptography”, IEEE Trans. Info.
Theory vol.22 (1976), pp.644-654.

7. W. Diffie, P.C. van Oorschot, M.J. Wiener, “Authentication and Authenticated
Key Exchange”, Designs, Codes and Cryptography vol.2 (1992), 107-125.

8. C. Dwork, M. Naor, “Pricing via Processing or Combatting Junk Mail”, Lecture
Notes in Computer Science 740 (Proceedings of CRYPTO’92), 1993, pp. 137–147.

9. Password Usage, Federal Information Processing Standards Publication 112, U.S.
Department of Commerce, NIST, 1985.

10. Automated Password Generator, FIPS Pub 112, U.S. Dept. Commerce, 1993.
11. W. Ford, B. Kaliski, “Server-Assisted Generation of a Strong Secret from a Pass-

word”, 9th Int’l Workshop on Enabling Technologi (WET-ICE 2000), IEEE, 2000.
12. L. Gong, “Verifiable-text attacks in cryptographic protocols”, 1990 IEEE INFO-

COM, pp.686-693.
13. L. Gong, T. Lomas, R. Needham, J. Saltzer, “Protecting poorly chosen secrets

from guessing attacks”, IEEE J. Selected Areas Comm. vol.11 (1993), pp.648-656.
14. D. Jablon, “Strong password-only authenticated key exchange”, ACM Computer

Communcations Review, Oct.1996.
15. A. Juels, J. Brainard, “Client puzzles: A cryptographic defense against connection

depletion attacks”, Proceedings of the 1999 ISOC Network and Distributed System
Security Symposium, pp.151-165, 1999.

16. C. Kaufman, R. Perlman, M. Speciner, Network Security: Private Communication
in a Public World, Second Edition, Prentice Hall, 2002.

17. T. Lomas, L. Gong, J. Saltzer, R. Needham, “Reducing risks from poorly chosen
keys”, Operating Systems Review vol.13, pp.14-18 (presented at 1989 ACM Symp.
on Operating Systems Principles).

18. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

19. M. Naor, “Verification of a human in the loop or Identification via the Turing
Test”, unpublished manuscript, 1997. Online version available at:
http://www.wisdom.weizmann.ac.il/∼naor/PAPERS/human.ps

20. B. Pinkas, T. Sander, “Securing Passwords Against Dictionary Attacks”, 2002
ACM Conf. on Computer and Communications Security, Wash. D.C.

21. L. von Ahn, Eurocrypt’03 presentation of [22], 6 May 2003, Warsaw, Poland.
22. L. von Ahn, M. Blum, N. Hopper, J. Langford, “CAPTCHA: Using Hard AI Prob-

lems for Security”, Eurocrypt’03 proceedings, Springer-Verlag, LNCS 2656 (2003).
23. T. Wu, “The secure remote password protocol”, Internet Society 1998 Network

and Distributed System Security symposium (NDSS’98).
24. T. Wolverton, Hackers find new way to bilk eBay users, CNET news.com 03/25/02.
25. J. Yan, “A Note on Proactive Password Checking”, Proc. 2001 ACM New Security

Paradigms Workshop, New Mexico, USA, Sept.2001.
26. J. Yan, A. Blackwell, R. Anderson, A. Grant, “The Memorability and Security of

Passwords – Some Empirical Results”, Tech. Report 500, Computer Lab, Cam-
bridge, 2000. http://www.ftp.cl.cam.ac.uk/ftp/rja14/tr500.pdf.

27. P. Zimmermann, The Official PGP User’s Guide, MIT Press, 1995.

	1 Introduction
	2 RTT Relay Attack
	3 Background, Constraints, Assumptions, and Objectives
	4 History-Based Login Protocol with RTT’s
	4.1 New Protocol
	4.2 Comparitive Analysis – Security and Usability

	5 Additional Techniques Augmenting RTT-Based Authentication
	5.1 RTT with Embedded Warning
	5.2 Notification Regarding Failed Logins
	5.3 Consuming Client Resources Using Zero-Footprint Software Downloads

	6 Background and Related Work
	7 Concluding Remarks
	Acknowledgements
	References

