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Abstract

The security of the ISO banking standard Message Authenticator Algorithm (ISO 8731-
2), also known as MAA, is considered. The attacks presented herein, which exploit the
internal structure of the algorithm, are the first computationally feasible attacks on MAA.
First a MAC forgery attack is presented that requires 2'7 messages of 256 Kbytes or 2%
messages of 1 Kbyte; the latter circumvents the special MAA mode for long messages de-
fined in the standard. Next a key recovery attack on MAA is described which requires 232
chosen texts consisting of a single message block. The number of off-line multiplications
for this attack varies between 2% for one key in 1000 to about 2°! for one key in 50. This
should be compared to about 3 - 265 multiplications for an exhaustive key search. Finally
it is shown that MAA has 233 keys for which it is rather easy to create a large cluster of
collisions. These keys can be detected and recovered with 227 chosen texts. From these
attacks follows the identification of several classes of weak keys for MAA.

1 Introduction

Message authentication code (MAC) algorithms are commonly used for data integrity and data
origin authentication, e.g. in banking applications [12]. They are functions parameterized by
a relatively short (e.g. 64-bit) secret key K which allow one to associate with a string x of
arbitrary length a short string of fixed length denoted by MACk (x). This latter string is a
complex function of its two inputs.

MAC:s are used in a setting where a sender and a receiver share a secret key K. In order to
protect a message x, the sender Alice computes MAC g (), and appends this to the message.
On receipt of z, the receiver Bob recomputes MAC g () and verifies that it corresponds to the
transmitted MAC value. If so, Bob accepts that the message came from Alice and was not
modified (see also figure 1). An active eavesdropper Eve may try to fool Bob into accepting
7' # x as authentic. However, she does not know K, and if the MAC function satisfies certain
security properties, she will be unable to predict MACk (z') better than by just guessing.

Until recently, only a few early MAC proposals were standardized and used in practice,
and very little published research was available regarding their evaluation. These proposals
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Figure 1: Using a Message Authentication Code for data integrity.
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are the Cipher Block Chaining (CBC) and the Cipher FeedBack (CFB) modes of a block
cipher [1, 2, 16, 17] on the one hand, and the Message Authenticator Algorithm (MAA)
[10, 11, 16] on the other hand.

During the past few years, MACs have received more attention. Several papers have
discussed the security of the CBC-MAC: a proof of security (a lower bound to break the
system under certain specific assumptions) was given by Bellare et al. [3], and an almost
matching upper bound by Preneel and van Oorschot [24]. Other recent attacks include that
of Knudsen [20], which improved a forgery attack for short outputs, and that of Preneel
and van Oorschot [26] in which a flaw was pointed out in the double key length variant of
CBC-MAC, which is known as the ANSI retail MAC X9.19 [2, 17].

Several new practical MAC schemes have been proposed according to two approaches.
Computationally secure schemes have been developed in several papers [4, 5, 6, 24]. For
so-called “provably secure” schemes, major improvements have been found both in terms of
speed of computation and the key size [18, 19, 21, 28]. These schemes, which follow the
model of Simmons [29] and Wegman-Carter [31] still impose the restriction of one-time use
of the key. They can be reduced to a potentially efficient computationally secure scheme by
generating the keys using a cryptographically strong pseudo-random string generator.

While the attacks of Preneel and van Oorschot [24] apply to a large class of MAC algo-
rithms, no cryptanalytic results were published specific for the ISO 8731-2 standard MAA?,
which dates back to 1983 [10, 11]. It is quite a remarkable algorithm: after Lucifer and DES,
it is probably the first custom-designed cryptographic algorithm to be published (with the
exception of stream cipher designs); it is also the first algorithm after DES to be included in
a published standard; and it withstood cryptanalysis for more than twelve years.

Designed to run on mainframes in the mid 1980’s, MAA is remarkably fast and efficient
on present day PCs and workstations with 32-bit processors. On such machines MAA is
about 40% faster than RIPEMD-160 [9] and SHA-1 [15], and about five times faster than

4 Among several banks, a letter appears to have been circulated in the 1980’s which claims the existence of
a cryptanalytic attack on MAA, but no details were ever published.



DES-based MACs. The basic operations of MAA are modular multiplication, addition and
exclusive or; in this respect MAA is quite similar to IDEA [22].

The current paper presents a detailed security analysis of MAA, including a forgery at-
tack and its optimizations, and a key recovery attack. Several new classes of weak keys are
presented, and it is shown that for certain keys MAA exhibits an undesirable behavior.

The remainder of this paper is organized as follows. §2 provides background definitions
and reviews a generic forgery attack on MACs. §3 gives a detailed description of MAA. §4
develops various optimizations of this forgery attack based on the internal structure of MAA
and defines two classes of weak keys. §5 presents the new key recovery attack and compares
this to an exhaustive key search. §6 proposes two new classes of weak keys, for which it
is easy to find many collisions. Each collision is produced by two messages that differ in
only one block; the difference depends on the key, but it is constant for all messages of the
so-called “collision cluster.” For some of these key recovery is much easier. §7 concludes the
paper, discussing the impact of these attacks on current applications and suggesting several
improvements to the basic design.

2 Background Definitions and Review

A hash function h map bitstrings of arbitrary finite length into strings of fixed length (say
m bits). A message authentication code (MAC) is a hash function with a secret key as a
secondary input, that satisfies some additional security properties. These are formulated in
terms of resistances against two types of attacks.

forgery attack: this type of attack consists of predicting the value of MACk (z) for a mes-
sage x without initial knowledge of K. If there exists a message for which the adversary
can do this, then he is said to be capable of ezxistential forgery. If the adversary is
able to determine the MAC for a message of his choice, he is said to be capable of
selective forgery. Ideally, existential forgery is computationally infeasible; a less de-
manding requirement is that only selective forgery is so. Practical attacks often require
that a forgery is verifiable, i.e. that the forged MAC is known to be correct (e.g. before
attempting to use it to advantage) with probability near 1.

key recovery attack: this type of attack consists of finding the key K itself from a number
of message/ MAC pairs. Such an attack is more devastating than forgery, since it allows
for arbitrary selective forgeries. Ideally, any attack allowing key recovery requires about
2K operations, where | K| denotes the bitlength of K. Verification of such an attack
requires |K| /m text-MAC pairs.

In addition, one requires that computing MAC (z) is computationally efficient, given the
specification of the MAC algorithm, a specific value K, and an input z.

The attacks can be further classified according to the type of control an adversary has
over the device computing the MAC value. In a chosen-text attack, an adversary may request
and receive MACs corresponding to a number of messages of his choice, before completing his
(forgery or key recovery) attack. For forgery, the forged MAC must be on a message different
than any for which a MAC was previously obtained. In an adaptive chosen-text attack,
requests may depend on the outcome of previous requests. In contrast, in known-tezt attacks,
the adversary has access (only) to some number of text-MAC pairs. The most threatening



types of attacks in practice are known-text attacks in which the number of text-MAC pairs
required is very small.

Tterative MACs process inputs in successive fixed-size b-bit blocks. A message or text input
z is divided into blocks z; through x4, the last of which is padded appropriately if required for
completeness. The MAC involves a compression function f and an n-bit (n > m) chaining
variable H; between stage ¢ — 1 and stage i:

Hy = IV
H; = f(H;—1,m;), 1<i<t
MACk(z) = g(Hy).

Here g denotes the output transformation, and I'V denotes some initial value (e.g. a constant).
The secret key may be employed in the IV, in f, and/or in g. For an input pair (z,z’) with
MACk(z) = g(H;) and MACk(z') = g(Hj), a collision is said to occur if MACk(z) =
MACk (z'). This collision is called an internal collision if H; = H}, and an ezxternal collision
if H; # H; but g(H) = g(Hj).

A general forgery attack has been described that is applicable to all iterated MACs [24].
Its feasibility depends on the bitsizes n of the chaining variable and m of the hash-result,
and the number s of common trailing blocks of the known texts (s > 0). The basic version
is a known-text attack; if the message length is an input to the output transformation, all
messages must have equal length. Two results are summarized here for convenience.

Lemma 1 ([24]) An internal collision for an iterated MAC allows a verifiable MAC forgery,
through a chosen-text attack requiring a single chosen text. ]

This follows since for an internal collision (z,z'), MACk (2 || y) = MACk (2’ || y) for any single
block y; thus a requested MAC on the chosen text z ||y provides a forged MAC (the same)
for 2’ ||y. Note this assumes that the MAC algorithm is deterministic.

Proposition 1 indicates how difficult it is to find an internal collision for a given MAC
algorithm [24, 27].

Proposition 1 Let MAC() be an iterated MAC with n-bit chaining variable, m-bit result,
a compression function f which behaves like a random function (for fized x;), and output
transformation g. An internal collision for MAC can be found using u known text-MAC
pairs, where each text has the same substring of s > 0 trailing blocks, and v chosen texts.
The expected values for u and v are: u = \/2/(s+ 1) - /2. 4 =0 if g is a permutation or
s+1>2mm+6 and otherwise

vz2<2n_m-<1—1>+V—m_log2(s+l)J+1>. (1)

s+1 e m—1

The details of the proof (see [27] for complete details) are quite involved, but for the case
s = 0, a sketch of the main steps is included here because these results will be needed later
in this paper.

A first lemma used in the proof of Proposition 1, is based on elementary probability theory
(see for example [13]).



Lemma 2 When drawing a sample of size r from a set of N elements with replacements,
where 7 — 0o, N — oo and r?/(2N) — X, the distribution of the number of coincidences
converges to a Poisson distribution with expected value X or

X

o

c>0. (2)

Pr(# coincidences =c¢) = e

The probability that there is at least one coincidence is given by
1 —exp(=A). (3)

An identical result holds when one draws two samples of sizes r and s from a set of N elements
with replacements, where r,s, N — oo and rs/N — .

This lemma implies that for s = 0, an internal collision will occur with high probability when
r = 21)/2 text-MAC pairs are available.

The second element of the proof is that if g is a random function (rather than a permu-
tation), one expects about 72/2™+1 external collisions, given r text-MAC pairs. For external
collisions, the forgery attack of Lemma 1 will not work. This means that an attacker has to
separate internal and external collisions. This can be done by simulating the forgery attack
of Lemma 1 as follows: given z and z’ with MACg(z) = MACk(z'), the attacker chooses
a random block y and asks for both values MACk (z||y) and MACk (z'|y). If (z,2') is an
internal collision, these two values will always be equal; if (z,z') is an external collision, the
two values are independent, and will only be equal with probability 1/2™. [

Note that in MAA, the compression function f is considered to behave as a random
mapping for fixed z;, and the output transformation is not a permutation (cf. §3).

3 The Message Authenticator Algorithm

MAA was designed by D. Davies; it was presented at Crypto’84 [10, 11] and has been in-
cluded in the ISO 8731-2 banking standard [16]. The algorithm was intended for mainframe
computers circa 1983, which implies that it is also very efficient on current 32-bit PCs and
workstations. The algorithm consists of three parts. The prelude is a key expansion from the
64-bit key K to 192 bits (six 32-bit words). First K is written as the concatenation of two
32-bit words, in this paper denoted by J; and Jo. From the first key word (J;) one derives
the parameters Xy, Vp, S; from the second one (J3) one computes the parameters Yy, W, T.
The prelude, which needs only be executed during installation of a new key, also eliminates
“weaker bytes” 00x or FFy in keys and parameters® (this is achieved by the BYT procedure).
More details are provided in Appendix B. The two words of the chaining variable (X;,Y;) are
initialized with (Xy,Yy). The main loop mixes the chaining variable with message word z;
(0 <i <t—1) and key dependent parameters V and W. It consists of two inter-dependent
parallel branches with logical operations, addition modulo 232 (111), and multiplication mod-
ulo 232 — 1 (®1) and modulo 2%? — 2 (®,); due to the peculiar definition (see [16]), the result
may actually be equal to 232 — 1 respectively 232 — 2. In the coda, S and T are introduced
as message blocks to be processed as per the main loop. The 32-bit MAC result is computed
using addition mod 2: MAAk(z) = X9 @ Yito.
A single iteration 4 of the main loop can be described as follows:

5Notation: FFx denotes a hexadecimal byte, or 8-bit value FF of 8 ones.



Step 1: V; :=rol(V;_1); Qi := Vi ®W; % rol denotes 1 bit cyclic shift left

Step 2: 1 = X1 @ X to ;=Y 1 D xy;
Xi = t1 @1 M1(Q; = ta); Y = ta ®2 M2(Qi Ft1);
Here M;(-) and Ms(-) are masking operations that each fix 8 bits (4 to zero and 4 to one):
Mi(z)=(2VA)ANC Ms(z) =(2VB)AD,

where A = 02040801y, B = 00804021y, C = BFEF7FDFy, and D = 7DFEFBFFy.

The output transformation g consists of the coda iterations (where the key-dependent S
and T play the role of z;) and the final XORing as noted above.

ISO 8731-2 [16] limits the size of the messages to 4 - 10° bytes (~ 3.8 Mbyte). Also, the
standard defines a special mode for messages longer than 1024 bytes (256 blocks). In this
mode, MAA is applied to the first 1024 bytes, and the corresponding 4-byte MAC is prefixed
to the next 1024 bytes of the message to form the new input of MAA. This procedure is
repeated with the next 1024-byte block, until the end of the message is reached.

4 New Forgery Attacks

This section discusses how the basic attack of Proposition 1 may be customized for MAA,
and optimized using “special messages”. An extension of these ideas to the special mode of
MAA for long messages is then presented.

4.1 Basic MAC Forgery

The basic attack of Proposition 1 can be applied to MAA with parameters n = 64, m = 32.
However, an internal collision (i.e. a collision for X and Y') yields an external collision only
if V' is in the same rotational position (the number of bits over which V' is rotated effectively
adds 5 bits to the 64-bit MAA internal memory). This effect can be countered by using
messages of the same length modulo 32, or messages for which the common trailing blocks
start at the same position modulo 32. Note however that this is not strictly necessary: if the
number of known texts given by Proposition 1 is multiplied by about 32, the condition on the
length can be omitted. A second observation is that the output transformation consists of two
iterations, providing two ways to obtain an external collision; consequently one expects two
additional external collisions after processing S and T (for 232> messages), which accounts for
(an expected) four additional chosen texts to eliminate them. A third observation is that in
the second chain, the modulus (232 — 2) is even, while the second multiplier is odd (the least
significant bit of D is 1). This implies that the least significant bit of Y;, denoted LSB(Y;),
is equal to the LSB(Y; 1 ® z;). Consequently, LSB(Y;) = LSB(Yy) @ @®!_, LSB(z;), and the
64-bit internal memory can be reduced to 63 bits by making the second term of the right
hand side a constant. This assumes that the attacker can choose texts for which the value of
this sum is constant.

Table 1 gives the parameters of the attack for various values s. Here n = 63, m = 32, and
the last column counts the total number of bytes of the known and chosen texts. Increasing s
allows a reduction in the number of known and chosen texts (the ‘known’ messages begin to
resemble ‘chosen’ messages), but increases the total number of bytes which must be processed
with the known key. This situation can be improved (as subsequently explained) by selecting
messages with a special structure. Since fast MAA implementations process 3—4 Megabytes
per second, processing 232 bytes requires about 20 minutes.



Table 1: Parameters for basic forgery attack on MAA

# com. | # known texts length (bytes) | # chosen texts length (bytes) | total size
blocks s u 4(s+1) v+1 4(s +2) (bytes)
0 232 > 4 231.3 > 8 235.2
28 -1 228 > 210 223.3 > 210 +4 238.1
216 -1 224 > 218 215.3 > 218 +4 242.0
232 -1 216 > 234 4 > 234 14 250.0

4.2 Optimized MAC Forgery using Special Messages and Weak Keys

As noted by the designer of MAA, 232 — 1 has several small prime factors (in fact 232 — 1 =
3+5-17-257-65537), and if one of these appears in Xj;, it might remain there due to
multiplicative properties. The fact that z; is added in every iteration should destroy this
property; however if all x;’s for 4 > iy are chosen equal to 0, it is shown that such a factor
would remain nonetheless.

Lemma 3 Let p > 1 be a proper divisor of 23> — 1. Ifi = - p — 1 zero blocks are inserted,
starting with x;,, then the probability that p divides X;,4; is at least 1 —e™ . [

Proof: Assuming the X;’s are uniformly distributed (which has been confirmed by com-
puter experiments), the probability that p divides X, is equal to 1/p. From Step 2 of the
MAA description, it follows that if z;, = 0, X;,+1 can be written as X;, - M (q) —¢'(2%? — 1),
with g, ¢ integers. Thus, if p is a divisor of 232 — 1 and p divides X;,, p will also divide X;, 1.
The argument can be repeated (assuming independence), to show that after ¢ zero blocks, the
probability that p divides X, ; is equal to 1 — (1 — %)”1. For i = a- p — 1, the probability

becomes
1\aP
1—<1——> >1—e .
D

The latter inequality follows from the fact that the function (1 — %) is a non-decreasing
function of z for x > 1, with limit value 1/e. Note that for z > 257, the function approximates
its limit value with an error smaller than 0.2%. n

T

Lemma 3 implies that after about 2!¢ iterations (each with z; = 0), with probability 0.63,
X; will be divisible by all its prime factors and thus equal to FFFFFFFFx (and not 00000000y,
due to the special definition of ®;). This property can be exploited in an existential forgery
attack as per Proposition 2.

Proposition 2 An existential forgery on MAA is possible which requires a single chosen text
of about 2'8 bytes to forge the MAC for a text of length about 238 bytes. [

Proof: The existential forgery is obtained by appending about 2'® zero bytes to an arbi-

trary message = and requesting the MAC for this message. The MAC for the same message
with about 23 appended zero bytes is then the same with high probability. It follows from
Lemma 3 that after a sufficiently large number of zero blocks, the chaining variable X; be-
comes constant. Once X; is constant, finding a collision for Y; yields an internal collision.
Consider the second chain. For X; = FFFFFFFFx and x; = 00000000%, Y; = Y;_1 ®3 U;, where



Ui; = ((FFFFFFFFx111Q;) V B) A D. Note the value of U; depends only on 7 mod 32. To make
this equation independent of i, first define U = 131, U; (with multiplication mod 232 — 2).
Then note Y131 = Y;_1 ®2 U. Since LSB(D) = 1, and 23! —1 is a Mersenne prime, all U;’s are
elements of the cyclic subgroup (of order 23! —1) of Zys>_,. This implies that the same holds
for U, and thus by Fermat’s (little) theorem U2" =2 mod (232 — 2) = 1. This may be used di-
rectly in a forgery attack as follows. A message ending with 2'¢ zero blocks (denoted X ||0216;
here 0° denotes i blocks of 32 zero-bits) has high probability of having X; = FFFFFFFFy. If
the MAC for such a message is requested, with high probability X1|02°[|032(2" ~2) will have
the same MAC. ]

The existential forgery in the proof of Proposition 2, while not likely of practical utility to
an adversary (the message ends in about 238 zero bytes), illustrates a certificational weakness
of MAA. Note that unlike many other attacks presented herein, this attack is prevented by
the special long message mode of MAA.

The above assumptions are however worst case (for the attacker): for certain values of
V and W, the U;’s will have a shorter period. This leads to the definition of weak keys for
MAA. A first type of weak keys are the rotational weak keys: these are external keys which
result in an internal key V of rotational period < 32. For such keys, rotating V over 2, 4,
8, or 16 positions will yield V' again (there are no keys V of period 1 since the all zero and
all one values are eliminated). There are respectively 2, 14, 254, and 64 516 values of V for
which this holds.® One can find by exhaustive examination which values of the first 32-bit
word of the input key yield such values of V. Therefore the number of rotational weak keys
is independent of the second input key word, and thus 23? times larger. If V has period r,
the forgery above requires 7 - (23! — 2) zero blocks. Verifying the forgery allows an attacker to
obtain information on V', which is undesirable since it leaks partial key bits. It is relatively
easy (see §5) to detect whether a key is weak, leading to a key recovery attack on these keys.
These observations imply that the dependence of V on only 32 bits of the input key is a design
weakness in MAA.

A second class of weak keys are keys for which U has small order. These are called low
order weak keys. The order of U must divide D, where D is the order of Z, for M = 232 —2;
in some cases the order of U is considerably smaller than D. More specifically, D = (M) =
$(2)-p(231 —1) =231 —2=2.32.7-11-31-151-331, where ¢() is Euler’s totient function. For
each divisor d of D, the number of elements of order exactly d is ¢(d), and the total number
of elements whose order divides d is exactly d. For example, from d = D/331 = 6 487 866, it
follows that 1 key in 331 will yield a forgery after appending about 6 487 866 - 32 - 4 = 2296
zero bytes.

It is possible to obtain an internal collision using shorter messages (cf. Table 1) by ex-
ploiting the properties of zero blocks presented in Lemma 3. This requires chosen texts rather
than known texts. As discussed above, for a text with a sufficiently large number of trailing
zero blocks, X; becomes constant (i.e. FFFFFFFFx) with high probability; if about /2 - 2!
such texts are available, one expects by the birthday paradox (see Lemma 2) to find two texts
with colliding values for Y; as well. The third observation of §4.1 implies that 2'6 such texts
will suffice if the sum of the least significant bits of the message blocks is kept constant. It
will be assumed that this condition is satisfied. Note that the attack can be extended easily
to the case where the zero blocks are followed by some arbitrary common trailing blocks.

SRecall that bytes equal to 00x or FFx are eliminated from V in the prelude.



The exact number of chosen texts for this improved variant can be computed as follows.
Lemma 3 (with p = 2!6 + 1) implies that among r = 2'6/(1 — e~®) messages each containing
a(2'® 4+ 1) — 1 trailing zero blocks for some a, one expects to find about 2'¢ messages for
which the first chaining variable X; becomes equal to FFFFFFFFy (for simplicity it is assumed
that @ > 1/32, since otherwise the second prime factor 257 has to be taken into account
in the calculation). Lemma 2 implies that, among r such messages, the expected number
of collisions for the second chaining variable Y;, which corresponds to a (complete) internal
collision is equal to (2'6)2/232 = 1. The expected number of external collisions is equal
to r2/23 = 1/(2(1 — e 9)?); these collisions can be eliminated by simulating the attack of
Lemma 1 as discussed in section 2. Two additional chosen texts are sufficient to identify an
external collision with high probability; the expected value is about 2(1 — 1/e) (for details,
see [27]). The total number of blocks in the chosen texts is then approximately

232m + 216 (1 — 6_1) m . (4)

If @« — 0, the first term approaches 232, but the second term increases quickly. The sum
is minimized for o = 1/228 (but this violates the constraint on «), and for o > 1/228 it
increases monotonically with a. The number of blocks is thus minimized for o = 1/32 (for
this value the first term in equation (4) dominates and is approximately equal to 232 4 226),
while the number of chosen texts can be reduced by increasing «.

It is possible to use even shorter messages, but then it is assumed that X; has become
with high probability a multiple of (232 — 1)/65537 = 65535 = FFFFx. A complete internal
collision requires then a collision in a set of size about 247, which implies that more chosen
messages are needed. In this case @ must exceed 1/4 to avoid interference of the third prime
factor 17.

An overview of the trade-offs is given in Table 2. These trade-offs are more realistic (cf.
Table 1) with respect to the total number of bytes; this number increases only slightly while
reducing the number of chosen texts. However, chosen texts are more difficult to obtain than
known texts.

Table 2: Parameters for improved forgery attack on MAA. Attacks with < 256 zero blocks
avoid the ‘long message mode’ (see §4.3).

a # 0 blocks # chosen texts total size (bytes)
X = FFFFFFFFy 1/32 2047 2210 234.0
1/4 16 383 2182 234:2
1/2 32768 2173 234:3
1 65636 216.7 234.7
2 131073 2162 2352
Xt — 1/4 63 226.2 234.3
multiple of FFFFx 1/2 128 2253 2344
1 256 224.7 234.7
9 513 224.2 235.2




4.3 Long Message MAC Forgery

For a fixed key and message block x;, the compression function of MAA is not a permutation.
This causes the “loss of memory” problem, as was pointed out by Block [8], and mentioned
by Davies [10]. If a large number of variations of the first blocks are chosen, all 2" states will
be reached at some point. However, if the next message blocks are kept constant, it can be
shown that the fraction of states y[i] at stage 4 can be approximated by 2/(i + % Ini + 2), for
i > 1. To control this effect, ISO 8731-2 [16] limits the size of the messages to 4 - 10° bytes,
and defines a special mode for messages longer than 1024 bytes (256 blocks) as described
at the end of §3. The long message mode may be interpreted as the definition of a “meta”
compression function based on MAA which compresses 1028 bytes to 4 bytes. This thwarts
attacks using more than 256 zero blocks, including the forgery attack of Proposition 2 which
requires a single chosen text.

However, it follows from Table 2 that the attack with zero blocks can be done with about
2247 messages of about 1000 bytes, independent of the special mode. Iromically the basic
attack (using Proposition 1) of §4.1 works even slightly better with the special mode: in
the case that s > 256, an additional non-bijective mapping exists, resulting in an additional
opportunity for an internal collision. Consequently s may be replaced by s + |s/256].

5 Key Recovery Attacks

A key recovery attack on a MAC is considerably more serious than a forgery, as key recovery
allows MAC forgery on arbitrary messages and without additional work, whereas forgeries
are often existential only (and then of questionable practical use) and often chosen texts are
required for each additional forged MAC. After discussing exhaustive key search parameters
it is explained how an internal collision for MAA, under certain circumstances, allows key
recovery.

5.1 Exhaustive Key Search

If three text-MAC pairs are available for MA A, the 64-bit user key can be recovered by trying
all 264 possibilities. The prelude is quite complex, but since the processing of J; and J, is
almost independent (the only interaction is through the BYT operation), this represents only
a relatively small computation (< 237 multiplications). Verifying a key on a single text-MAC
pair is the main part of the effort: for a ¢-block text this requires about 2¢ 44 multiplications.
The total expected number of multiplications for ¢ = 1 is then 3 - 264, This effort should
be compared to a DES key search which requires 2°° encryptions; using dedicated hardware
about 3 hours are sufficient to find the key with an investment of US$ 1 million [32] (in 1993
dollars and technology). A similar investment in 1996 will find an MAA key in about 1 week.

5.2 Key Recovery from Collisions

A first case occurs when the key is a rotational weak key, i.e., a weak key for which the period
of V< 32 (see §4.2). One can verify the period of V by simulating the attack of Lemma 1,
using two sets of 2!7-3 chosen texts containing 131072 trailing zero blocks each. In one set
all messages have length 0 mod 32; in the other all have length 16 mod 32. One expects 9
internal collisions between messages of these two sets and 6 external collisions, but these
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cannot yet be distinguished from each other. The simulated attack of Lemma 1 then (with
high probability) filters the external collisions. If V' has period < 32, this attack will work
for all the internal collisions, and it will fail otherwise. The key recovery attack will fail if
there are no internal collisions; since the number of internal collisions is Poisson distributed,
the probability of this event, for 9 internal collisions as above, is e ~ 0.01%. In this way it
is evident if V belongs to this special set of 2*® keys. If so, finding the key then requires an
exhaustive search over only 28 keys (rather than 264). This attack has success probability
2716 (since 2% of 264 keys are weak). Note that in this case the long message mode can be
thwarted by using two sets of 225 messages with about 256 trailing zero blocks; this will
yield about 9 internal collisions, and about 2'%6 external collisions. The rest of the attack
is similar; the second step requires slightly more work. These observations can be partially
summarized as follows.

Proposition 3 For MAA, one can detect, using 227 chosen messages of about 1 Kbyte each,

whether a key belongs to a subclass of 2% weak keys. [

A second attack is based on an internal collision which is created by the message only, i.e.
the chaining variables that enter the round are identical. This can be achieved by trying all
232 possible values for the first message block, or similarly by doing this for the first block
after a number of common leading blocks. Two messages which have the first £ — 1 blocks
in common and for which z} = z; @ d form an internal collision if and only if both equations
(5a) and (5b) hold:

(Xi—1 @) 1 My(Vi@e W) + (Y1 @ 24)) =

(X1 ®210d) @1 Mi(Vio W)+ (Yo @2 @ d)) (5a)
(Vi1 @ xy) @2 Ma(Vi@ W) + (Xi—1 @ 1y)) =
YViei @z ®d) @ My(V; @ W) + (Xi_1 ® 2 ® d)). (5b)

In the following it will be assumed that ¢ = 1, and the subscripts from z, X, Y, and V will
be omitted. The problem now is to solve the equations (5a) and (5b) for the key.

If the main loop of MAA behaves as a random mapping, Lemma 2 implies that the
number ¢ of internal collisions between all 23? 1-block messages is a Poisson distributed
random variable with parameter A = 1/2. Because of the LSB property, the same expression
holds if only all the 23! even (or odd) blocks are considered. The probabilities to have at least
one internal collision are indicated in Table 3.

Table 3: Probability that there is at least one internal collision after a single block, given that
messages of the same parity are used whenever possible.

# messages | Pr(c > 1)
229 1.6%
230 6.0%
231 22.1%
232 39.3%
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If the BYT operation on X, Y, V, and W is neglected, then X and V are determined by
the first key register J;, and Y and W by the second key register Jo. A random word is left
unchanged by the BYT operation with probability (1 —277)* = 0.97. Thus the fraction of
keys where the BYT operation has no influence can be estimated as (0.97)* = 0.88.

Solving the two equations (5a) and (5b) for J; and Jo is not straightforward. The re-
mainder of this section explains how this can be done. The following strategy is used. First
equation (5b) is rewritten by defining two additional variables a and z. Then all (a, z) pairs
that are solutions of the equation are generated. On average 232 solutions are expected. In
the next step candidates for J; and .Jo are determined. In the last step it is checked whether
these candidates are also solutions of equation (5a).

5.3 Determination of ¢ and 2z

To facilitate notation, define:

a = Yydzx
b = Xo®x
z = Q+b

Using this notation, equation (5b) can be rewritten as:
a®y Ma(z) =(a®d) @ Ma(z®d ), (6)

where d is a correction term which accounts for the interchanging of the order of addition
modulo 232 and exor:

d=(Q+ (bdd)d(Q+b)dd.

In the next subsection it will be explained how § can be predicted accurately.
By the definition of ®9, equation (6) is:

ax My(z) = ((a ®d) x My(z®d @ d)) mod 22 — 2.
Since 232 — 2 factors to 2 x (23! — 1), this can be rewritten as

ax My(z) = (a®d) x My(2®d d) mod 2 (7a)
ax My(z) = (a@d)x My(z®dP3) mod 23" — 1. (7b)

Since My(-) is odd, d must be even. For even d every (a, z) pair is a solution of equation (7a).
Equation (7b) is rewritten as:

ax(a®d)™ = (My(2)™' X Ma(z® d @ 6)) mod 23! — 1.

Here “~!7 denotes “inverse modulo 23! — 1”7 (the case a @ d = 0 mod 23! — 1 has to be
considered separately). The left hand side of this equation only depends on a, the right hand
side only depends on z. For given d and guessed J, now two tables are created: one that lists
all possible left hand sides and their corresponding values for a, the other lists all possible
right hand values and the corresponding values for z. Each match in these tables gives an
(a,z) pair that is a solution of the equation. On average 232 matching pairs are expected. In
the next steps J; and Jy are determined from a and z and it is checked whether these are
also solutions of the first equation.
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5.4 Prediction of §

The value of § depends on the values of V @& W and Xy @ z. A class of weak keys can be
defined, where Ve W = 0 or V & W = 8000x. For this class of keys, d is always 0. The
expected number of keys in this class is 233.

In the more general case the most probable values of § are calculated, using only knowledge
of d. If Q and b are considered as random variables, a statistical model for the bits of ¢ can
be built. Recall the definition of J from §5.3:

d=(Q+ (bdd)d(Q+b)dd.

The carry bits of the first addition are denoted with c[i], the carry bits of the second addition
with e[i]. The equation leads to the following equations at the bit level, where the bits of
a word are numbered from the right to the left (the least significant bits get number 0, the
most significant number 31):

oi] = cli] @ efi]
ci+1] = QL] ® il (o] © dli]) © QLi](b[+] ® d[i])
efi +1] = e[ Q] @ efi]oli] ® Q[:]b[i],

where ¢[0] and e[0] are equal to 0, or
ofi + 1] = (Ql] @ b[i)d[i] @ (Q[i] ® cli])dld], (8)

where §[0] = 0. The probability for § can be described with a Markov model: given the
probabilities P; for the state ¢, Pj;1 can be calculated by using the transition probability
matrices Ty (d[i] = 0) and T} (d[i] = 1):

Pr(3[i + 1] = 0)
fn = l Pr(ali +1]= 1) ] ~ B

The transition matrices can easily be calculated:

1 0.5 05 0.5
To_lo 0.5]’ Tl_l0.5 0.5]'

In the attack on MAA, for each value guess for § a new table must be calculated. To
reduce the expected workload, the most probable values of ¢ are tried first. Alternatively, the
maximum number of operations to be performed can be determined in advance, the § values
are chosen to maximize the success probability. The set of §’s that have maximal probability
forms a vector space. From the transition matrices, one concludes that if d[i] = 1, §[i 4 1] can
take either value with equal probability. Each 1-bit of d divides the maximal probability of ¢
by a factor of 2 (except for the most significant bit of d, which has no influence on the value of
d). If d[i] = 0, the value of 0[i] determines the probability of d[i+ 1] to take a value. Therefore
if d[i] is zero, or d[i + 1] is zero, d[i + 1] has to be zero for a 0 with maximal probability. The
other bits can be chosen at random. An exception to this rule is the most significant bit: if
d3g = 1, 31 can be chosen at random.

Table 4 shows the results of a simulation to determine the expected value of the summed
probability of 2! §’s (optimally chosen). It can be seen that the work factor of the attack
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Table 4: Expected value of the summed probability of success p after an optimal selection
of 2! values for § (for random values of d). Values are given for the full MAA (operating on
32-bit words), and for two reduced versions (operating on 14- or 18-bit words).

t log, p
14 bit | 18 bit | 32 bit

-4.0 -5.4 -10.3
-2.6 -3.8 -8.4
-1.8 -2.8 -7.0
-1.4 -2.3 -5.9

S NN O

depends on the key that is being used. For instance, if Q = 0, § is always equal to zero and
the key is found immediately. For other values of () the success probability is smaller. Keys
which yield a value of ) with a low Hamming weight are thus easier to recover; they will be
called low Hamming weight weak keys.

Note that the masking operation in MAA plays here to the advantage of the attacker:
values of ¢ that differ only in bits that are masked, can be considered at the same time
without additional effort.

5.5 Determination of J; and .J, Candidates

Jo is easily found from a table that lists for all Yy(J2) = a(J2) @ = the corresponding Jy. The
relation between J; and z is less clear:

z=Q(J1, J2) + b(J1) = (V(J1) @ W(]2)) + (Xo(J1) ® z).- (9)

And also
My(z20d®6) =M(VeW)+ (Xo@z@d)). (10)

To determine J; first a table is created with all possible values of V(J;) & Xo(J1), and
the corresponding Ji-values. Then all possible values of z* are determined,

F=k®b=(V(J)®W(h)® (Xo(J))®z).
Using equation (9) this becomes (the carry bits are denoted with e[i]):

z°[0] = Q0] @ b[0] = z[0]
2l = Qli] @ bli] = 2[i] ® ei] = 2[i] & Q[i — 1]b[i — 1] & (Q[i — 1] ® bli — 1))efi — 1]
= 2l @®Qli —1bli —1] @ 2*[i — 11 @ 2[i — 1]).

It follows that:

Hli—1]=1 = 2] =2[i]&1&2[i—1]
Zli—1]=0 = 2'[i] =zli]®Qli—1].

In the last case equation (10) is used to determine Q[i — 1]. If bit ¢ is not masked, and
d[i — 1] # 0, equation (8) can be used:

i) =0l —1](Q[i — 1] @ bli — 1]) & (Q[i — 1] & c[i — 1])d[i — 1]
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and thus
il =Qi—1®ci—1]=Q[i — 1] ® i — 1] ®eli — 1].

Since
efi =1 =z[i — 1] ® 2*[i — 1] = 2[i — 1],

Q[i — 1] can be written as:
Qli—1] =4[t @i — 1] & z[i —1].

If bit ¢ is masked or d[i — 1] = 0, z*[i] cannot be determined, and both possibilities (the value
0 or 1) have to be checked.
Experimental results suggest that the average number of possible values is less than 2''.
For each value of 2/, .J; is found by a search for the .Ji-values corresponding with 2’ & W & z.
In the last step, J; and Jy are checked. (Ji,.J3) pairs that produce an internal collision
are output as possible key values.

5.6 Extensions

The same analysis can be applied starting from equation (5a) instead of (5b). Thus if starting
from one equation the key is not found after a predetermined amount of operations, the other
equation can be used, with hopefully more luck.

Solving the equations will become easier when two or more simultaneous internal collisions
are known. For 232 known texts, this event has a probability of 9%.

5.7 Experimental Results

The attack was implemented in C for several reduced versions of MAA. An [-bit reduced
version uses [-bit working variables and key registers; it operates on [-bit message blocks.
Table 5 gives the results. For the full version of MAA, the attack was executed with a
reduced search space and the results were extrapolated. Because of the large effort to produce
collisions for arbitrary keys, only a few 32-bit collisions were generated. This means a large
value of ¢ had to be used, and thus a large number of (.J;, J2)-candidates were found.

Table 5: Experimental results for the key recovery attack on MAA.

version t success number of number of
probability | (a, z)-pairs | (Ji, J2)-candidates
14 bit words | 2 | 21.6 % 216-9 2218
18 bit words | 2 2.6 % 221.0 226.9
18 bit words | 4 8.1 % 222:8 2282
32 bit words | 6 238.9 2149.5

6 Collision Clusters

In this section it is shown that a subset of MAA keys, called “collision cluster keys”, can be
detected and subsequently recovered much more easily than arbitrary MAA keys.
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Consider two messages z and z’ which differ only in a single word; for simplicity, it will
be assumed that the messages contain only one word, i.e., t = 1. The expected number of
internal collisions between all 232 1-block messages is equal to 1/2 (cf. §5). For a given value
of z @z =d,

Pr{(X,V1) = (X1,Y))} = 1/254.

In this section it will be shown that there exists a large class of keys (> 233 elements) for
which between 2'! and 2! collisions occur (all with the same value of d = z @ z'). These
weak keys will be called collision cluster keys. Thirteen bits of d must be equal to zero, with
the other 19 bits being key dependent. This bounds the internal collision probability:

17290 < Pr{(X,, V1) = (X],Y{)} <1/2%2.
When d is known,
1/221 <Pr{(X1, Y1) = (X7,Y{)} <1/2"3,

This cannot be used for a MAC forgery for an unknown key, because the probabilities are
too small (compared to 1/23?). But, it will be shown that such collision cluster keys can be
detected and subsequently recovered using about 223 chosen texts.

A collision cluster key is defined as a key for which the number of collisions between all
possible 1-block messages is substantially larger than two. Several classes of such keys can be
distinguished. First a rather obvious class is described in detail. Then other types of collision
cluster keys are mentioned.

6.1 Simple Collision Cluster Keys

In the following ¢; denotes X; @ Y;. Without loss of generality it is assumed that the collision
occurs after the first iteration, and again the subscripts of ), €, X, Y, V, and W are omitted.
An obvious sufficient set of conditions for a collision is:

Xezr = M(Q
X®zadd = M(Q
X®zde = M(Q
X®zdedd = My(Q+

+ (X Pzr@edd))
+(XDrde)
+(XDzrad)

X ®x))

—~ o~~~

The equations (11) can be written at bit level (the least significant bit is number 0). The
carry bits of the addition modulo 232 (“4+”) into bit 4 are denoted with w[i], v[4], w[i], and
t[i]. The equations for the carry bits become (with u[0] = v[0] = w[0] = ¢[0] = 0):

uli + 1] u[il(Qd] @ X[i] @ z[i] © e[i] © dli]) © QEJ(X[i] ® «[1] @ e[i] ® d[i])
i+ 1] = o[il(Ql] © X[i] @ z[i] ® €[i]) ® Qi](X[i] ® x[i] @ eli])

wli+1] = wil(Qi] ® X[i] ® «[i] ® d[i]) ® Q[](X[] & =[i] ® d[i])

th+1] = Q] & X[ @ =[i]) ® QE](X[i] ® =[i])

The masking of bit 7 determines the rest of the bit level equations. Four cases can be distin-
guished:

0. When both M; and M> leave bit ¢ untouched:
uli] = v[i] = wli] = t[i] = Q[i] ® €[i] ® d[1].
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1. When M; sets or clears bit 4, but My does not:

wli] = tli] = Q[i] ® €[]
dli] = 0
X[i]|®ali] = My.

2. When M> sets or clears bit 4, but M7 does not:

ufi] = ofi] = Q[i] & €[]
dii] = 0
X[i]®z[i] ®e[i] = Moy.

3. When both M; and M; determine bit 4:

di] = 0
E[Z] = Mli (&) MQZ'
X[i]®x[i] = M.

The next step is to write down these equations for the 32 bits (cf. Appendix A). The
result is three sets of equations:

(i) A set of conditions on @ and e: these conditions determine the class of collision cluster
keys. The class of keys where (1 and ¢g satisfy the equations is called the base class of
collision cluster keys. If ()1 and ¢y do not satisfy the equations, it is still possible that
Q; and €;—1 (1 < 1) do. These keys can be attacked by using messages consisting of
1+ 1 blocks, where the first ¢+ blocks are common. This means that by doing more work
the probability of success can be enhanced. In the generic case there are 32 different
values for @) (because of the rotation operation). Varying the choice of common blocks,
all values of € can be created (but the values cannot be controlled).

(ii) Equations that give d as a function of @) and e.
(iii) Conditions on X @ z that determine for given X a vector space of messages.

These equations were solved for a reduced version of MAA that operates on 14-bit words
instead of 32-bit words. For this version of MAA there are about 2'4 keys in the base weak
key class. Each weak key has an associated difference d and an associated vector space. Two
messages that have difference d will produce a collision with a probability of 274, 275, or 276,
The probability depends on the size of the vector space of messages associated with the weak
key. The equations for the full MAA were written down and the expected number of basic
collision cluster keys equals 233. For each key there exists an associated difference d such that
between 2! and 2! block messages with this difference will collide.

To demonstrate the existence of weak keys, a key that produces a )o satisfying the
equations was searched. Afterwards a first message block z1 such that €; is also a solution
was searched.

Example 1 Let J, = e8813bb2y, Jo = 45cfb69cy, and 1 = 56e2x. Then there exist 2'8
pairs of two block messages with the first message block equal to x1, and the second message
blocks differing by d = 1c081098x that produce an internal collision.
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6.1.1 The Use of a Collision Cluster in an Attack

The existence of a collision cluster of size 2P can be used in a differential attack to recover the
key. Two messages with difference d will produce a collision with probability 2P~32. The first
step is to recover d. 13 bits of d are known to be zero. The message space can be divided in
213 subspaces with constant values for these 13 bits. The collision cluster will be situated in
one of these subspaces. In this subspace the difference will have a collision probability equal
to 2P~19. Since it is not known beforehand which subspace is the correct one, the attack has
to be repeated for all of them. The 19 unknown bits of d can be found by comparing the MAC
results for messages from the same subspace. With 2" texts 22"~! pairs can be generated. A
pair with the correct difference d will generate a collision with probability 27~'°. A collision
will occur with large probability when

92n-1 (2719 y 2])719)71

>
)
> 39—p.

" 2

For the largest clusters, p = 19; only 2'3 . 210 = 223 texts are needed. When p = 11, 227 texts
are needed. Once d is known the bit equations can be used to determine bits of X, Yy, Xo@®Yp,
and Q. Off-line built tables of Xo(J1), Vi (J1),Yo(J2), and W (J3) allow to determine J; and
Jo. The following proposition summarizes this result.

Proposition 4 A key that has an associated difference with a collision cluster of size 2P, can
be detected with a differential attack using 23 x 239-P)/2 = 9(65-2)/2 ¢hosen messages. The
value of the difference and the colliding messages gives enough information for recovery of
the key with a lookup table.

The collision cluster can be used for forging messages that lie in the subspace of the
cluster. As explained above, a message m* will produce the same MAC as the message m
with probability 2P~19.2719 = 2P=38 Thjs probability varies between 271 and 2727, However,
which of the 2!3 subspaces is forgeable, depends on the actual key value.

The enhanced collision probability also allows one to optimize the basic forgery attack on
MAA. The required number of known messages u reduces from /2/(s + 1) - 232 to 2(65-2)/2,
Since in this section we have only considered collisions starting with equal chaining variables,
the known messages should differ in only one block. Also the number of common trailing
blocks s is not relevant.

6.2 Involved Weak Keys

The set of collisions with the same difference d that occurs for weak keys, can be seen as
a “burst” of collisions. Knowledge of one collision enables an attacker to create very easily
the whole vector space of collisions. The interaction between masking and the two mod-
ular multiplications causes many other “bursts” of collisions. Below one other example is
presented.

Example 2 Consider a reduced version of MAA, operating on 14-bit words instead of 32-bit
words. Let J, = 72dx, Jo = 3a39x. Then there exist 2° one block message pairs (z,r®31d8%)
that produce a collision.
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To explain the phenomenon, the example is analyzed in some detail. Equation (5a) gives:
(1dcex ® x) ®1 M1(1 + (13cbx @ z)) = (2¢16x ® ) ®1 M1(1 + (2233x D z)) . (12)
T = c22x is a solution, called the base solution. Filling in gives:

1lecy X Mi(1 +1fe9x) = 1lecy X 1fcby = 130by + 8e7x x (2! — 1)
2034y x Mj(1+4 2el11y) = 2034y x 2e13yx = 130by + 172fx x (2! — 1)

Consider now the slightly modified equation (12):
(11ecy + ') ®1 (1fcby + ") = (2034¢ — 2") ®1 (2e13¢x — 7'). (13)
This can be rewritten as

11ecy X 1fcby — 2034y X 2e13y + (1fcby + 2034y)z’ + (11ecy + 2e13y)z” = 0 mod (214 —1).

(14)
The base solution of (12) corresponds with the solution 2z’ = z” = 0 of (14). Because
1lecy + 2e13y = 2™ — 1 and 1fcby + 2034y = 24 — 1, all values of 2/, 2" will satisfy
equation (13). Tt can be concluded that every z* for which an z’ and an z” can be found such
that

ldcex @ z* = 1lcex+ 7'
M;(1+ (13cby ® z*)) = (1fcbx + z")

2c16x @ x* = 2034y — 2"
M;(1+ (2233x @ z*)) = 2e13x — '

will be a solution of (12). A similar equivalence between addition and the interaction of
My, @, and exor must exist for equation (5b). The example shows that there exist keys and
z-values in practice with a large cluster of x* values.

7 Conclusion

Two improved variations of a general MAC forgery attack have been presented, tailored for
MAA. In addition it has been shown that the internal structure of MAA may be exploited
to reduce the total number of bytes of known text-MAC pairs required for the attack.

Two new key recovery attacks have been presented. The first attack shows how the
secret key can be recovered after about 23! chosen texts. The required effort depends on the
Hamming weight of a value computed by two subkeys, @ = Vo @ W. The second attack is
based on the fact that for certain weak keys, MAA exhibits clusters of collisions; for some
keys 223 chosen texts suffice to recover the key. The attacks are summarized in Table 6 and
Table 7.

These attacks have exposed several weaknesses of the MAA algorithm:

(i) The fact that three outputs of the prelude stage (see §3) depend on one half of the key,
and the other three on the other half, makes the key recovery attack much easier. This
problem could be avoided in part by imposing the constraint that messages be at least
two blocks long, or by prepending one or two fixed non-zero blocks to each message,
e.g., S and T as defined in §3.
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(i)

The specific value of () may critically affect the security of MAA. It is recommended
to check it for weak values; applying the BYT function to it would be a good start. It
would be welcome to update ) in a more complex way, e.g., by using also S and T and
by using completely different values for ) in the equations for X; and Y;. The collision
cluster attack can be eliminated by a stronger BYT function ensuring that () is not a
solution of the equations in Appendix A.

The main loop is vulnerable to message inputs equal to 0; this could be addressed
partially by replacing the computation z; ® X;_1 by z; ® X;_1 ® E; for a non-zero
constant F;, depending on the key and possibly the number of the iteration.

The effective size of the internal memory (63 bits) is too small to preclude a forgery
attack. A solution to this problem is to insert an additional block between z; and the
coda blocks S and T. The additional block could be either a sequence number or a
(pseudo)-random number.

A general measure would be to change the key frequently, for example after 2'6 texts, and to
check for certain classes of weak keys.

The attacks discussed in this paper can be further optimized; for example, the key re-
covery attack can be made much more powerful if two simultaneous internal collisions are
known. There are probably additional ways to exploit the non-random behavior which we
have observed in MAA.

While the key size of MAA probably limits its lifetime to at most five more years beyond
1997, this paper gives an indication that its use even in current applications should be re-
evaluated carefully. Moreover, when MAA is replaced by a successor not only should the key
size be enlarged, but also the described weaknesses should be eliminated.

Table 6: Selective summary of the forgery attacks.

attack # known texts | # chosen texts | # common blocks | total size
basic attack (§4) 228 223.3 255 (trailing) 2181 Mbyte
collision cluster (§6) 227 all but one
improved attack (§4) 2247 256 (trailing) 2147 Mbyte

Table 7: Selective summary of the key recovery attacks.

attack key fraction | # messages | known or work
chosen
exhaustive search 1 3 k 263
rotationally weak keys (§4) 216 227 C 248
collision (§5) 2-12 229 c 250
collision cluster (§6) 2731 227 c negligible
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A Bit Level Equations for Collisions

This appendix contains the bit equations that are to be solved for a collision cluster key and
the corresponding collisions (see §6).

(4] ® QM & Q1B) =
QU] & Q3)QIS ® Q5] & (Q] & QI3 (X[4] & 24] & [4]) ® QMUIQ[3] =

QLY & €111 @ (Q[9] @ QI8)(Q[10] @ €[10]) & €[10] & Q101(1 @ €[10]) =

Qe Q)1 ® ) =

QIL0] & 10] @ (Q[9] ® QIS)(X[9] & [9] & €[9]) & QIIIQIE]

Q[12] @ €[11] @ Q[11](1 & €[11])

(QI9) @ QI8)(QI10] & €[10)) @ [10))(Q[11] & 1) @ [11)(Q[11] @ Q[10](1 & ¢[10]))

Q5] @ c[15] & (QM13] @ QUI2)(Q[14] & [14] & 1) © Q[14](1 @ [14])

QU131 @ Q12)(1 @ €[13))

Q[14] (S5} 6[14} D (Q[13} (S5} Q[l?})(X[l?)] D 1[13} D 6[13}) D Q[13] [1 ]

QUL6] & €161 @ (Q[13] ® Q[12)(Q[14] & [14] & 1) & [14])Q[15]

®e[15](Q[15] @ €[14] @ Q[14](1 @ €[14])) ® Q[15](1 @ €[15])

((QU13] © QI121)(Q[14] & [14] & 1) & €[14]) Q[13]

Be15](QIL5] & €[14] @ Q[14](1 ® €[14])))(Q[16] @ [16]) ® e[16]

(17 @ 1)(QILT] & Q[16](1 @ €[16])

QI8 & 18] @ (Q[17) & Q[16](1 @ €[16))

®QII7] @ Q1611 ® [16)))(X[17) @ 2[17] @ [17)) & QILTIQ[I6)(1 & [16

(@171 @ QU611 & c[16))(Q[18] & 1) @ [18](¢[18] & (Q[17] & Q[16](1 & [16])

(€[19] @ 1)(Q[19] @ €[18] & Q[18](1 @ €[18]

Q[20] @ €[20] @ (Q[19] ® €[18] ® Q[18](1 @ €[18]

B(QI19] @ c[18] & QMI8](1 ® e[18]))(X[19] & 2[19] ® e[19]) © Q[19](e[18] & QIL8](1 & €[18]
1 ]
] (

(Il I [ | B N |
=) =) © oo oo o oo o o

o
[«

Q[21] ® Q[20](1 & €[20
(Q[19] @ €[18] @ Q[18](1 @ €[18]))Q[20] @ €[20)(Q[20] @ (Q[19] @ €[18] & Q[18](1 @ €[18]
(X[19] ® =[19] © €[19]) ® Q[19](e[18] & Q18] (1 D €[18])))
(Q[22] ® Q[21])(1 & €[22
Q[23] @ €[23] @ (Q[22] @ Q[21])(X[22] & x[22] @ €[22]) ® Q[22]Q[21]
(e[22] ® 1)(Q[22] ® Q[21])(Q[23] © €[23] & 1)
(Q[22] ® Q[21])(Q[23] @ €[23] © 1) B €[23]
(e[24] @ 1)(Q[24] & e[23] @ Q[23](1 & €[23]))
(Q[24] ® €[23] @ Q[23](1 @ €[23]))(Q[25] & 1) & (Q[25] @ (Q[24] & €[23] @ Q[23](1 & €[23]))
(X[24] @ z[24] © €[24]) @ Q[24](€][23] @ Q[23](1 @ €[23])))
((Q[24] ® €[23] ® Q[23](1 @ €[23]))(X[24] & z[24] @ €[24])
]
)
)

)
)
1)
)
)
)
)
1)
)
)

1)

L | (|
o o o o o o

I
=)

©Q[24](e[23] @ Q[23](1 @ €[23])))Q[25] ® Q[26

(e[28] ® 1)(Q[28] © Q[27]

(e[29] ® 1)(Q[28] © Q[29]

Q[30] @ €[30] @ (Q[28] ® Q[29]) (1 ® X[29] ® z[29] @ €[29]) ® Q[28]Q[29]
(Q[28] ® Q[29] @ 1 & €[30])Q[30]
@e[30](Q[30] @ (Q[28] @ Q[29])(X[29] @ z[29] & €[29]) ® Q[29]Q[28]) & Q[31] @ €[31]

I
o o o o

Qi = Qo]
Q2] = Q]
QB = Q[
Q] = Q[



Q[6]
Q[7]
Q[26]
Q[27]

Il
—

X[0] @ x[0]
X[5] @ x[5]
X[10] & z[10]
X[ @[] @1
X[14] @ z[14] & 1
X[15] @ z[15]
X[16] @ z[16]
X[18] @ z[18] ® 1
X[20] @ 2[20]
X223 @z[23] @1 = €[23]
X[25] @ z[25] © 1
X[30] @ z[30]
X[31] @ 2[31]

Il
—

0
e[1]
€[]
€[3]
4] @ Q4] @ Q[3]
0
(6]
€[7]
(8]
€[9] ® Q9] ® Q[8]

0

0

€[12]

e[13] @ Q[13] @ Q[12]

0

0

0

(17 & Q[17] & Q[16](1 & €[16])

0

€[19] & Q[19] @ €[18] & Q[18](1 & €[18])
0

€[21]

€[22 @ Q[22] @ Q[21]

0

€[24] @ Q[24] @ €[23] ® Q[23](1 @ €[23])
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= 0

]
d}26] = €[26]
d27] = €[27]
d[28] = €[28] @ Q[28] @ Q[27)
d29] = €[29] ® Q[29] ® Q[28]
d30] = 0
d[31] 0

B Prelude of MAA

The prelude derives Xy, Yy, Vo, W, S and T from the key words J; and Js, using the following
operations: exor (‘@’), multiplication modulo 2%? — 1 (‘®1’), multiplication modulo 232 — 2
(‘®2’) and the BYT procedure.

B.1 The BYT Procedure

The BYT procedure takes two 32-bit words as input. The two words are regarded as eight
consecutive bytes
{X7 Y} = {BOa B17 BQa B3a B4a B5, B67 B?’}-

This conversion is done big endian, i.e.,
X =By-2" 4+ B, -2+ By-2° + Bs.

The output consists of the updated versions of the eight input bytes and one extra byte P.
The algorithm goes as follows.

P = 0;
for i = 0 to 7 do {
P=2xP;
if (B; ==0) then {
P=P+1;
BZ'ZP;
}
else if (B; == 255) then {
P=P+1;
B; =255 - P;
}
}

B.2 The Prelude

The prelude starts with an application of BYT.

{Jl,JQ,P} = BYT{Jl,JQ}
Q (1+P)x(1+P)
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Xo, Vo and S are derived from J;.

J12 = J1i® L Jlg* = Ji®J;
Jil = J12 X1 J12 Jf* = J12* X9 J12*
JS = J2eyJf JF = JF @y Ji
Jf = J12 X1 J{S Jf* = J12* ®1 J{S*
Xy = JieJ¥
Vo = J16 @ J16*
S = BeoJ¥
Yo, W and T are derived from Jo, Yy also depends on Q.
J22 = Jo® Jy J22* = Jo®2Jo
Jél = J22 X1 J22 Jél* = J22* X9 J22*
J25 = Joy® Jél J25* = Jo®o Jé*
J27 = J22 X1 JS J27* = J22* X9 JS*
J) = Ji®J Jy = J¥ ®y JI
Yo = (B ®2Q
W = JeJ*
T = JjoJ

The prelude concludes with three applications of BYT.

{X(),YU,P} = BYT{XU,Y()}
{‘/Oamp} = BYT{V()aW}
{S8,T, P} BYT{S, T}
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