
DNS-based Detection of Scanning Worms in an Enterprise Network
�

David Whyte Evangelos Kranakis P.C. van Oorschot

School of Computer Science
Carleton University

Ottawa, Ontario, Canada�
dlwhyte, kranakis, paulv � @scs.carleton.ca

Abstract

Worms are arguably the most serious security threat
facing the Internet. Seeking a detection technique that is
both sufficiently efficient and accurate to enable automatic
containment of worm propagation at the network egress
points, we propose a new technique for the rapid detec-
tion of worm propagation from an enterprise network. It
relies on the correlation of Domain Name System (DNS)
queries with outgoing connections from an enterprise net-
work. Improvements over existing scanning worm detec-
tion techniques include: (1) the possibility to detect worm
propagation after only a single infection attempt; (2) the
capacity to detect zero-day worms; and (3) a low false
positive rate. The precision of this first-mile detection
technique supports the use of automated containment and
suppression strategies to stop fast scanning worms before
they leave the network boundary. We believe that this tech-
nique can be applied with the same precision to identify
other forms of malicious behavior within an enterprise
network including: mass-mailing worms, network recon-
naissance activity, and covert communications. Currently,
it is unclear if our DNS-based detector will work for all
network protocols. In some network environments, the
DNS detection technique may need to be used as a sec-
ondary input to a more sophisticated anomaly detector.

1 Introduction
Recently, a multitude of high profile worm epidemics

has affected millions of networked computing devices.
The Slammer Worm that emerged in January of 2003 ex-
posed how quickly worm propagation could occur. It in-
fected systems by exploiting a buffer overflow vulnerabil-
ity in Microsoft SQL Server. Slammer’s infected popula-

�
This paper appears in the Proceedings of the 12th Annual Network

and Distributed System Security Symposium, San Diego, USA. February
3-4, 2005. c

�
ISOC

tion doubled in size every 8.5 seconds [14] with 90% of
vulnerable hosts infected in just 10 minutes. This worm
achieved its full scanning rate (i.e. over 55 million scans
per second) only 3 minutes after it was released. In Au-
gust 2003 the SoBig worm caused an estimated $5 billion
in damage and at the height of its infection was respon-
sible for approximately 73% of all Internet email traffic
[6]. Unfortunately, worm outbreaks of this scale are be-
coming commonplace. In March 2004, the Witty Worm
began to spread by exploiting a buffer overflow in Internet
Security Systems (ISS) products that include firewalls and
intrusion detection systems. Although the vulnerable pop-
ulation of Internet systems was a magnitude smaller than
previous worms, it spread very rapidly [19]. To achieve
the rate of propagation observed, it is believed that this
worm used a preprogrammed hitlist or a timed release of
the worm on previously compromised systems. Witty was
the first widely propagated worm to contain a malicious
payload and signifies a disturbing new trend for worm
writers, combining skill and malice [23].

Staniford et al. [21] hypothesized that a properly con-
structed worm could infect vulnerable systems on the In-
ternet at an even greater speed. Worms are evolving and
they can employ a number of anti-detection techniques
such as: anti-forensics, dynamic behavior, and modular-
ity of attack tools [16]. Furthermore, worms spread so
quickly that traditional intrusion detection methods (i.e.
generation and deployment of attack signatures) are not
feasible [15]. In order to make automatic containment of
fast scanning worms feasible, a rapid and accurate detec-
tion method is required.

Currently, most countermeasures used to mitigate these
attacks include some form of human intervention. Routers
can be configured to block network traffic and vulnera-
ble software can be patched. However, worms that prop-
agate and infect the Internet in just minutes make these
human-in-the-loop countermeasures impractical. The de-
velopment of wide scale automated countermeasures is re-
quired. Current worm propagation detection methods are

limited in: (1) their speed of detection, (2) their inability
to accurately detect zero-day worms, (3) their inability to
detect slow scanning worms, and (4) their high false posi-
tive rate.

Typically, scanning worms use a pseudo random num-
ber generator (PRNG) to generate 32 bit random numbers
that correspond to an IPv4 address. The attacking system
uses this numeric address as the target for its infection
attempt. The use of a numeric IP address by the worm,
instead of the qualified domain name of the system, ob-
viates the need for a DNS query. In contrast, the vast
majority of legitimate publicly available services are ac-
cessed through the use the DNS protocol which provides
the mapping between numeric IP addresses and the corre-
sponding alphanumeric names. The translation of a host
name to a registered IP address is called resolving. While
there exists valid exceptions (e.g. client to client applica-
tions, remote administration tools, etc.) typical user be-
havior should include some form of DNS activity before a
new connection can be initiated.

Our Contributions. We use DNS anomalies to detect
scanning worm propagation, relying on the observation of
DNS responses. If we do not observe DNS activity be-
fore a new connection is initiated, we consider this con-
nection anomalous. This premise is based on our obser-
vation that whereas users tend to remember alphanumeric
strings and use the network services provided (i.e. DNS),
almost all scanning worms directly use numeric IP ad-
dresses. Behavioral signatures [9] are used to describe
common aspects of worm behavior particular to a given
worm that span infected systems in a temporal order. Our
DNS-based detection technique can be used as a behavo-
rial signature to detect scanning worms.

Those legitimate applications and services that gener-
ally do not rely on DNS are addressed through the use of
whitelists (see Section 3.2). In an enterprise network with
an open security policy (i.e. few or no user and service
restrictions) the number of such applications and services
may be so large as to make our detection technique prone
to significant amounts of false positives and negatives (see
Section 5.2). Even in this scenario, DNS-based detection
may be a useful input to a more sophsticated anomaly de-
tector. However, we believe the use of our DNS anomaly-
based detection approach in an enterprise network that im-
plements a conservative or restrictive security policy (i.e.
more common in large financial organizations or govern-
ment) is appealing for a number of reasons including:

1. Speed: the possibility to detect an infected system
after only a single infection attempt to the Internet.

2. Detection of zero-day worms: possible because our
approach does not rely on the matching of existing
worm signatures to identify suspicious traffic.

3. Scanning rate independence: our approach can detect

both fast and slow (i.e. stealth) scanning worms.
4. Reduced training period: our approach includes the

concept of a whitelist that can be quickly generated
to reduce false positives.

5. Low-false positive rate: our approach does not rely
on modeling normal network and user behavior pro-
files that are prone to false positives.

6. Ease of implementation: our approach is network-
based, runs on commodity hardware, and relies on
the observation of a protocol found in every network
(i.e. DNS).

We believe this new technique can both rapidly and ac-
curately detect worm propagation within enterprise net-
works. The precision of this first-mile detection enables
the use of automated containment and suppression strate-
gies to stop scanning worms before they leave the network
boundary.

Our detection technique can be used to detect scanning
worm propagation both within an enterprise network and
from the enterprise network to the Internet (i.e. local to
remote). It does not detect worm propagation from the
Internet to the enterprise network. It differs from exist-
ing scanning worm detection techniques in that it does not
rely on having to observe and correlate multiple events to
determine that a scan is occuring. There is no concept of a
threshold; we only maintain in state a list of IP addresses
of valid connection destinations and each individual con-
nection attempt from the enterprise network as it occurs.
Our approach enables the detection of an infected system
after a single scan has been initiated, regardless of the time
between scans, and thus compares very favorably to pre-
vious work (e.g. Weaver et al. [25]). Weaver et al. pro-
pose an algorithm based on the Threshold Random Walk
(TRW) scan detector [11] to detect a scanning host within
an enterprise environment after only 10 scans, and it can
detect scans as slow as 1 scan per minute.

The sequel is structured as follows. Section 2 presents
the description of the DNS-based scanning worm propa-
gation detection technique. Section 3 discusses our ex-
perimental platform. Section 4 discusses the analysis of
our prototype. Section 5 presents detection circumvention
and limitations. Section 6 discusses ideas for extended ap-
plications of our detection technique. Section 7 discusses
related work. We conclude in Section 8 with a brief sum-
mary. Appendix A contains background information.

2 Basic Methodolgy and Approach
For an overview of worm propagation strategies and

DNS please refer to Appendix A. In this section we give
a high-level overview of our DNS-based anomaly scan-
ning worm detection approach. In larger enterprise net-
works, it is not unusual for network segments to be either

logically or physically separated. In fact, an enterprise
network may be comprised of several distinct subnets for
a variety of reasons including security, ease of adminis-
tration, and geographical location. We can leverage this
natural separation of networks to contain worm propaga-
tion within distinct network segments. As in Silicone De-
fense’s CounterMalice solution [7], we purposely divide
the enterprise network into segments called cells. Each
cell contains a worm containment device to confine and
contain worm infection. Our definition of a cell refers to
all systems within the same subnet serviced by a distinct
authoritative DNS server. Figure 1 illustrates how an en-
terprise network can be divided into cells.

The propagation of fast-scanning worms can be char-
acterized as: local to local (L2L), local to remote (L2R),
or remote to local (R2L). In L2L propagation, a scanning
worm targets systems within the boundaries of the enter-
prise network it resides. Topological scanning worms em-
ploy this strategy. L2R propagation refers to a scanning
worm within an enterprise network targeting systems out-
side of its network boundary. Finally, R2L propagation
refers to worm scanning from the Internet into an enter-
prise network. In this paper, our worm propagation de-
tection method detects L2R worm propagation and worm
propagation between local cells, but not R2L or worm
propagation that occurs within an individual cell.

Systems that reside within the same cell typically do
not use DNS to communicate. The Address Resolution
Protocol (ARP) [17] is used when a system tries to com-
municate with another system in the same cell. ARP is
used by the data link layer to provide a mapping between
the physical hardware of a system and its assigned IP ad-
dress. L2L worm propagation can occur within a particu-
lar cell or span multiple cells depending on the scanning
strategy of the worm. As noted above, in the present pa-

Cell 3

Cell 2

Cell 1

Router

DNS Server DNS Server
DNS Server

Firewall

Enterprise Network

Router Switch

Figure 1. Network Cells

per, we handle L2L worm propagation only in the case

that the propagation occurs between cells. In a related pa-
per [26], we detail how we have adopted the DNS-based
technique to an ARP-based implementation which detects
L2L worm propagation within local cells. Figure 2 pro-
vides an example of how our prototype could be opera-
tionally deployed. Prototype A in Cell 1 monitors activ-
ity between Cell 1 and Cell 2. Cell 2 contains the sole
ingress/egress point for the enterprise network. Prototype
B, from its vantage point in Cell 2, monitors activity from
all cells within the enterprise network to external systems.
Finally prototype C monitors activity between Cell 3 and
Cell 2. A system in Cell 1 is infected with a scanning
worm. The infected system begins scanning to locate sus-
ceptible systems both within Cell 2 and the Internet. The
prototype device in Cell 1 will detect the scanning activ-
ity to Cell 2 and generate an alert. The prototype device
in Cell 2, at the enterprise gateway, will detect scanning
activity from Cell 1 to the Internet and generate an alert.

Cell 3

Cell 2

Cell 1

Router

DNS Server DNS Server
DNS Server

Firewall

Enterprise Network

Router
Switch

Remote Server

Prototype A

Prototype B

Prototype C

Figure 2. DNS Anomaly-based Detection De-
ployment

DNS Anomaly Detection Approach. In random scan-
ning, the use of a numeric IP address by the worm, instead
of the qualified domain name of the system, obviates the
need for a DNS query. New connections from the net-
work that cannot be associated with any DNS activity are
considered anomalous. If we can observe and correlate
all locally generated DNS activity and new connection at-
tempts within an enterprise network, we have the means
to detect L2L inter-cell or L2R worm propagation. The
technique does not detect R2L or intra-cell (i.e. within the
boundaries of a cell) worm propagation.

However, this approach must take into account valid in-
stances where no DNS query is required to access a par-
ticular system or resource. Our analysis of DNS activ-
ity within a network reveals two instances where this oc-
curs. The first results from accessing distributed appli-

cation and content delivery services. The HTTP protocol
allows URLs consisting of numeric IP addresses to be em-
bedded within the data payload of an HTTP packet. It is
common practice for busy websites to maintain or out-
source their content to larger centralized image servers to
allow for better web page retrieval performance. When a
user accesses a website to retrieve a webpage, they may be
retrieving the requested material from several geographi-
cally separated servers. It is not uncommon for the web
page content to include an IP address of a centralized im-
age server that the browser uses to retrieve an image or
media file. In this instance, the browser uses this numeric
IP address to retrieve the image and does not require a
DNS resource record. Instead of having to perform a DNS
request for the object, the numeric IP address is provided
to the browser in the content of the web page. We consider
this a valid connection attempt incidentally obtained by a
previous DNS query.

The second instance includes those servers and services
that are simply not accessed with DNS. An application
may have the numeric IP addresses of systems it needs
to access embedded in its configuration file. A user may
specify connections to a server by entering an IP address
from memory at a command line. In these instances, the
application or user has a priori knowledge of the IP ad-
dress of the server they wish to access. This can include
but is not limited to network server communications, re-
mote administration tools, and certain peer to peer (P2P)
applications. DNS, applications, and users are all legiti-
mate sources of numeric IP addresses that can enable ac-
cess to services and systems. Legitimate use of numeric IP
addresses by applications and users can be identified and
added to a whitelist for exclusion from the detection al-
gorithm. Taking these exceptions into consideration (see
Whitelists in Section 3.2), we consider any system that
tries to access another system without receiving a valid
DNS response as a possible worm infected system.

3 High-Level System Design
Our software system design uses the libpcap [5] library

and is comprised of two logical components: the PPE and
DCE. The Packet Processing Engine (PPE) is responsible
for extracting the relevant features from the live network
activity or saved network trace files (see Section 3.1). The
DNS correlation engine (DCE) maintains in state all rel-
evant DNS information, a whitelist, and numeric IP ad-
dresses embedded in HTTP packets extracted by the PPE
(see Section 3.2). This information is used to verify both
outgoing TCP connections and UDP datagrams. In this
context, verifying means ensuring that the destination IP
address of an outgoing TCP connection or UDP datagram
can be attributed to either a DNS query, an HTTP packet,
or an entry in the whitelist. The software can process

either live network traffic or saved network traces in the
pcap [5] file format. To detect L2R worm propagation,
the software system must be deployed at all external net-
work egress/ingress points. To detect worm propagation
between network cells, a system would need to be de-
ployed in each cell at the internal ingress/egress points
(see Figure 2).

5-tuple TCP

5-tuple HTTP

5-tuple DNS

5-tuple DNS

5-tuple DNS

5-tuple DNS

Packet Processing Engine

Network

5-tuple Connection Candidate

5-tuple Connection Candidate

5-tuple Connection Candidate

5-tuple Connection Candidate

Connection Candidate Data Structure

5-tuple TCP

DNS Correlation Engine

Prototype

Alert
Alert
Alert

Figure 3. High-level System Design

Figure 3 reveals the high-level design of the prototype.
In this example, the PPE extracts the relevant features
from live network activity and bundles these into data to-
kens. The data tokens are comprised of the appropriate
5-tuple of features (see Section 3.1) based on the protocol
extracted. These tokens are consumed by the DCE. The
DCE uses the tokens to maintain a list of destination IP
addresses it deems valid and checks any new connection
attempts from within the enterprise network against this
list. The DCE will generate an alert if it determines the
new connection is being initated to a destination IP that is
not contained in its list.

3.1 Packet Processing Engine

The PPE is responsible for processing packets of inter-
est from pcap files or live off the network and extracts
a variety of information from several protocols. Specif-
ically, the software must extract relevant features from
new connection attempts, embedded IP addresses within
HTTP packets, and all DNS activity occurring within the
network cell.

In order to discover new TCP connection attempts, all
TCP packets with the SYN flag set are examined. TCP
packets with the SYN only flag set indicate the start of
the three-way handshake that signifies a new connection
attempt. UDP is connectionless and does not have the
concept of a session. Each UDP packet is treated as a dis-
crete event and thus a potential new connection. Feature

extraction for either new TCP connections or non-DNS
UDP datagrams includes the 5-tuple of source IP, source
port, destination IP, destination port, and timestamp.

Packets that contain a source port of 80 or 8080 are cap-
tured and categorized as HTTP packets. All HTTP pack-
ets are decoded and the payload inspected for any em-
bedded IP addresses. Any IP addresses discovered in the
payload are extracted along with the previously defined
5-tuple.

DNS A records are generated when systems within the
network wish to contact systems in other cells or external
to the network. Any DNS requests originating from the
network cells and any DNS replies coming into the net-
work cells are extracted and decoded. Feature extraction
for DNS datagrams includes the 5-tuple of DNS source IP,
DNS source port, TTL, domain name, and resolved IPv4
address.

3.2 DNS Correlation Engine

The DNS correlation engine (DCE) is responsible for
processing information passed by the PPE. The two ma-
jor functions of the DCE are: (1) to create and maintain a
data structure of IP addresses and associated features that
are considered valid connection candidates; and (2) to val-
idate all new TCP and UDP connection attempts between
cells or to remote systems against the connection candi-
date data structure. A valid connection candidate data
structure is produced by processing DNS A records, em-
bedded IP addresses in HTTP packets, and the whitelist.

Connection Candidate Data Structure. All DNS A
resource record 5-tuples are parsed and added to the con-
nection candidate data structure. The TTL from each 5-
tuple is used just as it is in the cache of a DNS server.
Once the TTL expires, the resource record is purged from
the DCE’s connection candidate list. Although DNS ac-
tivity provides the majority of IP addresses to the connec-
tion candidate data structure, numeric IP addresses within
HTTP packets must also be considered.

As previously discussed, numeric IP addresses are reg-
ularly embedded within HTTP packets. All HTTP 5-
tuples are parsed and added to the connection candidate
data structure. Unlike an IP address provided by DNS A
records, these IP addresses do not have an associated TTL
that can be used to discard the IP address entry from the
connection candidate data structure. We can assume that
a DNS query and response had to occur in order for the
web site to be initially accessed. Therefore, we can use
the TTL of the DNS A record of the original request as
the TTL for the embedded IP address. All IP addresses
harvested from HTTP decoding are then are maintained
in state. That is, the assigned TTL values are respected
and these addresses are valid only as long as the TTL has
not expired.

Whitelists. To address those client applications that le-
gitimately do not rely on DNS, a whitelist is generated. A
whitelist provides a list of IP addresses and port combi-
nations that are exempt from the detection algorithm. For
example, in most networks there are systems that regu-
larly communicate with one another by using IP addresses
specified in configuration files rather than fetched in DNS
records. Furthermore, specific applications and users (see
further discussions below) may also use numeric IP ad-
dresses instead of DNS to access services or communicate
with other systems.

In practice, internal network server communications are
either well-known or easily discovered. If a hard-coded IP
address is contained in a network configuration parameter
or file, it is easily confirmed. These server interactions can
be modeled and the appropriate IP address port combina-
tion added offline to the whitelist for exclusion. However,
in the case of users, the use of numeric IP addresses may
be more pervasive and more unpredictable. There are two
cases worth discussion. In organizations which impose re-
strictive network security policies, end users are restricted
to using a finite list of well known services deemed per-
missible in the security policies. For instance, it may be
permissable to access FTP and Telnet servers using nu-
meric IP addresses. To accommodate this, the list of fre-
quently accessed FTP servers IP addresses could be added
to the whitelist. Alternatively, so as not to weaken the se-
curity posture of the network, in such environments (e.g.
financial and government) where an organization has tight
control over its employees, users could be told to enter in
domain names instead of the IP address. The second case,
which may be more problematic for whitelists, involves
end users which enjoy unrestricted or open network secu-
rity policies. In this case, the number of whitelisted prot-
cols may limit the effectiveness of the detector.

The whitelist is granular enough to exempt not only spe-
cific IP addresses but also provide for IP address and port
pairing. For instance, it is possible to specify that a com-
munication must contain the correct source and destina-
tion IP addresses as well as the correct destination port
in order to match the applicable whitelist entry. Over
time this list will need to be updated in order to reflect
changes to the network, user activity, and new technol-
ogy. The more open a network security policy, the greater
the amount of effort required to maintain the whitelist.

New Connection Validation. The PPE only extracts
the relevant information from a single TCP packet for each
new TCP connection attempt it detects. This includes TCP
SYN packets addressed to systems outside the cell the pro-
totype is monitoring. Once a new TCP connection attempt
is detected, the IP destination address is compared with
the addresses listed in the connection candidate data struc-
ture. If the address is not found and it does not match an

entry in the whitelist, the connection is considered to be
anomalous and an alert is generated.

UDP datagrams are regarded as discrete events. The
PPE extracts the relevant information from the UDP data-
grams and passes this information to the DCE. Once a new
UDP datagram is detected, the IP destination address is
processed as described in the previous paragraph.

Alerts. An alert is generated when a connection attempt
to a system in another cell or remote system is detected for
which there is no associated entry in the connection candi-
date data structure. Multiple connection attempts between
the same two systems within a specified time window are
regarded as a single alert. This alert grouping reduces
the number of alerts generated without reducing the rele-
vant warning information to the operator. It is not unusual
for a new TCP session to require a number of connection
attempts before an actual connection can be established.
Systems may be busy, unable or simply unwilling to es-
tablish a session. If a separate alert were generated for
each unsuccessful connection attempt, a single communi-
cation between two systems may generate several alerts.

In regards to UDP, the decision to consider each UDP
datagram as a possible new connection could result in nu-
merous alerts that could quickly overwhelm an operator.
The important intelligence from these alerts is the identifi-
cation of the potentially infected system and the intended
victim. The fact that it took the worm multiple connec-
tion attempts or datagrams to infect the system does not
aid in our propagation detection. The timestamp from the
first TCP SYN packet or UDP datagram that generated an
alert is used as the timestamp for the alert. The alert con-
tains the time the activity was detected, protocol, source
and destination IP address and source and destination port
number.

4 Prototype Evaluation

4.1 Data Set

To validate our DNS-based detection approach, we de-
veloped and tested a fully functional software prototype.
The software was installed on a commodity PC with a
Linux operating system and a 10/100 network interface
card. The prototype implements all features discussed in
Section 3. To conduct our evaluation, one week of net-
work traffic was collected at a firewall in front of one of
our university’s research labs. A Linux system using tcp-
dump was connected to a tap in front of the firewall to col-
lect and archive the network traces. We monitored both
incoming and outgoing network traffic to the lab. The lab
router is connected to the university’s Internet accessible
Class B network. The lab network consists of a one quar-
ter Class C network (i.e. 63) of Internet reachable IPv4
addresses.

The lab network contains one authoritative DNS server
that all internal systems in the network are configured to
use. The lab’s DNS server has entries associated with the
lab’s mail server, web server, and Kerberos server. The
firewall does not permit any inbound connections unless
they were first established by an internal system. All sys-
tems within the lab can access the Internet directly through
the firewall, which is the sole egress/ingress point for the
network. Using the cell definition previously described,
the lab can be considered one cell in the university’s en-
terprise network. The lab analysis allowed us to test the
prototype’s ability to detect L2R worm propagation.

During the course of our network traffic collection in
front of the lab firewall, network traffic from a separate
internal university network was also captured. We will re-
fer to this network as the Internal Departmental Network
(IDN). The IDN has its own authoritative DNS server that
all its internal systems are configured to use. The IDN can
be considered another cell in the university’s enterprise
network. This incidental collection provided us with the
opportunity to perform additional analysis. In addition to
running the prototype against the lab network traces, we
ran the prototype against a filtered version of the IDN net-
work traces. To address privacy concerns, we restricted
our inspection of the IDN’s network traces to those pack-
ets that contained either a source or destination address
that matched a lab network IP address. The IDN analysis
allowed us to test the prototype’s ability to detect worm
propagation between cells.

At the start of our analysis, we flushed the lab DNS
server’s cache. This ensured that any new connections
from lab systems would result in an external DNS query
to retrieve the appropriate A record instead of accessing
the lab DNS server’s cache. From our vantage at the net-
work boundary, we are only able to detect DNS replies
as they enter the lab network, not those generated inter-
nally from the DNS server’s cache. The flushing of the
lab DNS cache ensures that the DCE will contain the same
DNS information as the lab’s DNS server. In our analy-
sis, all IP addresses have been modified to keep the actual
IP addresses anonymous. The university network’s IP ad-
dresses are represented by the 192.168.0.0/16 IP address
range.

Table 1. Network Data Set
Network Protocol Packet Count

TCP packets 5,969,266
TCP connections 18,634

ICMP packets 4,955
UDP packets 5,301,489

Other 805,604

Network traffic was collected for a seven-day period

Table 2. DNS Datagrams
Date Total Packets DNS

Request
Data-
grams

DNS
Reply
Data-
grams

06-24-2004 2,101,243 6,485 6,264
06-25-2004 2,491,663 5,525 4,951
06-26-2004 847,687 1,192 658
06-27-2004 889,251 2,231 3,174
06-28-2004 1,339,283 5,225 4,752
06-29-2004 1,382,642 6,121 5,998
06-30-2004 1,081,451 4,973 4,164

from June 24th to June 30th, 2004. The network traces
are comprised of all network activity that reached the lab’s
router from internal systems, systems in the IDN cell, and
the Internet. During this period, over 5 million UDP pack-
ets were observed as well as almost 6 million TCP pack-
ets. A total of 18,634 individual TCP connections oc-
curred. Table 1 provides the observed protocols and their
respective quantities.

DNS is transported mainly over UDP. DNS zone trans-
fers use the TCP protocol but it is a standard acceptable
security practice to disallow this feature. Table 2 shows
the number of DNS request and reply datagrams that were
detected in the network traces. Overall, we observed that
the total amount of DNS traffic is a small percentage of
the total amount of network traffic. An individual DNS
reply may contain multiple records. In fact, the 10,162
DNS replies we received in the network actually gener-
ated 99,994 individual DNS resource records.

4.2 Lab Monitoring Analysis

The lab deployment was used to test the prototype’s
ability to detect L2R worm propagation. Initially, we ob-
served the network for a three-hour period the day prior
to our data set to generate a whitelist. Section 5.2, Ta-
ble 8 contains the seven entries that comprised the lab’s
whitelist. In order for network activity to be identified
as complying with the whitelist, the protocol, source IP,
source port, destination IP, and destination port must all
match. The first four entries consist of communications
between specific servers. The fifth entry specifies a sin-
gle server allowed to initiate connections with other sys-
tems on a specific port. Finally, the last two entries allow
any system in the lab to initiate connections to any other
systems as long as they adhere to the particular port and
protocol specified.

Over the course of the one week, a total of 52 alerts
were generated by the prototype. Table 5 gives the alert
breakdown by day. None of the alerts could be attributed

to worm propagation but in contrast, see Section 4.3. This
is not surprising since the lab is a well-maintained hard-
ened network administered by security-aware personnel.
A full analysis of the true false positives generated by the
prototype is given in section 4.4.

4.3 IDN Monitoring Analysis

The IDN deployment was used to test the prototype’s
ability to detect worm propagation between cells. Ini-
tially, we observed the network for a three-hour period
the day prior to our data set to generate a whitelist. The
whitelist for the IDN consisted of four entries (see Table
9 in Section 5.2). All of these entries consisted of allowed
communications between specific servers. Over the one-
week period, 74,610 alerts were generated as a result of
worm propagation attempts from the IDN to the lab. Ta-
ble 3 contains the specific propagation attempts by date for
each worm. Using the Symantec taxonomy for a naming
convention, the three worms detected were: W32.Sasser,
W32.Blaster, and a variant of W32.Gaobot. We estimate
that these worms infect a total of 195 IDN hosts. Figure
4 illustrates the worm activity of the three worms over the
entire analysis period.

Table 3. IDN Worm Activity
Alerts

Date Sasser Blaster Gaobot
06-24-2004 25,052 1,104 3,299
06-25-2004 5,946 539 9,137
06-26-2004 8,894 721 761
06-27-2004 4,680 1,353 2,516
06-28-2004 739 1,085 21
06-29-2004 2,731 532 1,778
06-30-2004 1,383 1,680 659

Total 49,425 7,014 18,171
Infected Hosts

Worm Sasser Blaster Gaobot
Total 101 38 56

Table 4. Additional IDN Alerts
Alerts Activity

125 Optix Pro Trojan Horse scan-
ning: port 3410 TCP

5 Random scanning: port
60510-60518 TCP

12 Ident/auth service: 113 TCP
49 Common Unix Printing Sys-

tem (CUPS): 631 TCP
Total Alerts: 191

Table 5. Lab Alerts
Date # of Alerts Known False Positives True False Positives

06-24-2004 18 6 Internal Lab, 3 Streaming Audio 9 HTTP
06-25-2004 20 4 Streaming Audio 16 HTTP
06-26-2004 1 1 HTTP
06-27-2004 6 6 HTTP
06-28-2004 1 1 HTTP
06-29-2004 4 2 Port 90 TCP 2 HTTP
06-30-2004 2 1 Port 90 TCP 1 HTTP

Total 52 16 36

 0

 5000

 10000

 15000

 20000

 25000

24/06/04 25/06/04 26/06/04 27/06/04 28/06/04 29/06/04 30/06/04

N
u

m
b

e
r

o
f

O
b

s
e

rv
e

d
 W

o
rm

 S
c
a

n
s

Date

Observed Daily Worm Scans

W32.Blaster
W32.HLLW.Gaobot.gen

W32.Sasser
Total Activity

Figure 4. IDN Worm Activity

In addition to the worm activity, the prototype detected
other forms of scanning activity and as a result generated
191 alerts. Table 4 reveals the number and type of alerts
generated.

A full analysis of the false positives generated by the
prototype is given in section 4.4.

4.4 False Positives and False Negatives

False Positives Results Analysis
52 false alerts were generated from monitoring the lab

cell, and 191 false alerts from the IDN cell. Based on our
analysis in the previous section, we have categorized these
false positives as occurring due to:

1. Authorized network communications that could be
incorporated into a whitelist but were not in our pro-
totype testing.

2. Network configuration errors that could be elimi-
nated with proper system administration.

3. Suspicious scanning activity other than worm propa-
gation.

4. True false positives.

These are discussed in turn below.

Authorized network communications. For the pur-
poses of our analysis, we initially allowed for a three hour
training period to generate the whitelist. If this was ex-
tended to a few days, the whitelist could be augmented
with additional entries, greatly reducing the instances of
legitimate network activity generating false alerts.

Network configuration errors. 6 of the false positives
were due to an isolated network configuration problem.
Non-routable IP addresses passed through the firewall as
a result of a router configuration error. Increasing the
training period should also allow for sufficient time to de-
tect any network configurations errors that may generate
alerts.

Suspicious scanning activity. 125 alerts were gener-
ated as a result of an IDN system scanning for the Optix
Pro Trojan horse [3] (i.e. port 3410 TCP). 5 alerts were
generated as a result of an IDN system scanning for ser-
vices listening on port numbers between the ranges of
60510 and 60518 TCP. Our preliminary version of the pro-
totype software does not distinguish between scanning for
the purposes of worm propagation or for some other activ-
ity. Although these alerts are considered false positives,
they do warn an administrator that potentially malicious
activity is occurring within the network cell. We discuss
this in greater detail in Section 6.

True false positives. Those alerts that cannot be at-
tributed to the previous three categories are considered
true false positives.

After further analysis of the lab monitoring results, we
determined that 10 of the 52 alerts resulted from autho-
rized network communications. 6 of the alerts resulted
from a network configuration error. The remaining 36
alerts we classify as true false positives. With respect to
the IDN monitoring results, we determined that 130 alerts
were caused by non-worm related malicious activity and
61 alerts resulted from authorized network communica-
tions. None of the alerts were what we classify as true
false positives. Table 6 summarizes the number and type
of false positives generated from monitoring the lab and
IDN cells.

Based on manual inspection of the network traces, we

Table 6. False Positive Results Analysis
Lab IDN

Total Alerts 52 74,801
Worm Propagation Alerts 0 74,610
Pre-Analysis False Positives 52 191

Whitelist Inclusion 10 61
Network Configuration Errors 6 0
Suspicious Activity 0 130

True False Positives 36 0

offer some insight into the cause of the 36 true false posi-
tives. The majority were caused by TCP connections ini-
tiated using a DNS resource record with a very low TTL
and then not properly closed. It was a prototype design
decision to detect a new TCP connection by simply ob-
serving a packet with the SYN flag set. The individual
connections themselves were not tracked and maintained
in state. Subsequently, we have observed HTTP connec-
tions that have been initiated using a DNS resource record
with a TTL as low as 10 seconds. Several of these low
TTL connections, all to the same web server, do not ter-
minate properly. The client (i.e. inside the lab) does not
send the final ACK in the FIN ACK exchange. Instead, in
some cases, the client sends a SYN to start a new session
with the same server. This connection is initiated after the
TTL has expired.

Approximately 60% (i.e. 22 alerts) of our true false pos-
itives were caused by this type of network traffic. Subse-
quent versions of our detection prototype could account
for this network activity in two ways:

1. Enforce a minimum TTL: those TTL values lower
than a minimum threshold (e.g. 600 seconds), could
be given a default value (e.g. 600 seconds) in the
DCE. According to our analysis, this would have re-
duced our true false positive count from 36 to 14 (i.e.
60% reduction). The increased probability of a false
negative due to this arbitrary increase in TTL values
would be negligible (see discussion later in this sec-
tion).

2. Require a second anomalous connection: we could
modify our algorithm to generate an alert after two
anomalous connections were observed from a sys-
tem trying to connect to two separate systems within
a finite time window. According to our analysis, this
would have reduced our true false positives from 36
to 4. Requiring the observation of a second connec-
tion attempt would greatly reduce our false positives
and only slightly degrade our detection precision (i.e.
detect worm propagation after observing only two in-

fection attempts).

Finally, although no UDP based alerts were generated dur-
ing our analysis, we must comment on the false positive
potential of persistent UDP connections. UDP datagrams
are treated atomically by our prototype in that each data-
gram is verified against the connection candidate list. If
the exchange of datagrams between the two systems is
longer than the TTL of the DNS resource record that ini-
tially started the exchange, a false positive will be gen-
erated. This could become a concern if the TTL of the
resource record is very low (i.e. typically the default TTL
value is 1 day).

False Negatives Results Analysis A false negative oc-
curs when malicious activity occurs and no subsequent
alert is generated. It was a design decision to monitor the
network cell at the ingress/egress points, so that all new
connections could be easily detected. Another considera-
tion for this design decision was the fact that an end user
can specify any DNS server they wish to use thus exclud-
ing the one administratively provided to them. As long
as the network egress/ingress point is monitored, any ex-
ternal DNS queries can be detected and incorporated in
the detection algorithm. However, by not monitoring the
cell activity to the local DNS server, we will not be able
to detect when the local systems contact the local DNS
server. The prototype system maintains the DNS resource
records in state respecting the TTL values for each record.
If we detect an internal system starting a new connection
to a remote system, the prototype checks the candidate
connection list to determine if the connection is valid. In
effect, we do not verify that the individual system has ac-
tually requested and received the DNS resource record,
but rather that the resource record is available in the local
DNS server. This is a subtle but important distinction.

Consider the scenario where an internal system be-
comes infected with a scanning worm. There exists the
possibility that it may scan a system whose IP address is
in the connection candidate data structure. That is, the in-
tended victim was previously accessed by a system in the
cell and the associated entry in the connection candidate
data structure still exists. To determine the probability of
this, we used the worm model discussed by Staniford et
al. [7].

We assume that the worm targets victims at random over
the entire IPv4 address space. Therefore, if r is the number
of scans, a single host has a ��� �	�
� probability of being
reached by the scan. If N is equal to the number of entries
in the connection candidate data structure, the probability
that a scan from the internal network will be directed at
one of the data structures entries is

� ��� ���� 	�� (1)

Table 7. Probability of False Negatives due to Remote DNS Monitoring
DNS Records 10 Infected Systems 100 Infected Systems 200 Infected Systems 500 Infected Systems

500 � � ����������� �"!$# % � & � ����� �"!$# � � ����������� �"!$' � � (� & ��� �)!*'
1000

� � (� & ��� �"!$# � � � ���+��� �"!$' � � (� & ��� �"!$' � � �,%��+��� �)!*'
2000 � � �-%��.��� �"!$# � � (� & ��� �"!$' � � �,%,/0��� �"!$' 1 � (� (��� �)!*'
5000 � � �����2�3��� � !$' % � & � ����� � !$' � � ����������� � !�4 � � (� & ��� � !$4

10000
� � (� & ��� � !$' � � � ���+��� � !�4 � � (� & ��� � !�4 � � �,%��+��� � !$4

For example, with a 10,000 entry connection candidate
list and a network that has 500 infected systems, if all of
the systems began scanning at precisely the same time, the
probability that after a single scan at least one of the scans
would match an entry in the connection candidate list is
only .04%. Table 7 contains probabilities, for various pa-
rameters, that a false negative will occur due to a single
scan simultaneously occuring from each infected system
targeting a previously cached IP entry in the connection
candidate list.

5 Detection Circumvention and Current
Limitations

In this section, we give an overview of possible ways
our detection technique can be defeated and its current
limitations.

5.1 Detection Circumvention

Any new worm detection algorithm will be the sub-
ject of scrutiny for both security researchers and mali-
cious actors. The former seeks to validate and improve
new ideas to realize improvements in overall network se-
curity countermeasures. The latter will devise ways to ex-
ploit weaknesses in the algorithm to circumvent detection.
One method a worm writer could employ to evade dection
from our approach is to have the worm do a preemptive
valid DNS query before each infection attempt (i.e. scan).
However, performing valid DNS queries before every in-
fection attempt would have negative consequences for an
attacker, e.g. it would:

1. Require worms writers to adopt a new infection
paradigm to randomly generate valid domain names
instead of numeric IP addresses for targeting.

2. Slow propagation as worms perform DNS queries in
order to spread.

3. Increase DNS activity as every infection attempt will
pose a significant and noticeable impact on the DNS
server.

4. Reduce the number of reachable vulnerable systems
because not all systems (e.g. home users, client sys-
tems in an enterprise networks) have qualified do-
main names being simply clients that do not offer any

services. These client systems could comprise a sig-
nificant portion of the susceptible Internet population
depending on the exploitable vulnerability (e.g. Win-
dows XP buffer overflow).

One of the limitations of the detection technique is that
it cannot detect intra-cell and R2L attacks. A skilled at-
tacker could use these limitations in concert to remain un-
detected while infecting the network. For example, a R2L
attack is launched against the network and the worm in-
fects a single system within a cell. Using the network
information obtained from the infected system (e.g. net-
mask, broadcast domain), the worm can limit its scans to
within the network cell. In parallel, another R2L attack
could be executed against a system within another net-
work cell and the process repeats.

5.2 Current Detection Limitations
Our approach has limitations. As discussed in Section

2, it cannot detect R2L or intra-cell worm propagation.
Automated attack tool activity (e.g. auto-rooters, network
scanners, Trojan horses scans, etc.) will be detected but
categorized as worm propagation.

Although it depends on the implementation, a worm
that targets DNS servers may introduce irregularities that
could limit the detection technique. Our detection tech-
nique also assumes that all applications honor TTL values;
this may not be the case for all applications. Topological,
metaserver, and passive worms may not trigger the detec-
tor depending on the behavior of the host programs [24].
Additionally, worm propagation via email/network share
traversal will not be detected.

Finally, the use of whitelists in certain network envi-
ronments could constrain the detection technique, as dis-
cussed in Section 2. Whitelists are used to exempt specific
network activities and systems from the detection algo-
rithm to reduce the occurence of false positives. Tables
8 and 9 contain the whitelist entries for the Lab and IDN
networks respectively. These exemptions can be applied
to the entire network (e.g. Activity 6, Table 8) or just to
specific systems (e.g. Activity 5, Table 8). During our
analysis of both networks, the following protocols com-
prised the respective whitelists:

1. Internet Message Access Protocol (IMAP): IMAP is

Table 8. Lab Whitelist
Activity Whitelist Entry Reason
1 IMAP 192.168.1.33:993 - 192.168.200.50:993 TCP Mail server communications
2 IMAP 192.168.1.25:993 - 192.168.200.50:993 TCP Mail server communications
3 NTP 192.168.1.12:123 - 192.168.200.2:123 UDP Server clock synchronization
4 NTP 192.168.1.12:123 - 192.168.200.1:123 UDP Server clock synchronization
5 IMAP 192.168.1.5:993 TCP Mail server communications
6 FTP 192.168.1.0/191:21 TCP User initiated FTP sessions
7 SSH 192.168.1.0/191:22 TCP User initiated SSH sessions

Table 9. IDN Whitelist
Activity Whitelist Entry Reason
1 IMAP 192.168.200.50:993 - 192.168.1.33:993 TCP Mail server communications
2 IMAP 192.168.200.50:993 - 192.168.1.25:993 TCP Mail server communications
3 NTP 192.168.200.2:123 - 192.168.1.12:123 UDP Sever clock synchronization
4 NTP 192.168.200.1:123 - 192.168.1.12:123 UDP Server clock synchronization

a TCP based protocol that allows a client to remotely
access email from a server [8].

2. Network TIme Protocol (NTP): NTP is a UDP based
protocol used to synchronize computer clocks over a
network [13].

3. File Transfer Protocol (FTP): FTP is a TCP based
protocol used to remotely exchange files [18].

4. Secure Shell Protocol (SSH): SSH is a TCP based
protocol used to encrypt a data stream to eliminate
eavesdropping [4].

The Lab and IDN networks have a strict security policy
that restricts the type of services allowed within the net-
work. Therefore, the whitelist entries for these networks
were limited to a few systems and protocols. In a net-
work with a very open security policy, the whitelist may
become so large that maintanence becomes an issue and
the detection algorithm either exempts too much network
activity or creates too many false negatives to be useful. In
this scenario, we believe that the DNS detection technique
would best be used in conjunction with other detection
techniques. For instance, the scan detection and supres-
sion algorithm developed by Weaver et al. [25] could use
our detection technique as another detection signal. In this
scenario, our detection technique could provide a means to
assign connections that did not use DNS a greater anomaly
score than those that used DNS.

6 Extended Applications
Our DNS-based detection approach could be applied to

five additional areas, which we believe warrant future in-
vestigation: (1) automated attack tool detection; (2) R2L
worm propagation detection; (3) covert channel and re-
mote access Trojan (RAT) detection; (4) mass mailing

worm detection; and (5) integration with other anomaly
based detectors. We discuss these in turn.

Automated Attack Tools. Automated attack tools
share the same exploit methodology as scanning worms.
Their goal is to rapidly identify and compromise as many
systems as possible. A typical configuration parameter
for automated attack tools is a range of numerical IP ad-
dresses that they use as their target information. The faster
they scan, the faster they can compromise vulnerable sys-
tems.

Our DNS-based scanning worm detection technique can
be used to detect automated attack tools. As part of our
analysis during the prototype testing, we determined that
130 false positives were attributed to scanning for vulner-
able services and previously installed malicious software
(i.e. the Optix Trojan).

R2L Worm Propagation. R2L worm propagation
refers to worm propagation attempts that originate from
outside the enterprise network boundary. Our detection
technique relies on observing DNS activity and new con-
nection attempts from systems within the enterprise net-
work. As we can observe all DNS activity initiated by in-
ternal systems, it is easily adapted to correlate this activity
with new connections.

We believe that it would be possible to observe and cor-
relate all DNS requests and new connection attempts ini-
tiated from remote systems. To determine the precision
of the detection algorithm, requires further investigation
of the difficulty of correlating DNS server requests with
individual system connection requests.

Covert Channels. Covert channels are used to provide
a communications method that violates the security policy
of the system or network. Once a system has been com-
promised, an attacker typically requires some means to

access the system to either exfiltrate data or maintain com-
mand and control. RATs typically use covert channels to
communicate with their respective controllers outside the
network. Covert channels are often created through soft-
ware that can tunnel communications through well known
and security policy sanctioned protocols in the network.
For instance, several publicly available tools allow a user
to tunnel data through the HTTP protocol.

Often an attacker uses a previously compromised sys-
tem to attack other systems to evade detection. A large
percentage of Internet systems (e.g. home users) do not
have a fully qualified domain name associated with their
IP address. Furthermore, it would not fit the profile of be-
ing covert if a compromised system had to perform a DNS
query to identify the system that had surreptitious control
of it. In this scenario, our DNS-based detection approach
would be able to detect covert channel communications.

Mass-mailing Worms. Mass-mailing worms infect
systems by sending infected email messages. The worm
payload is typically contained within an email attachment.
As part of the installed code base, these worms often con-
tain their own Simple Mail Transfer Protocol (SMTP) en-
gine. To avoid the need to detect and then use disparate
email clients on victim systems, worms install their own
fully functional SMTP server, ensuring that they can gen-
erate infected emails regardless of the email client soft-
ware used by the victim. This increases a worms propaga-
tion rate.

In contrast to a normal email message generation, a
mass-mailing worm automatically composes the infected
email message with no human intervention. In fact, unless
a virus scanner or some other malicious code detection
device detects the infection, the system owner is typically
unaware that a worm is resident on the system. Using
its built-in SMTP server, the infected system bypasses the
corporate mail server when it attempts to send infected
emails to the respective recipients.

In this scenario, the SMTP engine of the infected sys-
tem is responsible for propagating the worm and deliver-
ing infected emails. In order to determine the mail server
that services a particular recipient, the infected system, not
the local mail server, queries the local DNS server for the
MX record associated with the email recipient’s address.
Some worms also contain a list of Internet accessible DNS
servers that they can query if communication to the local
DNS server from the infected host fails.

Our approach can be used to monitor for MX record
queries to uncover systems that query the DNS server di-
rectly for MX records. If a local system other than the
mail server requests an MX record, we may consider this
activity to be anomalous. In order to detect mass-mailing
worm propagation, we simply observe all locally gener-
ated MX queries to the local DNS server that originate

from systems other than the network mail servers. This
detection technique can be developed to identify a mass-
mailing worm infected system in a single propagation at-
tempt.

Anomaly Detection Integration. We have identified
that this detection technique can be prone to significant
amounts of false positives and negatives when used in an
open network environment. In this scenario, we believe
this technique could be useful if integrated into more so-
phisticated anomaly based detectors to avoid false posi-
tives and negatives.

7 Related Work
The observation of network service use, such as DNS,

offers a means to detect anomalous network activity.
Kruegel et al. [12] orginally proposed the use of applica-
tion specific knowledge of network services to enable de-
tection of malicious content in individual packets. Their
approach was to use statistical anomaly detection to de-
tect R2L attacks targeted at essiential network services.
Anomaly scores for specific packets are based on devi-
ations from expected values in a predetermined profile.
Once a threshold is exceeded, an alarm is generated. They
based their experimental analysis on a prototype that pro-
cessed both HTTP and DNS network traffic.

Granger et al. [10] present a software architecture to en-
able self-securing network interfaces to examine packets
as they move between network links and host software,
detecting and potentially blocking malicious activity. This
host-based approach includes a detection technique that
enables detection of worm propagation. The technique in-
volves shadowing a host´s DNS table and checking the IP
address of each new connection against it. The basic con-
struct of this approach is that its abnormal for a host to
make a large number connection attempts without DNS
activity. We have extended it to a network-based solu-
tion that incorporates additional network information (i.e.
whitelists, embedded IP addresses in HTTP packets) that
hosts use to initiate new connections.

Williamson [27] devised a method to limit or throttle the
rate of malicious mobile code by determining if a system
tries to connect to new addresses. If so, the connection is
delayed in order to slow the propagation of the malicious
code. By not dropping the connection, a balance is struck
between reducing the impact of false alarms and limiting
the spread of malicious activity in the network.

Jung et al. [11] developed an algorithm called Thresh-
old Random Walk (TRW), to identify malicious remote
hosts. They based this algorithm on the observation that
scanners are more likely to access hosts and services that
do not exist than legitimate remote hosts. If the connec-
tion is determined to succeed the random walk is driven
upwards, failure to succeed drives the random walk down.

By giving legitimate network traffic a higher probability
to succeed than attack traffic, a determination can be made
on whether a series of connection attempts is a scan.

Weaver et al. [25] developed a scan detection and sup-
pression algorithm based on a simplification of the TRW.
They use caches to track the activity of both new connec-
tions and IP addresses to reduce the random walk calcula-
tion in the TRW. This simplication made the algorithm
suitable for implementation in both hardware and soft-
ware. Their technique allows a scanning host to be de-
tected and stopped in fewer than 10 scans with a low false
positive rate.

Two commercial scanning detectors offer an alternate
approach to detect worm propagation. Forescout [1] and
Mirage [2] networks use a technique called dark-address
detection. These detectors either have knowledge of or
route unoccupied address spaces within an internal net-
work and detects when systems attempt to connect to these
unused spaces.

Silicon Defense developed the CounterMalice worm de-
fense solution [7] to proactively identify and automati-
cally block worm activity in an internal network. The so-
lution divides the network in cells and prevents the worms
from spreading between the cells. Staniford’s analysis of
worm propagation within an enterprise network revealed
that such outbreaks exhibit a phased structure with an epi-
demic threshold [20]. If the network contains a low den-
sity of susceptible systems or if the threshold is low, con-
tainment systems can be effective in containing the worm
outbreak. If these parameters are too large however, the
containment systems will not be able to stop the spread
of the worm until a significant number of systems are in-
fected.

Zou et al. [28] model requirements for the dynamic
quarantine of infected hosts. They demonstrate that epi-
demic thresholds exist for differing detection and response
times. This work provides a benchmark against which the
efficiency of any new proposed detection algorithm should
take into account. We believe that our scanning worm de-
tection approach has the required efficiency to stop worm
propagation before epidemic thresholds are reached.

8 Concluding Remarks
The DNS-based worm propagation detection approach

is an effective way to combat scanning worm infec-
tion within appropriate enterprise networks (see Section
1). Depending on the network environment and secu-
rity policy however, the number of protocols added to
the whitelist may potentially limit the applicability of this
technique as a stand alone detector. In these scenarios, this
detection method could be used as an additional detection
signal in concert with other worm detection schemes in-
stead of being used as the primary detection technique.

During evaluation, our prototype was successful in de-
tecting scanning worm propagation in the Internal De-
partmental Network cell of our enterprise network. We
have demonstrated that this network-based detection ap-
proach can be used in certain network environments to
offer significant improvement in detection speed over ex-
isting scanning worm propagation detection methods. Re-
gardless of the scanning rate, the detection algorithm is
able to detect scanning worm propagaton in a single scan-
ning attempt. It relies on a network service found in ev-
ery network (i.e. DNS), and being anomaly-based, has the
ability to detect emerging worms. We have developed a
full implementation of our approach in a software proto-
type that runs on non-specialized commodity hardware.
We plan to make the software available to the public.

Finally, we believe that this detection approach could
be easily modified to detect additional classes of mali-
cious activity including: covert channel detection, mass-
mailing worms, automated scanning tools, and remote to
local worm propagation. In fact, we have already ex-
tended these ideas in an analogous worm detection im-
plementation based on the Address Resolution Protocol
as noted in Section 2.

Acknowledgements
We thank Anil Somayaji and the anonymous review-

ers for comments which significantly improved this pa-
per. The second author is supported in part by NSERC
(Natural Sciences and Engineering Research Council of
Canada) and MITACS (Mathematics of Information Tech-
nology and Complex Systems) grants. The third author
is the Canada Research Chair in Network and Software
Security, and is supported in part by an NSERC Discov-
ery Grant, the Canada Research Chairs Program, and MI-
TACS.

References
[1] Forescout. Wormscout. http://www.forescout.com/

wormscout.html.

[2] Mirage Networks. http://www.miragenetworks.com.

[3] Optixpro trojan horse. http://securityresponse1.
symantec.com/sarc/sarc.nsf/html/backdoor.optixpro
.12.html.

[4] Secure Shell Protocol (secsh). http://www.ietf.org/
html.charters/secsh-charter.html; accessed on Octo-
ber 24, 2004.

[5] tcpdump/libpcap public repository. http://
www.tcpdump.org.

[6] August was Worst Month Ever for Viruses, Worms.
Technet News, September 2003.

[7] Worm containment in the internal network. Techni-
cal report, Silicon Defense, 2003.

[8] M. Crispin. Internet Message Access Proto-
col. March 2003. http://www.ietf.org/rfc/rfc3501.
txt?number=3501; accessed October 22, 2004.

[9] D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. A
behavioral approach to worm detection. In To Ap-
pear in Proceedings of The Workshop on Rapid Mal-
code, 2003.

[10] G. Granger, G. Economou, and S. Bielski. Self-
securing network interfaces: What, why and how.
Technical report, Carnegie Mellon Iniversity, CMU-
CS-02-144, May 2002.

[11] J. Jung, V. Paxson, A. Berger, and H. Balakrishman.
Fast portscan detection using sequential hypothesis
testing. In 2004 IEEE Symposium on Security and
Privacy, 2004.

[12] C. Kruegel, T. Toth, and E. Kirda. Service specific
anomaly detection for intrusion detection. Technical
report, TU-1841-2002-28, 2002.

[13] D. Mills. Network Time Protocol (Version 3). RFC,
March 1992. http://www.ietf.org/rfcs/rfc1305.txt?
number=1305; accessed October 24, 2004.

[14] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. Inside the slammer
worm. In IEEE Magazine of Security and Privacy,
pages 33–39, July/August 2003.

[15] D. Moore, C. Shannon, G. Voelker, and S. Sav-
age. Internet quarantine: Requirements for contain-
ing self-propagating code. In Proceedings of the
2003 IEEE Infocom Conference, San Francisco, CA,
April 2003.

[16] R. Pethia. Attacks on the Internet 2003. Congres-
sional Testimony, Subcommittee on Telecommunica-
tions and the Internet, November 2003.

[17] D. Plummer. An Ethernet Address Res-
olution Protocol. RFC, November 1982.
http://www.ietf.org/rfc/rfc0826.txt?number= 826;
accessed on October 24, 2004.

[18] J. Postel and J. Reynolds. File Trans-
fer Protocol (FTP). RFC, October 1985.
http://www.ietf.org/rfc/rfc959. txt?number=959; ac-
cessed October 24, 2004.

[19] C. Shannon and D. Moore. The spread of the witty
worm. Technical report, CAIDA, March 2004.

[20] S. Staniford. Containment of scanning worms in en-
terprise networks. In Journal of Computer Science,
to appear, 2004.

[21] S. Staniford, V. Paxson, and N. Weaver. How to 0wn
the internet in your spare time. In Proceedings of the
11th USENIX Security Symposium, August 2002.

[22] N. Weaver. Potential strategies for high speed
active worms: A worst case analysis. 2002.
http://www.cs.berkeley.edu/˜nweaver/worms. pdf;
last accessed October 20, 2004.

[23] N. Weaver and D. Ellis. Reflections on Witty. ;login:
The USENIX Magazine, 29(3):34–37, June 2004.

[24] N. Weaver, V. Paxson, S. Staniford, and R. Cunning-
ham. A taxonomy of computer worms. In The First
ACM Workshop on Rapid Malcode (WORM), Octo-
ber 2003.

[25] N. Weaver, S. Staniford, and V. Paxson. Very fast
containment of scanning worms. In Proceedings of
the 13th USENIX Security Symposium, 2004.

[26] D. Whyte, E. Kranakis, and P. C. van Oorschot. Arp-
based detection of scanning worms in an enterprise
network. Technical report, School of Computer Sci-
ence, Carleton University, October 2004.

[27] M. Williamson. Throttling viruses: Restricting prop-
agation to defeat malicious mobile code. In Annual
Computer Security Applications Conference, 2002.

[28] C. Zou, L. Gao, W. Gong, and D. Towsley. Moni-
toring and early warning for Internet worms. In In
Proceedings of the 10th ACM Conference on Com-
puter and Communications Security, 2003.

A Background
A.1 Worm Propagation Methods

A thorough discussion of worm classifications based
on worm target discovery and selection strategies, carrier
mechanisms, activation, payloads, and types of attackers
is found in [24]. Worms are typically classified based on
two attributes: methods used to spread and the techniques
used to exploit vulnerabilities. Most worms propagate by
using indiscriminate scanning of the Internet to identify
vulnerable systems. As revealed by Slammer, the faster a
worm can locate systems the more rapid the infection rate.
Staniford et al.’s study [21] used empirical data from ac-
tual worm outbreaks to reveal a common effective prop-
agation strategy, random constant spread (RCS) model,
wherein a worm randomly scanning through the entire In-
ternet address space, of 2

� 	
systems, searching for vulner-

able systems.

Traditional Propagation Methods. The limiting fac-
tors which dictate how fast a worm can spread are: (1) the
rate of scanning used to detect vulnerable systems, (2) the
population of vulnerable systems, (3) the time required
to infect vulnerable systems, and (4) their resistance to
countermeasures [22]. The spread of a random scanning
worm can be described in three phases: the slow spread-
ing phase, fast spreading phase, and slow finishing phase
[28].

In the slow spreading phase, the worm is building up an
initial base of infected systems. Although it is infecting
systems at an exponential rate, the small initial population
limits the propagation speed. Once a certain threshold of
infected hosts is reached, the worm begins the fast spread-
ing phase. Models derived from actual worm data indicate
that this threshold is approximately 10,000 systems [21].
Worms use a number of different scanning strategies to
propagate. Scans can be focused on specific groups of
systems (e.g. subnet scanning) that are phyically or log-
ically connected together. Some scanning strategies use
information such as URL caches, peer-to-peer connec-
tions, trusted network connections, and email addresses
harvested from their victims (e.g. topological scanning)
to target potentially susceptible hosts [21].

In addition to scanning, worms have also used mass
email and network shares to propagate. Using built-in
emailers, worms can harvest email addresses from exist-
ing email address books, the inbox of the email client, and
web page caches. Copies of the worm are then sent to
all the harvested email entries. Through shared network
drives, systems often have access to directories on other
systems. By placing itself in a shared system, the worm
can use this shared access to infect other systems. The
worm can also take a more active role and change permis-
sions on directories or add guest accounts.

Hyper Virulent Worm Propagation Strategies.
Weaver et al. [21] describe a number of possible hyper
virulent worm propagation strategies that includes hit-list
and permutation scanning. A hit-list is a list of vulnerable
systems targeted for infection. Typically, a hit-list is gen-
erated by previous reconnaissance activities such as: net-
work scanning, web surveys, DNS queries, and web spi-
ders. A hit-list is used to allow a worm to rapidly spread
in the first few minutes. This increases its virulence and
its chances of survival. Permutation scanning is a strategy
to increase scanning efficiency. Random scanning can be
inefficient because many addresses may be probed multi-
ple times. Here, worms share a common pseudo random
permutation of the Internet address space. Infected sys-
tems start scanning at a fixed point in the permutation.
If the worm detects an infected system, it simply picks a
new random point in the permutation and begins scanning
again. This prevents reinfection and imposes a measure

of coordination on the worm. Until the Witty worm [19],
these strategies have not appeared in the wild.

A.2 DNS Review

DNS is a globally distributed hierarchical database that
provides a mapping between numeric IP addresses and al-
phanumeric domain names. Whenever access to service
occurs that uses a domain name to locate a server, DNS is
used. A domain name is a human friendly pseudonym for
a systems IP address.

DNS queries are performed on behalf of the user by a
resolver, an application installed on the user’s local sys-
tem to query the local DNS server whose location is spec-
ified during the system’s network connection configura-
tion. The resolver contacts the local DNS server with the
domain name provided by an application. If the local DNS
server doesn’t know the IP address for the requested do-
main name, it queries external DNS servers to resolve the
domain name. If the external DNS servers do not know
the information for the domain name, they respond to the
querying local DNS server with the address of an author-
itative DNS server higher up the chain. A server is con-
sidered authoritative about a domain if it can respond to a
query with certainty that the name exists.

If a system or user has a priori knowledge of the IP ad-
dress of another system it needs to access, a DNS query
can be avoided. However, the majority of accesses to re-
mote systems are initiated by specifying the domain name
in a client application. DNS resource records are the dis-
crete data structures used to store information about the
structure and content of the entire domain name space.
There exists a variety of DNS resource records. The re-
source record of interest with respect to our detection ap-
proach is the authoritative resource record or A record,
which maps a fully qualified domain name to an IP ad-
dress. The mapping between domain names and numeric
IP addresses can change over time as new services are
added or as networks change. Each DNS record has an
associated Time to Live (TTL) value, the number of sec-
onds that the mapping will be guaranteed to be valid. The
TTL dictates how long the resource record will be kept in
the DNS server’s cache. Caching resource records enables
a DNS server to reduce the number of requests it needs to
make to other name servers. Although the TTL value can
be as low as a few seconds, in practice the default TTL is
one day.

TTL values are associated with all DNS replies. A TTL
value provides a mechanism to allow resource records to
expire so that the information they contain can be updated
periodically in case changes to the network topology are
made.

