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Abstract. Automated Turing Tests (ATTs), also known as human-in-the-loop techniques,
were recently employed in a login protocol by Pinkas and Sander (2002) to protect against
online password-guessing attacks. We present modifications providing a new history-based
login protocol with ATTs, which uses failed-login counts. Analysis indicates that the new
protocol offers opportunities for improved security and user-friendliness (fewer ATTs to le-
gitimate users), and greater flexibility (e.g., allowing protocol parameter customization for
particular situations and users). We also note that the Pinkas-Sander and other protocols
involving ATTs are susceptible to minor variations of well-known middle-person attacks. We
discuss complementary techniques to address such attacks, and to augment the security of the
original protocol.

1 Introduction

The abuse, by automated computer programs, of Internet interfaces originally intended for
humans has rekindled interest in tests designed to distinguish humans from computers [23].
The specific goal, however, is now somewhat different: to ensure human involvement in a
broad range of computer-based interactions. The idea, first proposed by Naor [20], is to find
simple tasks relatively easily performed by humans, but apparently difficult or infeasible for
automated programs – such as visually recognizing distorted words. Mechanisms involving
such techniques have been called mandatory human participation schemes, human-in-the-

loop protocols, and Automated Turing Tests (ATTs); see von Ahn et al. [25, 26].
Among others, one specific purpose for which such tests have been proposed is pro-

tecting web sites against access by automated scripts. ATTs are currently being used to
protect against database queries to domain registries, to prevent sites from being indexed
by search engines, and to prevent “bots” from signing up for enormous numbers of free
email accounts [26]. They have also been proposed for preventing more creative attacks [4].

In this paper, we are primarily interested in the use of ATTs to protect web servers
against online password guessing attacks (e.g., online dictionary attacks). The idea is that
automated attack programs will fail the ATT challenges. A specific instance of such a pro-
tocol was recently proposed by Pinkas and Sander [21]. While this protocol appears to be
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quite simple, closer inspection reveals it to be surprisingly subtle and well-crafted. Simpler
techniques preventing online dictionary attacks are not always applicable. For example, ac-
count lock-out after a small number of failed password attempts may result in unacceptable
side effects, such as increased customer service costs for additional telephone support re-
lated to locked accounts, and new denial of service vectors via intentional lock-out of other
users [27]. Another standard approach is to use successively longer delays as the number
of successive invalid password attempts on a single account increases. This may lead to
similarly unacceptable side effects.

Our Contributions. In this paper, we modify the protocol of Pinkas and Sander,
presenting a new history-based protocol with ATTs. Our enhancements include the use
of failed-login counts, and distinguishing between “owner” and “non-owner” modes (cor-
responding roughly to the use of a more trusted device, e.g., a user’s regular machine vs.
one used temporarily in an Internet café). Our analysis indicates that the new protocol
offers opportunities for improved security and user-friendliness (e.g., fewer ATTs to legit-
imate users), and greater flexibility (e.g., allowing protocol parameter customization for
particular situations and users). We also note that many ATT-based protocols, including
that of Pinkas and Sander, are vulnerable to an ATT relay attack : ATT challenges may be
relayed to unsuspecting parties, who generate responses which are then relayed back to the
challenger. We explore this threat and mechanisms to address it, and propose additional
(orthogonal) enhancements to Pinkas-Sander type protocols. We discuss complementary
techniques to address such attacks, and to augment the security of the original protocol.

Organization. The sequel is organized as follows. §2 discusses background context
and assumptions, including a reference version of the basic ATT-based login protocol. §3
presents a new variation, with enhancements aimed towards usability, security against online
dictionary attacks, and parameter flexibility. §4 provides analysis of security, and briefly also
usability. §5 pursues per-account parameter customization to improve usability, based on
historical user and system statistical profiles. §6 presents an ATT relay attack and discusses
standard techniques to both address it, and to augment the security of the original protocol.
§7 provides further background and a summary of related work. §8 contains concluding
remarks.

2 Background, Constraints, Assumptions, and Objectives

For reference, Figure 1 provides a simplified description of the original ATT-based login
protocol (for full details, see [21]). The system parameter p is a probability which determines
the fraction of time that an ATT is asked, in the case that an invalid userid-password pair is
entered. In the case of a successful login (Figure 1, line 8), the protocol stores a cookie on the
machine from which the login occurred; the cookie contains the userid (plus optionally an
expiration date), and is constructed in such a way (e.g., using standard techniques involving
symmetric-key encryption or a MAC) that the server can verify its authenticity.
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For context, we next state a few assumptions and observations relevant to both the
original and new protocols. We begin with a basic constraint.

Constraint: Account Lock-out Not Tolerable. We are interested in protocols for systems
where locking-out of user accounts after some number of failed login attempts is not a viable
option. (Otherwise, online login attacks are easily addressed – see §1.)

Trust Model Assumptions: Trusted Client and Ephemeral Memory. We assume that
client computers, and any resident software at the time of use, are non-malicious (e.g., free of
keyboard sniffers and malicious software). This is standard for (one-factor) password-based
authentication protocols – otherwise, the password is trivially available to an attacker. For
similar reasons, we assume client software leaves no residual data on user machines after a
login protocol ends (e.g., memory is cleared as each user logs out). In practice it is difficult
to guarantee these assumptions are met (e.g., for borrowed machines in an Internet café);
but without them, the security of almost all password protocols seems questionable.

Observation 1: Limited Persistence by Legitimate Users. A typical legitimate user will
give up after some maximum (e.g., C = 10) of failed logins over a fixed time period, after
which many will check with a system administrator, colleague or other source for help, or
simply stop trying to log in. Large numbers of successive failed logins, if by a legitimate
user, may signal a forgotten password or a system availability issue (here login failures are
likely not formally recorded by the system); or may occur due to an attacker, as either a
side effect of attempting to crack passwords, or intentionally for denial-of-service in systems
susceptible to such tactics.

Observation 2: Users Will Seek Convenience. If a login protocol is necessary to access
an online service, and users can find a similar alternate service with a more convenient
login (though possibly less secure), then many users will switch to the alternate service.
User choices are rarely driven by security; usability is usually a far greater factor, and poor
usability typically leads to loss of business.

These observations lead us to our usability goal; we state it informally.

Usability Goal: Minimal User Inconvenience. Relative to standard userid-password schemes,
we wish to minimize additional inconvenience experienced by a user.

As is often the case, the usability goal must be met in a tradeoff with security, and we
have a two-part security goal. One part is protecting specific accounts (e.g., certain users
may be more concerned about, or require more, protection; or a service provider may worry
more about specific accounts – say those with high sales ratings, or high account values).
The second is protecting all accounts in aggregate (e.g., a web service provider might not
want any user accounts misappropriated to host stolen software; a content service provider
might want to protect access to content available to authorized subscribers).

Security Goal: Control Access to both Specific Accounts and Non-specific Accounts. Con-
strain information the adversary learns from trial password guesses before being “stopped”
by an ATT challenge in the context of fully-automated attacks directed towards a specific
account (single-account attack) and towards any account (multi-account attack).
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In practice, for authentication schemes based on user-selected passwords, prevention of
unauthorized access cannot be 100% guaranteed for a specific account or all accounts in
aggregate, due to the non-zero probability of correctly guessing a password, and the ubiquity
of poor passwords. Nonetheless, the quality of a login protocol may be analyzed independent
of particular password choices, and this is what we pursue. For a given password, we are
interested in how effectively a given protocol allowing online interaction prevents extraction
of password-related information. Intuitively, “as little information as possible” should be
leaked; while a more rigorous definition is desirable, one is not provided herein.

Requiring mandatory human participation increases the level of sophistication and re-
sources for an attack. If ATTs are effective and ATT relay attacks are countered (e.g.,
by means such as embedded warnings – see §6.2), then constraining information leaked
before being “stopped” by an ATT challenge is an important security characteristic of a
password-based login protocol.

3 History-based Login Protocol with ATTs (New Protocol)

Here we modify the original protocol, intending to both improve the user experience and
increase security, e.g., to increase the percentage of time that an adversary is challenged
with an ATT, without further inconveniencing legitimate users.1 The modifications do not
themselves prevent ATT relay attacks (§6.1), but are complementary to other modifications
in §6 which do, and can thus be combined.

We assume familiarity with the original protocol (Figure 1). Linewise, the new protocol
(Figure 2) differs as follows: lines 7.1-7.5 replace 8; and line 11.1 replaces 12. The new
protocol with failed-login thresholds (b1 = 0, b2 = ∞) behaves the same as the original
protocol.

In what follows, we provide detailed discussion of differences between the new and
original protocols, including: cookie-handling (cookies are now stored only on “trustwor-
thy” machines); owner and non-owner mode; per-user tracking of failed logins; and setting
failed-login thresholds. The idea of dynamically changing failed-login thresholds has been
previously suggested [21, §4.4-4.6]; we detail a concrete proposal and comparison. We empha-
size that both protocols assume the use of a deterministic function of the userid/password
pair for determining AskAnATT in line 11. In other words, for a fixed userid, a particular
password will either always result in an ATT being asked, or never.

a) Handling cookies. As noted earlier, the original protocol stores a cookie on any
device after successful authentication; the new protocol does not. Optional user input con-
trols cookie storage similar to web servers using a login page checkbox asking if users want
to “remember passwords”, e.g., “Is this a trustworthy device you use regularly, such as your

1 One might try to improve usability by allowing a small number of trial passwords per userid without
triggering an ATT. While this reduces security only minorly for a single-account attack (§4.1), the problem
is greater with multi-account attacks (§4.2).
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1 fix a value for system parameter p, 0 < p ≤ 1 (e.g., p = 0.10)
2 user enters userid/password
3 if (user device has cookie) then server retrieves it
4 if (entered userid/password pair correct) then
5 if (cookie present & validates & unexpired & matches userid) then
6 login passes
7 else % i.e. cookie failure
8 ask an ATT; login passes if answer correct (otherwise fails)
9 endif
10 else % i.e., incorrect userid/password pair
11 set AskAnATT to TRUE with probability p (otherwise FALSE) †

12 if (AskAnATT) then
13 ask an ATT; wait for answer; then say login fails
14 else
15 immediately say login fails
16 endif
17 endif

† This setting is a deterministic function of the userid/password pair [21]

Fig. 1. Original ATT-based Login Protocol (simplified description)

1 fix values for 0 < q ≤ 1 (e.g., q = 0.05 or 0.10) and integers b1, b2 ≥ 0
2 user enters userid/password
3 if (user device has cookie) then server retrieves it
4 if (entered userid/password pair correct) then
5 if (cookie present & validates & unexpired & matches userid) then
6 login passes
7 else % i.e., cookie failure
7.1 if OwnerMode(userid) OR (FailedLogins[userid] ≥ b1) then
7.2 ask an ATT; login passes if answer correct (otherwise fails)
7.3 else
7.4 login passes
7.5 endif
9 endif
10 else % i.e., incorrect userid/password pair
11 set AskAnATT to TRUE with probability q (otherwise FALSE) †

11.1 if (AskAnATT) OR (FailedLogins[userid] ≥ b2) then
13 ask an ATT; wait for answer; then say login fails
14 else
15 immediately say login fails
16 endif
17 endif

† This setting is a deterministic function of the userid/password pair [21]

Fig. 2. New Protocol (History-based Login Protocol with ATTs). OwnerMode(userid) is a boolean
(e.g., table-lookup into a bit-array), returning TRUE if userid is in owner mode; its update is not shown.
FailedLogins[userid] is set to the userid’s number of failed logins in a recent period T , and updated (also not
shown). See §3 re: handling cookies, definition of owner mode, and owner to non-owner mode transitions.
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home or office machine? YES/NO”. This part of the page appears if no cookie is received by
the server. Upon a YES response, a cookie is pushed to the user device only after the user
successfully authenticates (requiring a successful ATT response, if challenged) at Figure 2
lines 7.2 and 7.4. This cookie approach reduces exposure to cookie theft vs. the original pro-
tocol, with negligible usability downside because the question appears on the same screen
as the login prompt; we recommend default answer NO, as now explained.

A default of NO reduces exposure to cookie theft; however, if users blindly accept the
default, then more accounts (than otherwise) will be in non-owner mode, and there would
thus be greater vulnerability to multi-account dictionary attack (see §4). Conversely, a
default of YES, if blindly accepted by users, may increase exposure to cookie theft, but
reduce the number of accounts in non-owner mode and thus decrease susceptibility to multi-
account dictionary attacks, thereby improving security provided that cookie theft does not
occur. Which is preferable depends on the probability (threat) of stolen cookies. If no default
is given (forcing users to make their own choice), one might hope that users make the correct
choice, but usability is negatively impacted.

Cookies include the following information (cf. §2): expiry time, userid account name,
and cookie identifier (for tracking failed login attempts with a particular cookie; see item
c) below, and §4.3 under Cookie Theft). Cookies are associated with a server, and are
integrity-protected by a MAC (message authentication code) under a symmetric key known
only to server. For background on using browser cookies securely, see Fu et al. [11].

The original protocol requires that cookies be tracked by the server and ignored after
exceeding a limit on failed login attempts with the particular cookie (e.g., 100 [21, §4.5]). We
follow a similar approach. Each time a login fails (e.g., lines 7.2, 13, and 15), we increment a
server-side failed login count associated with the cookie if a valid cookie was received. If the
cookie exceeds a failed login threshold, a server-side flag is set to subsequently ignore this
cookie (for the remainder of its normal validity period). The line 5 check that the cookie
validates includes both a check of this flag, and an authenticity check (e.g., cookie MAC
verification). The cookie failure threshold is the number of failed logins allowed before a
cookie is invalidated. We recommend setting this to min(b1, b2); see §4.3.

b) Definition of owner, non-owner mode. A user is more likely to login from
“non-owned” devices when traveling (e.g., borrowing an Internet access device in a library,
guest office, conference room, Internet café). Also, we expect that a user submitting a login
request without valid cookie is more often using a non-owned device (and less often, logging
in from an owned device, e.g., initially or after cookie expiry). As a consequence of how
cookies are handled, we can assume (and be correct more often than not) that a user is on
a non-owned device if their most recent successful login is cookieless. We initially set a user
account to be in what we call owner mode, and expect an account to primarily be in owner
mode if most of the time the user uses their regular device (e.g., one of the devices they
own). An account transitions to non-owner mode when a login is successfully authenticated
without the server receiving a valid cookie (Figure 2, line 7.4), and returns to owner mode
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Fig. 3. Transition Diagram for Owner to Non-Owner Mode. State definitions: 1 = owner mode, no cookie;
2 = owner mode, with cookie; 3 = non-owner mode, no cookie; 4 = non-owner mode, with cookie. Event
definitions: E1 = successful login, no cookie, NO (device is not trusted); E2 = successful login, no cookie,
YES (device is trusted); E3 = successful login with valid cookie; E4 = countdown timer reaches 0; E5 =
cookie expires or is lost (not saved). Action definitions: A1 = reset countdown timer to W.

after a specified time-out period W (e.g., 24 hours) or a successful login with cookie present.
The time-out period is restarted, and the account remains in non-owner mode, if another
cookieless successful login occurs. The time-out period reduces the number of accounts in
non-owner mode, which lowers the security risk; accounts in non-owner mode are more
susceptible to multi-account dictionary attacks (see §4.2). A state transition diagram for
owner to non-owner mode is given in Figure 3. On event E2, the server attempts to download
a cookie to the client.

c) Tracking failed logins. We define FailedLogins[userid] to be the number of failed
login attempts for a specific userid within a recent period T (e.g., 30 days). Here failed lo-

gin attempts includes: non-responses to ATT challenges, incorrect responses, failed userid-
password pairs, and outstanding authentication attempts (e.g., the adversary may simulta-
neously issue multiple login attempts; one strategy might be to issue a very large number,
and respond to only a subset of resulting ATT challenges, perhaps being able to exploit
some “weak sub-class” of ATTs for which computer-generated responses are feasible).

d) Setting the failed-login thresholds (bounds b1, b2). Low values for b1, b2

maximize security at the expense of usability (e.g., for users who frequently enter incorrect
passwords). A reasonable bound may be b1, b2 ≤ 10 (perhaps larger for large T ). In the sim-
plest variation, the protocol bounds b1, b2 are fixed system variables; in a more elaborate
design (cf. §5), they are dynamic and/or set on a per-user basis (varying for a particular
userid, based on a history or profile and possibly subject to system wide constraints e.g.,
maximum bound on b2). For example, certain users who regularly enter a password incor-
rectly might be given a higher failed-login threshold (to increase usability) compared to
users who almost always enter correct passwords. If it is expected or known from a histor-
ical profile that a user will log in L times over a period T , and that say 5% of legitimate
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login attempts fail, then b2 might be set somewhat larger than (0.05) ∗ L (e.g., T = 30
days, L = 100, b2 = 5). Over time, per-user rates of legitimate failed logins (e.g., mistyped
or forgotten/mixed up passwords, perhaps more frequent on unfamiliar machines) can be
used to establish reasonable thresholds. To simplify presentation, updating of per-user table
entries FailedLogins[userid] is not shown in Figure 2. Note that while per-user values require
server-side storage when these values cannot be user-stored via cookies, a small amount of
per-user server-side storage is already required in both the original and new protocol to
ameliorate cookie theft (see above).

As a further option, setting the ATT challenge probability q on a per-user basis also
allows flexibility for tuning usability and security on a per-account basis.

As with any security critical application, care should be taken to implement the new
protocol in a manner resilient to denial of service attacks, e.g., by an adversary attempting
to exhaust any dynamically allocated per-userid state memory.

4 Comparative Analysis – Security and Usability

In this section we provide a comparative analysis of the new and original protocols. We
begin with a security analysis against single-account attacks, then consider multi-account
and other attacks, and usability.

Assumptions. We generally follow the original assumptions [21], including the follow-
ing. Passwords are from a fixed set (dictionary) of cardinality N , and for analysis purposes,
are equi-probable (a more precise analysis, with differing password probabilities, follows
a similar approach, but password probability distributions are generally unknown). For a
more realistic model, one could restrict the password space (and N) to that subset of the full
space that contains passwords of probability above some bound, providing a more represen-
tative “effective password space”. The delay from the time of password entry to the time an
ATT challenge is received should not depend on whether the entered password is correct.
Login is assumed to be via a browser, with cookies enabled (the actual base requirement is
simply that the server have a reliable way of authenticating computing devices [21]). Prob-
abilities p and q are as defined in the protocols herein. ATTs are asked for a fraction (p or
q) of incorrect, as well as the single correct, password. We make an additional simplifying
assumption: a particular account remains in either owner or non-owner mode.

Below, we first assume no cookie theft (an attacker knows a userid but has no corre-
sponding cookie, so that a correct password guess puts the attacker into the cookie failure
block at line 7 in the new protocol), but in §4.3 consider the implications of theft.

4.1 Security Analysis for Single-Account Attacks

To drive our comparative security analysis, we ask for the original and new protocols, for
an attack on a single account, the following questions.
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Question Original Protocol New Protocol

Account Mode
Owner Non-owner

Q1 (1 − p)N (1 − q)b2 max(b1, (1 − q)b2)

Q2 1

2
pN 1

2
(N − (1 − q)b2) ≈ N/2 1

2
(N−max(b1, (1 − q)b2))

Q3a (c = 0) 0 0 b1/N

Q3b (c = 1) 1/pN (1 − (1 − q)b2+1)/qN (b1 + 1)/N

Q3c (c ≥ 2) c/pN ≤ min( c

q
, b2 + c)/N (b1 + c)/N

Table 1. Summary of comparative security analysis (single-account attack).

Q1: What is the expected number of passwords that an attacker can eliminate from the
password space, without answering any ATTs?

Q2: What is the expected number of ATTs an attacker must answer to correctly guess a
password?

Q3: What is the probability of a confirmed correct guess for an attacker willing to answer c
ATTs?

Table 1 summarizes the answers based on the best attack strategies known to the authors
(see next paragraph), and the assumptions noted above. Also, to the benefit of the attacker,
we assume that failed login counts b1 and b2 are 0 at the start of an attack. In the table, q
is used for p in the new protocol to emphasize q 6= p is allowed.

For Q1, in a first pass, an attacker of the original protocol may simply try all passwords
in an attack dictionary, and quit on each guess triggering an ATT (in total, a p-fraction of
the dictionary); all others, i.e., (1−p)N passwords, result in a protocol response confirming
password incorrectness without the cost of answering an ATT, and thus can be eliminated
at a cost of zero ATTs. In the new protocol, the number of “free” (i.e., without ATT)
guesses in owner mode is certainly limited by the failed-login threshold b2, after which an
ATT is required for each guess; but for a q-fraction of these b2 guesses, one expects an
ATT triggers at line 13, which to the attacker is indistinguishable from a line 7.2 ATT –
thus these passwords cannot be safely discarded as incorrect. Thus the expected number of
eliminatable passwords here is actually (1 − q)b2, as noted in the table. Similar reasoning
yields the table entries for Q1 and Q2 in non-owner mode.

For Q2, an attacker would on average be expected to guess the correct password after
going through half the remaining (non-eliminated) passwords, and each of these guesses has
a cost of one ATT. Thus in the new protocol for an owner mode account, after eliminating
(1−q)b2 passwords, an attacker is expected to try half the remaining N−(1−q)b2 passwords,
at a cost of (N − (1− q)b2)/2 ATTs, before hitting the correct password. Similar reasoning
gives the Q2 table entry for the original protocol.

For Q2 and Q3 against both the original protocol and owner-mode accounts in the new
protocol, for an attacker who measures cost in terms of the number of ATTs that must
be answered, there appears to be no penalty in simply answering the first c ATTs asked

9



(without eliminating bad passwords in a preliminary “zero ATT cost” pass). The reason is
as follows. In the original protocol, ATTs are asked on only a p-fraction of the password
space, which includes the correct password; and upon being asked an ATT, there is a fixed
probability that the password candidate is correct. For the new protocol, the same holds,
but in addition, each non-answered ATT increases the failed-login counter, which shortens
the number of remaining guesses available (if any) before triggering an ATT on every single
guess. In essence, an attacker trying a candidate password D gains no benefit from failing
to pursue D upon getting an ATT (unless he has no intention of answering any ATTs,
which is a valid multi-account attack strategy against non-owner mode accounts – see §4.2);
rather, the ATT should be answered since D may indeed be the one correct password, and
subsequent trials of the same password W will also trigger an ATT.

The answer to Q3 for the original protocol is c/pN . This follows from being able to
narrow the password space down to pN candidates, and c ATTs allowing the fraction c/pN
of this space to be covered. For c = 0 in owner mode of the new protocol, the probability is
0 of correctly guessing a password without answering an ATT, since an ATT is always asked
if the correct password is tried without a valid cookie. For c = 0 in non-owner mode, an
attacker has b1 “free” guesses before the failed-login threshold kicks in at line 7.1, and any
ATT asked during the first b1 trials necessarily results from line 13, confirming an incorrect
password; furthermore any password guess after trial b1 cannot be confirmed as correct,
since line 7.1 would trigger an ATT which the attacker is not willing to answer. This gives a
Q3a probability of b1/N with 0 ATTs, and similarly for c ATTs, a probability of b1 + c/N .
The remaining entries in the table, namely Q3b (c = 1) and Q3c (c ≥ 2) for owner mode of
the new protocol, require further explanation, as given by the following Lemmas.

Lemma 1. Let R be the probability of a confirmed correct guess for an attacker willing to
answer c = 1 ATT in owner mode of the new protocol. Then R = (1 − (1 − q)b2+1)/qN .

Proof: Arguing as above with an attacker simply answering the first ATT asked, the
number of trial password guesses is limited to b2 + 1, since testing bound b2 at line 11.1
guarantees a second ATT if the game ever proceeds beyond b2 + 1 trial guesses, with each
such trial thus having zero probability of success. So R is the sum of the probabilities of
a confirmed correct guess over the first b2 + 1 trials. Let ci be the probability of a correct
guess upon reaching trial i, and let ei be the probability the event trial i occurs. Then
R =

∑b2+1
i=1 ci · ei. Now for all i, it follows from simple probability tree (or other) arguments

that ci = 1/N . Regarding ei, for trial i to occur, line 13 must have been avoided on all pre-
vious iterations (otherwise the single ATT would have been consumed); this has probability
(1 − q)i−1. Thus R = (1/N)

∑b2+1
i=1 (1 − q)i−1 = (1 − (1 − q)b2+1)/qN , as claimed.

Note 1. From Lemma 1, if b2 = 0 then R = 1/N ; this yields a smaller (better) probability
than the corresponding 1/pN in the original protocol. Moreover, the bound b2 check in line
11.1 ensures at most b2 + 1 trials can pass before consuming the c = 1 available ATT, so
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for any value b2, R ≤ (b2 + 1)/N (at most b2 + 1 of N passwords can be guessed, using
in total one ATT). Finally, as b2 → ∞, (1 − q)b2+1 → 0 for q > 0, and thus R → 1/qN ,
as in the original protocol; this is as expected since b2 → ∞ means the bound b2 becomes
unused. Combining these we have R ≤min(1/qN, (b2 + 1)/N), with the first term 1/qN
taking precedence when q ≥ 1/(b2 + 1), in which case larger probabilities q lower R.

Lemma 2. Let R be the probability of a confirmed correct guess for an attacker willing
to answer c ≥ 2 ATTs in owner mode of the new protocol, using an attack strategy of
answering the first c ATTs asked. Then R ≤ min( c

q
, b2 + c)/N .

Proof: Similar to reasoning in the proof of Lemma 1, checking (only) the threshold b2 in
line 11.1 implies that at most b2 + c passwords can be guessed before c ATTs are consumed.
(In fact one would expect fewer trials, due to the probability q in line 11 also contributing
to the consumption.) This yields the (b2 + c)/N term. The c/qN term follows from the fact
that the probability q (alone) at line 11 would cause line 13 to be expected to occur every
1/q trials, and thus in the absence of a b2 bound one would expect line 13 to consume c
ATTs after c/q trials, allowing the attacker to guess c/q of the N password candidates,
giving an expected success probability of c/qN . The interaction between these two possible
outcomes, each of which consumes ATTs independently, gives the claimed upper bound.

Note 2. From Lemma 2, the second term (b2+c)/N takes precedence provided q ≤ c/(b2+c),
which we would expect for many practical parameter selections (when c 6= 0). For a bound
tighter than that given by Lemma 2, and better understanding of the protocol, we consider
a game between the algorithm and the attacker, with the attacker willing to “spend” c
ATTs, answering each ATT when asked. The question is to find g, the expected number of
trial password guesses by the attacker, up to and including the one triggering the last (cth)
ATT; it then follows that the probability of a successful password guess is g/N . We find it
helpful to consider two cases. Case 1: the cth ATT is consumed before the point at which
the bound b2 triggers an ATT at every single iteration of line 11.1 – this will happen for
c/q ≤ b2, probably an uncommon parameter choice (e.g., q = 0.1, c = 2, b2 = 25). Case 2:
the cth ATT is consumed after trial b2, but within the first b2 + c trials.2

Determining g, and hence the answer to Q3c (new protocol, owner mode), thus mo-
tivates the question: what is the number x of trials (password guesses) expected before
consuming the cth ATT? Under our assumptions discussed earlier, an ATT results from
line 11 of the new protocol with independent probabilility q on each trial, assuming an
attacker randomly selects (different) password candidates. This is a standard negative bi-
nomial distribution question, with the random variable X being the number of “failures”
(trials where no ATT is asked), the experiment continued until a fixed number c “suc-
cesses” occur (an ATT is asked), the probability of success and failure respectively being

2 After trial number b2+c, a correct password guess cannot be confirmed, as all c ATTs have been consumed.
As per Note 2, b2 plays a role in limiting the number of password guesses iff c/q ≥ b2 + c.
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q and 1 − q, and our interest being in the expected value of g = x + c, for the probability
function f(x) = C(x + c− 1, x) · qc(1 − q)x for x = 0, 1, . . . From this a precise expression
for R in Lemma 2 can be given, but a general closed form is not evident; thus we find the
bound given by Lemma 2, and the discussion above, suffices.

Note 3. Rows Q1 and Q2 of Table 1 indicate that the number of passwords that an at-
tacker can eliminate for free (i.e., without any ATTs) is substantially greater in the original
protocol.3 A second observation favoring the new protocol follows from rows Q3b and Q3c:
the probability of a successful attacker guess in the new protocol (on the order of 1/N) is
generally significantly smaller than in the original (on the order of 1/pN), except that when
b2 is relatively large the new protocol effectively behaves as in the original, with probabil-
ity c/qN matching the table entry c/pN for the original protocol; when b2 is small, b2 + c
is less than c/q, so the probability in the new protocol is better, i.e., less than in the original.

Note 4. Row Q3a indicates that for an attacker unwilling to answer any ATTs, both proto-
cols have the same security, except that we relax security in the new protocol (i.e., to b1/N)
for those accounts in non-owner mode (presumably a relatively small number), to improve
usability as indicated in Table 2 (bottom row). Especially given the latter, we view this as
an acceptable risk in general, for a single-account attack.

Note 5. For both c = 1 and c ≥ 2, for the new protocol Table 1 gives a probability (i.e.,
an expectation over a large number of runs) bounding the worst case, and Note 2 discusses
which term therein takes precedence. For reasonable values b2, this probability is substan-
tially better (lower) than the corresponding expected value in the original protocol.

Summary of Analysis. Table 1 summarizes this analysis, with further text expla-
nations in Notes 3, 4, and 5. The new protocol has better security characteristics against
single-acount attacks, except in non-owner mode for an attacker unwilling to answer any
ATTs, where security is decreased somewhat, but still quite acceptable as per Note 4. Case
Q3c (see Note 3; Note 2) is likely of greatest interest to practitioners.

4.2 Security Analysis for Multi-Account Attacks

In multi-account (or system-wide) attacks, an attacker seeks to break into any one of many
accounts, not necessarily a specific account. They are generally of greater concern to service-
providers than individual users, and usually more difficult to protect against (than single-
account attacks) since they tend to find “weakest links” across a system or user space.

3 For the new protocol, these figures are per time period T . However for a sophisticated multi-period attack,
the new protocol remains better (fewer passwords are eliminatable), assuming p = q, unless at least N/b2

time periods are used (e.g., about 1600 years for T = 1 month, N = 100 000 and b2 = 5).
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In the analysis below we use assumptions from the beginning of §4, and here in addition
assume that an attacker knows m valid userids of the L total user accounts; setting m = L
gives the attacker the greatest advantage, and in this sense is the most general (worst) case
– albeit over-estimating insecurity in many environments.

Case c = 0 (zero ATTs answered) For the new protocol, consider an attack strategy where
the attacker (assumed to have no valid cookie) acquires a list of m valid userids for accounts
in non-owner mode (or exhaustively tries userid-password combinations hoping to meet this
condition – see Note 6) and makes password guesses. Either a guess is correct (“lucky guess”
resulting in line 7.4, Figure 2), is incorrect with immediate failure notice (line 15), or an
ATT challenge results (lines 7.2 or 13). The attacker quits all login sessions returning an
ATT, moving onto a new password (on the same userid at most b1 times, or another userid).
The goal is to reach line 7.4, which requires an account in non-owner mode, below the failed
login bound b1. For accounts in owner mode, the new protocol performs similarly (from a
security perspective) against multi-account attacks as the original protocol.

For non-owner mode accounts, the new protocol permits an attacker up to b1 free guesses
(per account) before challenging with an ATT on any subsequent correct password guess
(cf. Note 4). Thus the probability of successful attack may approach (worst case) m · b1/N .
In contrast, in the original protocol an ATT challenge occurs every single time a password
guess results in line 8, and thus the probability of successful attack (for c = 0) is zero. Thus
as emphasized in §4.1, in non-owner mode, security has been decreased in a trade-off for
improved usability. This security loss can be made arbitrarily small by reducing b1, e.g., at
the extreme setting b1 = 0; this has the effect of artificially putting the account into owner
mode, yielding behavior matching that of the original protocol at line 8 in Figure 1.

Note that accounts found, or forced to adhere to a strong password selection policy
(e.g., through password checking programs that check the quality of passwords and/or
password generation programs [8, 9]) could be assigned a setting b1 ≥ 1 or somewhat higher,
with b1 = 0 (or very low) for other accounts. Such tuning of b1 on a per-user basis (see
related discussion in §5) effectively results in users who chooose “weak” passwords forfeiting
usability benefits in non-owner mode. Alternatively, users of accounts which are often in
non-owner mode could be selectively encouraged to use stronger passwords.

Case c ≥ 1 (one or more ATTs answered)4 For the new protocol with an attacker willing
to answer one or more ATTs, the best strategy would again seem to involve making trial
guesses on a particular non-owner mode account until reaching the failed-login bound b1

for that account, and then moving on to another non-owner mode account. This attack
does not succeed against accounts in owner mode, since for those, an ATT is demanded
(guaranteed) upon reaching line 7.1.

4 We expect this case to be of primary interest to practitioners.
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As discussed earlier (Table 1, row Q3c), the new protocol has significantly better secu-
rity than the original against single-account attackers willing to answer c ≥ 1 ATTs. This
security advantage carries over for multi-account attacks (including in situations where the
adversary arranges that ATTs be answered e.g., by relaying them to a “sweatshop”), but
only for accounts in owner mode. For non-owner mode accounts, it is thus important to
take special pre-cautions as suggested under Case c = 0. This leads to Note 6.

Note 6. It is of significant advantage to an attacker of the new protocol to find ways to
distinguish owner from non-owner mode accounts, and correspondingly, for the system to
prevent this information from being easily available. An attacker unable to do so will face
far more ATTs. Related to this, the system ratio of owner to non-owner accounts affects
security from the viewpoint of system resistance to multi-account attacks.

To discern modes, an adversary might track login histories of usernames in systems
where those usernames are publicly available (e.g., shown as leading bidder in an online
auction) and are the same login identifier used as part of authentication. The adversary
notes that the timeout period W (see §3) implies that usernames with a recent login have a
much greater chance of being in non-owner mode than others. A countermeasure is to use
publicly available identifiers that do not expose actual login identifiers. If it is impossible
to hide information that helps an adversary to discern modes, then parameter b1 can be
adjusted lower to force a line 7.1 ATT challenge on a correct username and password. To
guard against an adversary targeting only certain distinguished accounts or account types,
b1 can be adjusted on a per-account (type) basis; this helps balance security and usability.

4.3 Other Attacks

Here we briefly consider several other types of attack.
Parallel login attacks. An attacker may try to launch a parallel-login attack,

simultaneously attempting a login to one userid a large number of times (e.g., 1000) on
different servers. (See related definition of failed login attempts in §3.) This attack attempts
to take advantage of architectures which involve large number of servers to load-balance
activities in the case of large user spaces, and the difficulty of centrally updating failed
login counts (or other authentication state information) across different servers. It can be
countered by deterministically routing authentication requests by userid, to a particular
server or server farm pre-assigned to that userid. With such a system design, each such
server is able to stay current on updates without excessive login delays.

Cookie theft. The above analysis assumes no cookie theft occurs. Here we make a
few observations in case it does.

New Protocol. If a cookie is stolen, then within the cookie’s validity period and while
under the recommended cookie failure threshold (see §3 and Note 7), the attacker can
try min(b1, b2) password guesses on the associated userid, without being asked an ATT
that cannot be prudently abandoned, using a single-account attack as follows. The attacker
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guesses passwords, quits all guesses that return an ATT, and hopes to reach line 6 (Figure 2)
with a lucky guess. The probability of success is min(b1, b2)/N . (This attack may take place
in conjunction with one that reduces the password space without answering an ATT, or one
where the adversary is willing to answer c ≥ 1 ATTs.)

Original Protocol. Similarly, the attacker gets free guesses up to the cookie failure thresh-
old. A correct password guess on any such trial allows successful login with 0 ATT answers.

Note 7. (a) We expect that stolen cookies are less likely with the new protocol, since they
would be expected to reside in fewer places – e.g., cookies from the original protocol would
show up in Internet cafés. While many devices may be compromised by malicious software
exploiting any of thousands of software flaws, under the assumption that the vulnerability
to cookie theft is proportional to the number of cookies on devices, the original protocol
is more vulnerable than the new to cookie theft. (b) A combined cookie and non-cookie
attack against a single account has lower probability of success in the new protocol, due to
the failed login thresholds; moreover, in the original protocol, the attacker can reduce the
password space to a p-fraction even before using the stolen cookie (cf. discussion on Q1 and
Q2 in §4.1).

Gaming of failure thresholds. Another threat is the “gaming” of historical statis-
tics. A determined attacker, over a long period of time, could possibly skew upward the
average failure rate on high-value accounts through occasional intentionally-failed login at-
tempts. This might lead administrators to increase thresholds b1, b2, aiding the attacker (cf.
§5.2). (This assumes that an adversary could generally estimate the frequency of account
login.) A countermeasure is to alert users of the time(s) of last failed login(s) upon a suc-
cessful login – a long-known technique. Possibly other information about the login session
could be provided as well. Optionally, upon a successful login, user feedback regarding their
knowledge of prior login attempts could be used to set the appropriate values for b1, b2, and
q.

4.4 Discussion of Usability

For comparing usability between the original and new protocols, Table 2 notes the propor-
tion of time a legitimate user is queried with an ATT on entering a correct or incorrect
password, with and without a valid cookie. A case of particular focus for the new protocol
is the legitimate “travelling user”, who generally operates with an account in non-owner
mode and without a valid cookie. The new protocol is significantly more user-friendly to
such users. We also believe that such users are typically more likely to enter incorrect pass-
words (see Note 8), and therefore increasing usability in this case is significant as one would
expect that “incorrect password” cases occur far less often in owner mode.

Also related to usability – the value of the parameter q may be reduced in the new
protocol with little or no loss of security, due to the use of the failed login bound b2 and
depending on its value relative to q (see Table 1). This further increases usability in the
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Original Protocol New Protocol

Account Mode
Owner Non-owner

Incorrect password p q† q†

Correct password - valid cookie 0 0 0

Correct password - no valid cookie 1.0 1.0 0†

Table 2. Fraction of the time a legitimate user must answer an ATT (1.0 = 100%). †See Note 8.

incorrect password case, independent of the discussion in the paragraph above.

Note 8. Regarding Table 2, after the failed login bound is crossed in the new protocol,
in several cases – e.g., on incorrect passwords, and correct passwords without valid cookies
– ATTs occur more frequently (i.e., 100% of the time after the bound is crossed within
period T ). However for accounts in owner mode we expect a large number of users select
a “Remember password” option (standard in many applications) which stores passwords
locally on their regular machines. No failed passwords are expected from such users; but
their failed login thresholds may still be crossed due to attacker activities.

5 Tuning Protocol Parameters with User Profiles

We enhance the basic version of the new protocol by adjusting protocol parameters based on
historical user profiles (cf. §3), i.e., statistics derived from prior login attempts. This allows
per-account tailoring of security and usability, improving overall system security against
multi-account attacks, and reasonable usability adjustments for different types of users.

5.1 Single and Multi-Account Historical Statistics

In the definitions of characteristics comprising the historical user profiles below, we use
the following terms. Login session means a sequence of one or more login attempts to a
particular account within some fixed time window, and which can reasonably be attributed
to the same source – e.g., originating from the same network address, or supplying the same
cookie, within a 5-minute time period. Successful login session means a session resulting in
account access, whereas a failed login session does not. Suggested account characteristics
comprising an account profile include the following.

1. Password Failure Rate. An account’s password failure rate is the average number of
failed login attempts per successful login session. Excluding failed login sessions here
limits an attacker’s ability to manipulate password failure profiles by submitting invalid
passwords to user accounts. As one variation, this statistic is tracked separately for owner
and non-owner mode, to allow tuning if users employ mechanisms for reliable password
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entry on owned machines (e.g., browser auto-fill features). As a second, this statistic
is tracked separately for valid-cookie and cookieless successful sessions, i.e., separating
those sessions which involve receipt of a valid cookie.

2. Borrowing Rate. An account’s borrowing rate is the ratio of successful login sessions
without submitting a valid cookie to those with a valid cookie.

3. Group Failed Login Count. For a set of accounts, the group failed login count is the
total number of failed logins for the user accounts in question, over some time window,
associated with failed login sessions involving no valid cookie. The set of accounts may
e.g., be the entire account space, a statistical sampling, or some number of subsets of
accounts viewed as attractive targets (e.g., financial accounts of high monetary value,
or accounts recently active in an online auction).

The above statistics are computed over (one or more) reasonably chosen recent time
windows, long enough to model the predominant failure modes. For example, to account
for password failures due to infrequent logins (with users simply forgetting passwords), the
window for password failure rate could be set on the order of months or more.

5.2 Protocol Enhancements Using Historical Statistics

As mentioned earlier, we now suggest four custom enhancements (C1–C4) to usability and
security, by dynamically adjusting protocol parameters based on historical profiles.

C1: in absence of a valid cookie, set b1 proportional to the password failure rate for invalid
cookies. (This is for non-owner mode accounts only.)

Justification: For accounts in non-owner mode, a valid cookie not being received is
consistent with the user continuing to travel and log in from a borrowed machine. This
customization improves usability for the case where the user has a history of password
failures when traveling. The refinement on cookie validity addresses variability in pass-
word failure rates based on whether the user is on an untrusted or trusted machine (the
latter being identified by requests accompanied by a valid cookie) – and a significant
difference is expected, in part due to the use of browser features that store and suggest
the username and password associated with a particular web page; these tend to reduce
password failures rates from trusted machines, and amplify failure rates on untrusted
machines (as the user must recall an even less frequently used password).

C2: set b1 proportional to the borrowing rate.
(This is for owner mode accounts only.)

Justification: For accounts in owner mode, the value of b1 is relevant when the user
begins to travel, and the account is to transition from owner to non-owner mode. For
accounts with a zero (or very low) borrowing rate, setting b1 to zero provides maximum
security, at the expense of requiring the user to answer an ATT in the (unlikely) case
of using a borrowed device. Recall b1 = 0 forces an ATT (Figure 2, line 7.2) challenge
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Fig. 4. ATT Relay Attack

upon valid userid-password entry without a valid cookie – the latter being characteristic
of both logging in from a borrowed device, and an attack whereby the attacker does
not have access to cookies stored on a trusted machine. Setting b1 proportional to the
borrowing rate (with a suitable upper bound) is consistent with the reasoning that
leniency (i.e., user-friendliness in the form of fewer ATT challenges) should depend on
the chances that a legitimate user is making the login request.

C3: on receipt of a valid cookie, set b2 proportional to the password failure rate. (This is for
owner mode accounts only.)

Justification: If an account is historically prone to password failures, and a valid
cookie is received, then it may be likely that the login attempt came from a valid user.
For users prone to login errors, usability is increased by selectively increasing b2.

C4: increase q (for group members) if the group failed login count rises substantially, and in
this case also decrease b1 and b2.

Justification: Such an increase may suggest a multi-account attack, in which case
lowering b1 and b2, and raising q, will make the attacker’s task more dificult (at the cost
of increased inconvenience to associated users).

6 Additional Techniques Augmenting ATT-based Authentication

Here we describe a relay attack and propose a number of techniques to both address it,
and to augment the original protocol (Figure 1) without changing its basic functionality.
These techniques are intended primarily to improve security, and are independent of (com-
plementary to) the changes proposed in §3. We present them briefly without additional
analysis.

6.1 ATT Relay Attack

A relay attack (see also §7) may executed on online protocols involving an ATT by relaying
the ATT challenge to an auxiliary location or “workforce” which generates responses, which
are relayed back to the challenger. The original ATT target thus avoids the ATT work.
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One attack variant might proceed as follows (see Figure 4). Assume there are two web
sites.5 The first, say ebay.com, is assumed to be the target of regular online dictionary
attacks, and consequently requires correct responses to ATT challenges before allowing
access. The second, say CNN.com, is a popular high volume web site, which for our purposes
is assumed to be vulnerable to compromise. The attack begins with an adversary hacking
into the CNN.com site and installing attack software.

Upon a user-initiated HTTP connection to CNN.com, the attack software receives the
request and initiates a fraudulent login attempt to ebay.com. The attack software, presented
with an ATT challenge from ebay.com, redirects it to the CNN.com user connection, in-
structing that user to answer the ATT to get access to CNN.com. (Many users will follow
such instructions; most users are non-technical, unsuspecting, and do as requested.) The
CNN.com user responds to the ATT challenge. The attack software relays the response
to ebay.com, completing the response to the challenge to the fraudulent login attempt. In
conjunction with replying to eBay’s ATT challenge, after a sufficient number of passwords
guesses (e.g., dictionary attack), an eBay account password can be cracked. The procedure
is repeated on other accounts, and the attack program summarizes the online dictionary
attack results for the adversary.

The attack is easy to perform if the adversary can control any high volume web site –
e.g., a popular legitimate site the attacker compromises (as above), or an owned malicious
site to which traffic has been drawn, e.g., by illegally hosting popular copyrighted content,
a fraudulent lottery, or free software. A related attack involves attack software which re-
lays ATTs to groups of human workers (“sweatshops”; see also [12] re: distributed human
computation), exploiting an inexpensive labor pool willingly acting as a mercenary ATT-
answering workforce. An unconfirmed real-world variant was reported [24] to involve an
“adult web site” requiring users to solve ATTs before being served the content; presumably
those running the site relayed the answers to gain access to legitimate sites which posed the
original ATT in the hope of preventing automated attacks.

6.2 ATT with Embedded Warning

Here we propose a simple method to prevent ATT relay attacks. A drawback of the proposal
is that it requires some thought on behalf of users (which in some cases may lead to errors,
and thus login failures, by legitimate users). However, we believe the general idea may be
adapted to significant advantage.

The general idea is to rely upon self-awareness of legitimate users to prevent unwitting
participation in an ATT relay attack. One approach is to make ATT challenges user-directed
by incorporating a user’s specific userid within the ATT itself. Preferably, removing this
information is of comparable difficulty to answering the ATT itself.

5 The authors have no affiliation with ebay.com or CNN.com, and no reason to believe either site is insecure.
These sites are used as examples simply due to their popularity.
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For example, as part of answering a text ATT, a portion of the text is a userid field,
which the user is warned to compare to their own userid, to confirm that the ATT is targeted
specifically at them (within the embedded warning the user is instructed to not answer the
ATT if the match fails). A variant instead embeds the name of the site being visited (i.e.,
for which the ATT is being solved for), with similar operation; the choice between web
site name and userid could be made dynamically, e.g., selecting the shorter of the two. In
another variant, the challenge might also be customized to include the site’s graphical logo
possibly as a background image, with the user asked to verify this to confirm that the RTT
comes from the intended site.6 Optionally, the ATT might also contain an embedded short
“help URL”, for a site giving further instructions on the use of this type of ATT.

6.3 Notification Regarding Failed Logins

Here we propose a simple method to detect automated dictionary attacks and trigger
counter-active measures (this expands on the idea of administrators manually sending out-
of-band messages [21, §4.4]). Once a small threshold (e.g., 3-10) of login failures occurs for
any single account, an automated, out-of-band communication (e.g., email) is sent to an
address-on-record of the associated legitimate user. If the failed logins resulted from the
user’s own actions, the user will be aware of the failures and can safely ignore the message;
otherwise, it signals malicious activity, and may lead the user to take such actions as to
request7 changes to server-side user-specific login protocol parameters (see §3), or to change
their own password to a more secure password using the normal change password method.

As an alternative, albeit less desirable,8 after some larger number of failed logins (e.g., 25),
the system might automatically reset the user’s password to a computer-generated secure
password emailed to the user. This would prevent a user’s typically weak self-chosen pass-
word from being cracked through standard dictionary attacks. (Depending on the security
policy in use, the user might be allowed to change the password back to a weak one if they
wish, but at this point they may also be motivated to follow recommended password rules.)

This proposal is less effective against multi-target attacks, and slow-channel dictionary

attacks wherein an automated program tries passwords on a certain account after there is
likely to have already been a successful login attempt (e.g., waiting for a random but minimal
delay, such as one-day intervals). In some systems, an attacker can confirm if a user has
logged in recently (e.g., an eBay user), and mount only a limited number of trial password
guesses some fixed period after each such successful login. This proposal may nonetheless be

6 These latter two variants were suggested by anonymous referees.
7 For example, this may be done through an authenticated channel such as an email to an un-advertised

pre-arranged address, or a hidden URL provided in the email alert to the user.
8 This may raise customary issues related to system-generated passwords and system-initiated password

changes. If used, this alternative must be crafted so as not to generate additional customer service calls,
which are not tolerated within our scope. Also, if poorly implemented such techniques can be abused (by
allowing an attacker to force the site to send mail to its users).
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helpful, and other parameters may limit the success of slow-channel attacks. A small amount
of per-user server-side state is needed, but the original protocol has a similar requirement to
address cookie-theft [21, §4.5]. A remaining drawback of this proposal is degraded usability
(additional user attention is required).

6.4 Consuming Client Resources using Zero-Footprint Software Downloads

We propose that login protocol variants (e.g., see §3) be augmented by known techniques
requiring that clients solve “puzzles” consuming client resources, and return answers prior
to the server verifying a login. This follows research lines to combat junk mail (e.g., [7, 1])
and denial-of-service attacks [16]. Another augmenting technology is to harden passwords
with auxilliary protocols that can interact directly with the server [10].

Since functionality for performing client puzzles is not resident in standard client soft-
ware (e.g., browsers), this proposal requires allowing Java applets, JavaScript, or other zero-
footprint downloads. Rather than dismissing special client-side software outright (cf. [21]),
we see opportunity for advantageous use. Though perhaps worrisome, most users and orga-
nizations now operate under the assumption that Java, and certainly JavaScript, are turned
on.9 Nonetheless, since popular web services should work for near 100% of potential users,
to accommodate those who cannot use zero-footprint software, ATT-based login protocols
can be designed as follows. Client puzzles (or the like) are sent to users. For those unable
to answer the puzzles for any reason (in some case the server may learn this a priori), the
protocol branches to a path replacing the puzzle by an (extra) ATT. This ATT will be less
convenient to the user (requiring user attention, vs. machine resources), but we expect this
to be a relatively small percentage of users, and thus viable.

Another approach to strengthening login protocols involves “strong authentication pro-
tocols” like EKE (see §7), which in general would also require extra client-side software.
However, these techniques do not appear to be of use for our problem. EKE-like protocols
are designed to preclude off-line (vs. online) dictionary attacks, and typically for systems
with passwords of very low entropy, which thus rely on account lock-out (as very low en-
tropy passwords can be cracked in a relatively small number of guesses). In contrast, we are
interested in environments where account lock-out is not viable.

7 Further Background and Related Work

The ATT relay attack of §6.1 is related to general classes of middle-person attacks and
interleaving attacks involving an active attacker inserting itself between legitimate parties
in a communications protocol, and/or using information from one instance of a protocol

9 These are in fact the settings that result from the Internet Explorer default (“medium” security), and
which we expect remain unchanged by most users.

21



to attack a simultaneous instance. Such attacks are well-known in cryptographic protocols
and have a long history ([5, 6]; [19, 530–531]).

For example, challenge-response protocols have long been used to identify military air-
craft in identify-friend-or-foe (IFF) systems. IFF challenges from enemy challengers have
reportedly been forwarded in real-time to the enemy’s own planes, eliciting correct responses
which were then successfully used as responses to the enemy’s original challenges [2, 19–20].
Note that responses in such systems are typically automatic; the protocols do not involve
entity authentication of the querying party.

Related to this is the well-known grandmaster postal-chess attack: an amateur simul-
taneously plays two grandmasters by post, playing white pieces in one game and black in
the other, using his opponents’ moves against each other, resulting in an overall outcome
better than the two losses he would have achieved on his own.

The term strong authentication protocols is often used for protocols designed to preclude
attacks which first obtain appropriate data related to one or more protocol runs, and then
proceed to crack passwords offline (i.e., without further online interaction). This line of
research began with the early work of Gong and co-authors [18, 13, 14]. The EKE proto-
col [3] then inspired a number of others (e.g., SPEKE [15]; SRP [28]; see also [17]). Offline
exhaustive password-guessing attacks typically proceed by trying potential passwords in
(perceived) order of decreasing likelihood, with the more probable passwords often in con-
ventional dictionaries, or modified dictionaries specially tailored to this task. Offline attacks
are thus often called dictionary attacks, although dictionaries are also used in online attacks
(if account lock-out and time-delays are not used; see §6.1).

Use of system-generated passwords can provide higher security (by better password
choices), but suffers severe usability issues. Passphrases have also been proposed (e.g.,
see [31, 30]). Other approaches include system administrators running password-crack tools
on their own systems (re-active password checking); enforcement of simple password rules
or policies at the time of new password selection; and at such time, checking for its presence
in large customized dictionaries built for this purpose (pro-active password checking, e.g.,
see Yan [29]).

8 Concluding Remarks

We expect that a large number of human-in-the-loop and mandatory human participation
schemes, unrelated to the ATT-based login protocol discussed here, are also subject to the
ATT relay attack of §6.1.

A major feature of our new protocol is the additional flexibility and configurability, in-
cluding failed login thresholds and potentially lower ATT challenge probabilities (e.g., for
suitable b2 lowering q does not decrease security). This allows the protocol to be tailored to
match particular environments, classes of users, and applications; while determining the op-
timal parameters for specific user profiles appears non-trivial, we expect further analytical
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study will be fruitful. Another new aspect is storing cookies only on trustworthy machines.
As mentioned in §3, the new protocol can be parameterized to give the original proto-
col as a special case. While the configurability does complicate protocol implementation,
we note that a number of the parameters which are optionally dynamic can be managed
by automated tools, reducing the additional human administrative costs. For example, an
automated tool can keep a running ratio of successful logins to failed logins for the en-
tire system, and alter a system wide (or account-specific) parameter q, or system-wide (or
account-specific) failed login thresholds b1 and b2, based on this ratio. A significant improve-
ment of our protocol over prior work concerns protecting against relay attacks by forcing an
ATT challenge on all login attempts after the number of failed logins reaches a threshold.
Previous work enabled a significant fraction of the password space to be eliminated with
an automated attack. Per-user failed-login counts (as used in Figure 2) also provide pro-
tection against sweatshop attacks and ATT relay attacks, especially such attacks targeting
a particular account. Note that embedding warnings within ATTs (§6.2) does not by itself
protect against sweatshop attacks.

For practical protection in Internet-scale live systems, we recommend combining tech-
niques from §6 with those of §3. We see a large number of ways to expand on the ideas of
§3. In particular, we encourage others to explore the use of dynamic parameters (ideally
managed by automated tools), and other ways to gain advantage by treating users logging
in from non-owned devices (e.g., traveling users) different from those continually using their
regular login machines.

Acknowledgements. We thank anonymous referees whose comments improved this paper.
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