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Abstract. We consider memory errors and memory safety in the cases of the Java and Rust pro-
gramming languages. We also give a view of how type safety fits in.

Our previous article [13] discussed memory errors, with a focus on the C programming lan-
guage. We distinguished four levels of memory safety, with L1 (fundamental memory safety) pro-
tecting against spatial and temporal errors, L2 (clean memory safety) eliminating uninitialized vari-
ables, and further levels L3 to mitigate memory leaks, and L4 supporting avoidance of data races.

We now continue, first considering type safety, and then returning to memory errors with a few
more comments on C, and main focus on features in the Java and Rust programming languages.

Type safety and type confusion

C is often said to be weakly-typed. Despite being a typed language (the type of a variable must be
declared before use), programs are not fully type-checked. A program that compiles without errors
may still yield undefined behavior [2], by using constructs specifically identified by C’s specification
(thus implicitly discouraged) as allowing a compiler to do anything and still claim compliance.

Such undefined behavior is inconsistent with security. We want language designs, processors,
and run-time suppport aiming to ensure variables and expressions have types consistent with opera-
tions they are used in, and to prevent memory assigned to values of one type being used as another.

When a language processor or run-time system (or program) has inconsistent views of an ob-
ject’s type, or believes an object has type X when last stored out as an incompatible type Y, we say
there is type confusion. This may arise from a semantic program error (for a language that does not
rule out inconsistencies), or a tool implementation error (e.g., failing to detect an inconsistency that
a language aims to rule out). Type confusion may lead to behavior unexpected by the programmer.

In weakly-typed languages, a given instance of type confusion may be unintended (and unde-
tected if syntactically allowed). In the case that a programmer intentionally refers to the same object
(region of memory) as having two incompatible types, it may be called type punning (from pun, a
play on words, where a word or phrase has two meanings). For example, C union types (untagged
unions) enable type punning, effectively bypassing C’s type system. Reading a value out from a
union member as type A, that was last stored into as type B, should generally be expected to result
in an improper interpretation of the value.

It is desirable that the design of a programming language type system assign distinct types to
objects with distinct uses or semantic properties. For example: the type for pointers to data (data
pointers) should be distinct from function pointers, and the type for integers distinct from pointers—
e.g., because a pointer to a data object in memory plays an addressing role (locating and accessing
data), whereas regular integers are used for arithmetic expressions.

Now, consider the term type-safe language, sometimes shortened to safe language. Characteri-
zations of this term by experts include the following [2, 15].

• A safe language guarantees the integrity of the abstractions that it provides. This sets the
expectation that abstractions defined through the language are enforced at run time (e.g.,
boundaries of objects, allowed methods to access array elements).

• A safe language has a specification that fully defines program behavior, ruling out undefined
behavior. The language takes responsibility for ensuring that programs behave predictably
(versus making programmers responsible for the consequences of unsanctioned constructs).
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• A safe language precludes untrapped errors at run time. The language promises that any error
not detected statically will be trapped immediately upon occurrence at run time, and that there
can be no undetected run-time errors (e.g., which might cause unexpected behavior later).

While the above are characteristics rather than a formal definition, type safety is given precise defini-
tions in type system literature, (Some experts also use the term strongly-typed interchangeably with
type-safe, but others give it a separate meaning; we thus prefer to avoid it.) Type-safe languages
often rely on both compile-time and run-time checks to find targeted errors, specific to the language
and the goals of its type system.

These goals might not align with intuitive expectations in all cases, but in practice, type safety
often goes hand-in-hand with desired memory safety properties. Practitioners want memory safety,
and type-safe programming languages typically deliver at least temporal and spatial memory safety,
as part of eliminating undefined behavior.

Relating language choice and software security

Garbage collection is used by most languages that offer memory safety guarantees [15], as a com-
mon means to avoid errors related to manual memory management, including memory leaks, spatial
errors and temporal errors. As should now be clear, the language used to write a program has a huge
impact on the resulting software security—as some languages eliminate entire categories of errors.

However, language choice alone is not a full solution to avoiding memory errors related to
systems languages like C++ and C. These are often also called compiled or native languages, in
contrast to high-level languages that run in virtual machines or interpreters [16]. The challenge is
that “memory-safe” high-level languages may themselves have supporting components or use run-
time libraries that are written in native languages—e.g., to interface to hardware, or for performance
or historical reasons (legacy code, backward compatibility).

As a sign of progress, some categories of simple buffer overflows are becoming harder to exploit
in more recent products, due to not only improved development tools that help avoid them, but also
effective run-time defenses. For example, as of 2019, Microsoft reported that stack buffer overflows
had almost disappeared among their vulnerabilities [11].

However, languages themselves cannot eliminate all security problems related to software. As
one example, definitions of memory safety and type safety are silent on language-related categories
of errors such as integer overflows and underflows (below). As another, language-based software
security is orthogonal to social engineering (“download and install this cool software [please ignore
the malware hidden within it]”).

Furthermore, neither memory safety nor type safety address security issues related to lack of
input validation—e.g., preventing a char string <script> tag, embedded in user input to a web
discussion forum, from being executed as JavaScript. This type of input validation may be viewed
as a higher-level type checking issue above programming languages. For discussion of the failure
of mainstream programming languages to provide features that protect against this, related injection
errors and other major categories of software vulnerabilities, see Cifuentes and Bierman [3].

Integer overflows (underflows) are known to indirectly enable a wide variety of exploits. For
example in C, if a 16-bit unsigned int x holds value 216−1= 65535, x+1 yields 0. We commonly
call this an integer overflow, but per C’s specification, arithmetic overflow “never occurs” for an
unsigned int—instead, for an n-bit width, the result is computed in arithmetic modulo 2n and
considered correct (with no error flagged). In contrast, for an 8-bit signed char x = 127, C says
that adding 1 yields undefined behavior (most implementations yield x =−128 and proceed).

Integer overflow/underflow, and consequences of coercion (e.g., integer width conversions, trun-
cations and extensions) can lead to a broad class of errors called integer-based vulnerabilities, which
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are not themselves but can indirectly contribute to memory errors (e.g., via integers used in branch-
ing conditions, as loop counters, or array access indexes). Surprises often result from mixing signed
and unsigned integers. For example in C, comparing signed and unsigned int values results in pro-
motion (a coercion) of the signed int to an unsigned of same width. This converts negative values
to positive, often unexpected by developers; compilers may or may not warn about this. Thus the
general advice across programming languages: avoid mixing signed and unsigned data types.

A closer look at Java

We now look at Java as a language example, with focus on security-related aspects including data
typing and memory safety. Java is distinguished in that its programs are compiled to bytecode,
which is then loaded and run on the Java Virtual Machine (JVM).

Java was designed to allow substantial type checking at compile time, but some checks must be
done dynamically, e.g., for objects whose types are not statically known. Thus it is statically typed
(variables must declared before use), but not entirely a statically-checked language.

References are used in Java, not raw pointers. This is common for high-level languages that use
garbage collection, as Java does. A Java variable for a (non-primitive) object stores not a value, but
a reference that provides access to a value on the heap. For example, for rec = new Record();
the identifier rec may allow access to rec.firstfield, but no memory address can be derived by
the programmer from rec. This rules out program-based manipulation of addresses.

The internal implementation of a Java reference to an object (e.g., a growable string or vector)
nonetheless involves a pointer to the value (as well as metadata enabling validity checks). But Java’s
design eliminates C’s explicit pointer dereference (*) and address (&) operators.

Java allows setting a reference to empty (rec = null), implying no object present. The vari-
able itself then stores a semantic value denoting null. Trying to dereference a null reference, as in
rec.firstfield, throws an exception—albeit called NullPointerException for historical rea-
sons. Thus Java’s implementation of a reference does not simply try to follow a raw pointer as
would be done in C; in contrast, it involves semantic checks, and bounds-checking.

If aa and bb are variables for objects of the same type in Java, then bb = aa does not result in
a copy of object aa being created for bb; instead, bb becomes a reference to the same object as aa.
We say that aa and bb are aliases for the same object; modifying the value of one changes both.

Type-casting in Java

In Java, casting creates a reference to an object having a type compatible with the original (the
original object is unchanged). Here to be compatible requires an existing relationship within Java’s
object inheritance hierarchy. Valid casts include explicit downcasts from a parent superclass type
to a child subclass, and upcasts from a child class to its parent class (supertype). Primitives can
be downcast (narrowcast) to narrower types, e.g., int to short, or float to int; the expression
(int) doublefloatx could be assigned to an int variable, narrowing to a value of 10 if variable
doublefloatx had value 10.8. The opposite, a widecast, is done implicitly (automatically) by the
compiler when needed; however narrowing requires explicit casting to avoid an error.

While some casting errors can be statically detected, if a type is unknown at compile time,
compatibility checks are done at run time. Run-time cast errors result in a ClassCastException
being thrown. Run-time type information (below) is thus needed for type-checking dynamic casts—
and for expressions involving the binary operator instanceof, often used to avoid this exception.
For example, (obj instanceof class) returns a boolean, allowing control-flow decisions based
on a run-time test of an object’s type against a statically known type (class).

Recall that defining a Java class creates a new Java type, which variables can be declared to
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have, thereby granting access to methods within the class. On compilation, the resulting class
file contains information loaded later by the JVM. From this the JVM builds a dictionary of run-
time type information [17], and creates an object of class java.lang.Class for each type loaded
(providing class metadata and methods). To use this type information in support of runtime type-
checking (such as for dynamic casts), object instances in the JVM are associated with the dictionary
type information for the object’s class. This might be done by a pointer from the object instance to
the dictionary type information.

Java is generally said to be memory safe. Our L1 is delivered by Java’s design of references
(no program access to explicit addresses), type checking and casting rules, avoiding temporal errors
by garbage collection, and avoiding spatial errors by checking object bounds through compile-time
and (when not statically reasoned to be always safe) run-time bounds-checks. L2 is achieved by
flagging use of uninitialized local variables as a compile-time error, and assigning default values
to uninitialized class variables (and fields therein): 0 or false for primitive types and NULL for
objects. For L3, memory leaks can be substantially reduced by garbage collection. While Java
remains susceptible to programming errors related to integer overflow, its specification does require
that the resulting behavior be as expected from two’s complement arithmetic. (In contrast in C,
overflow of anything other than unsigned integral types officially yields undefined behavior.)

For discussion of Java support to prevent data races (L4), including through synchronized ac-
cess (e.g., synchronized statements and synchronized methods), see Eck [4]. For high-level
explanations on Java type-checking and type confusion, see McGraw and Felten [10], and for a
long-term review of Java security vulnerabilities, see Holzinger et al. [8].

Rust overview and motivation

Awareness of C’s memory safety failures and the security implications continues to grow. The Rust
programming language is arguably the most serious contender as a systems-level alternative to C,
i.e., a lower-level language suitable for operating systems and browsers and interfacing to hardware.
Here we briefly introduce a selection of Rust’s design features related to memory safety and security,
and encourage pursuit of further details independently.

While the importance of security in programming languages has been known to experts for over
35 years—even before the 1988 Internet worm incident—it is now reaching wider audiences. Recent
efforts to deliver this message include Gaynor’s 2019 pitch [7] encouraging VPs of Engineering to
choose languages other than C/C++, and a high-level overview of memory safety from the US
National Security Agency in November 2022 [12]. A month earlier, Linus Torvalds approved direct
support for Rust kernel code in Linux 6.1. Arguments in favor of Rust over C for introductory OS
courses date back as early as 2013 [5].

We now begin a short tour of Rust design features that support security. As a central aspect,
Rust developers must be aware of the location of memory associated with an object (heap, stack, or
a data segment). Heap memory is of special concern, as heap objects internally involve raw pointers
pointing to values. Rust’s design is such that no object is pointed to by more than one pointer (at
any one time) having the capability to modify the object’s value.

Such write-capable aliases are historically a root cause of security vulnerabilities in C, and
aliases in general complicate static detection of various dangerous practices. Rust’s design enables
detailed static analysis, and provides significant features for handling errors at run time. Together,
this addresses many of the memory errors that we have discussed.
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Mutability and ownership

Mutability is a key concept. By default, the value of a Rust variable cannot be changed once as-
signed. To do so requires an explicit declaration of the variable as mutable, using keyword mut:

1: let mut i = 7; // we say this binds the integer value 7 to variable i
2: i = i + 1; // update allowed, because the variable is mutable
3: let j = i; // type inference used here (type declaration optional here)

After line 1, i is said to own the value 7. At line 3, a copy of value 8 is made and that copy is bound
to variable j. Both i and j have value 8, stored as separate copies on the run-time stack.

If instead of integer variables i and j we now consider variables u, v of type String (below),
and u had string value "STRing1", then let v = u; would not result in a copy of the string being
made. This is because dynamic strings are stored in heap memory, and by default Rust does not
copy heap data (sometimes called deep copying). Instead, value "STRing1" is said to be moved
from u to v, meaning that ownership (as tracked by the compiler) of the original copy of the value
transfers to v. The value is no longer accessible through u; attempted access yields a compiler error.

The rules on owning and moving values apply to all assignments—not only in explicit assign-
ment statements, but also in function calls, both when variables as instances of actual arguments are
converted to formal parameters, and in passing return values back to calling functions.

Passing a variable of type String to a function moves the string value (and its ownership) to the
scope of the function. However, passing a primitive-type variable (such as i:u32, unsigned 32-bit)
to a function does not move ownership of its value; instead, a copy is made, based on the design
decision that a u32 (as a primitive of known size) can be efficiently shallow-copied as stack data.

Ownership rule #1 in Rust is: Each value has a single owner object at any one time. The owner
is the only entity with authority to alter the value. Thus, a single owner has write privileges.

Scope rule #1 is: When an object goes out of scope, associated dynamic memory is freed. (Code
to call a drop function is automatically compiled in.) As a baseline, the scope of a non-global object
is the function or block it is in; ownership can be transferred out of a block through a return value.
Rust tightens an object’s scope (lifetime) to its minimum span of actual use within a block (e.g.,
rather than the end of a block or function); in some cases this avoids otherwise violating Ownership
rule #2, below. Beyond an object’s lifetime, neither the object nor its value is valid for access;
compiler errors (on attempts to access invalid objects) clarify valid spans.

A variable’s scope may be refined by blocks delimited by braces ({ }) and by explicit annotation
(using optional scope labels in variable declarations). While these scoping rules at first appear to
add time and complexity burdens on programmers, they enable detailed compile-time type checking
that helps prevent memory errors and related security vulnerabilities. The win is long-term, in the
form of fewer bugs, as a result of the safety guarantees that the compiler can deliver.

References and borrowing in Rust

The syntax &i denotes a reference to variable i (not its value). The reference can be used, e.g., to
assign to another variable or as a pass-by-reference argument to a function (vs. passing a copy of
the value, pass-by-value). As an example (&i32 declares a reference to a 32-bit int):

let b: &i32 = &a; // b is a reference to a
Rust aims to guarantee that throughout the lifetime of a reference, it always refers (points) to valid
values of a given type. References to non-primitive types are smart pointers (as discussed shortly).

Like other variables, references are immutable by default; to modify a value through a reference,
it must be a mutable reference (&mut) and the object to be modified must also be declared mut.

& is called the borrow operator. An & reference allows reading, and is said to borrow a value. A
mutable borrow (&mut) also allows write access, and moves a value’s ownership. A borrow’s read
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access privilege ends (is returned) when the variable’s lifetime (scope) ends. This is tracked by the
compiler’s borrow checker, which enforces our second ownership rule.

Ownership rule #2: Rust allows only one mutable reference to a value (and no immutable
references in this case), or multiple immutable references (allowing read-only access).

Some data types are fixed-length once declared (e.g., array and tuple types). Others are variable-
length, e.g., String, and vector type Vec<T> for growable collections of a fixed basic type T (say,
u32). Accessing an invalid collection element, e.g., the ninth element of a vector with only elements
0..7, is caught as an error. For example, a vector element access may be attempted by: &myvec[8],
or myvec.get(8). The first would trigger a run-time panic error (program termination). The second
would return a semantic value None, enabling programmatic error-handling. Notably, in neither case
do (L1 spatial) memory errors occur.

Option types, NULL pointers and strings

To eliminate NULL pointers in regular code, Rust has a generic type Option<T>, with type param-
eter T. For references to objects x of type T, Option<T> can be assigned values Some(x) for the
non-NULL case, or None for the NULL case (the absence of a value). In the case of Some(x), the
value x that is wrapped in the Some variant can be accessed using .unwrap(). Executing unwrap on
None results in a runtime panic (typically, program termination accompanied by an error message).

This leads to programs being written to explicitly handle both cases, with the Some and None
cases distinguished using common Rust constructs and methods (which we do not discuss here).
This replaces ad hoc (often missing) NULL pointer checks in C code. While C programmers and
novice Rustaceans may initially view this arrangement as tedious, the tradeoff is short-term attention
to detail to avoid often large costs later, to fix hidden bugs and their consequences.

The Option type also appears in one of the built-in method categories available for custom
handling of integer overflow. (Arithmetic overflow results in defined behavior in Rust, but this does
not eliminate related programming errors.) By default, integer overflow triggers a run-time panic in
debug builds, and wrap-around (arithmetic modulo 2n) in release builds [1]. If this is not as desired,
the defaults can be overridden by using built-in integer operation methods: (1) checked overflow
returns Some(x) if a result x is representable within the type’s range, else None; (2) saturation
returns a result x pinned to the maximum or minimum range value closest to the correct result;
and (3) wrap-around overflow is as per the default, or a variation can furthermore indicate TRUE if
wrapping actually occurred (a result tuple is comprised of the value, and a boolean flag).
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Figure 1: Rust smart pointer for String object mystring with value “string”. For function
signature fn on str(s: &String), the figure shows the result of a call fn on str(&mystring).
A reference to the object of type String is passed, and populates the formal parameter s.

The String type noted above is an example of a Rust smart pointer (as is Vec<T>). String
is implemented as a built-in (C-like) struct (see Fig.1). One field is a protected (not subject to
alteration, e.g., by pointer arithmetic) raw pointer to a value in heap memory, a second supports
bounds-checking (len, the size currently in use), and a third helps manage dynamic growth of a
string (capacity, the maximum size based on memory currently allocated to this object).
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Rust String objects are well-supported by this combination of pointer (to string value data)
plus metadata used to deliver guarantees. In contrast, C strings are programmer-built using a raw
pointer to a first char and a hope that the following sequence of bytes is terminated by a NULL char
before the end of the memory allocated for the string.

The String type has two so-called traits of interest. (Traits provide functionality available for
a given type, i.e., functions that may operate on values of that type.) The first is the Deref trait,
which allows dereferencing the smart pointer (using ?).

The second is the Drop trait, which specifies the function to call when the object goes out
of scope, e.g., code to free heap memory. The compiler will generate code to call this function,
lightening the programmer’s burden (and avoiding programmer errors that enable memory leaks, or
release memory twice). The Drop trait thus supports implementation of Scope rule #1.

Rust’s combination of compile time static analysis and automated insertion of code to reclaim
heap memory amounts to a third approach to dynamic memory management, distinct from both tra-
ditional garbage collection, and manual programmer allocation plus deallocation of heap memory.

Other smart pointer types in Rust include the reference-counting pointer, the string slice (&str),
and the simplest variety of smart pointer: box pointer. This last type, Box<T>, allocates a fixed-
size object on the run-time stack, holding simply a pointer to a value of type T, allocated from heap
memory. One common use is when a value is to be moved to a new owner (the new owner simply
gets a pointer to the heap value), to avoid inefficient deep copying of large data structures.

Memory safety and unsafe Rust

Code blocks denoted by the unsafe keyword open up a special compiler mode that relaxes some
constraints, allowing developers to carry out operations not normally permitted in Rust—including
potentially dangerous pointer arithmetic, and dereferencing of raw pointers. The price is thus the
loss of some safety guarantees, such as pointers always being non-NULL and pointing to valid ob-
jects. Rust’s hope (and culture) is that programmers strictly scrutinize and minimize use of unsafe
blocks. This localizes and significantly reduces the volume of code at higher risk of memory vulner-
abilities, but the difficulty of finding security flaws by ‘scrutinizing’ is what motivated using Rust
versus C.

Most security issues involving invalid pointers are eliminated by Rust features such as ownership
and borrowing rules enforced by the borrow checker and static type checking system, smart pointers,
and Drop traits supporting automated memory deallocation. These allow tracking of object validity
and verification that all references (pointers) are valid. In particular, dangling references are flagged
as compile time errors. However, some memory errors may still affect Rust code, for example,
involving unsafe blocks, run-time libraries that may be unsafe, and non-Rust components.

Nonetheless, returning to our memory safety levels, spatial and temporal memory errors are
largely eliminated (L1). For L2, reading from uninitialized variables is caught as a compile-time
error, and concerns about wild (and NULL) pointers and invalid heap objects are addressed by Rust’s
guarantee that all references are validated before use. L3 errors (memory leaks) are also largely
eliminated by Rust’s approach to dynamic memory management.

Finally, data races (L4) are addressed in safe Rust by its enforcement of Ownership rule #2,
combined with features supporting multi-threaded programs such as syntax allowing the movement
and tracking of object ownership across threads. For further discussion of concurrency and the
broader issue of thread safety in Rust, see Klabnik and Nichols [9].

While Rust is a big step forward in memory safety for systems languages, security issues remain.
One category stems from the reality that while most binaries rely on libraries from a variety of
source languages and tool chains, security guarantees are not composable across such components.



Security Knowledge department 8 IEEE Security & Privacy (May-Jun 2023)

Rust delivers guarantees that rely on compile-time analysis, as well as optimizations via eliminating
apparently redundant runtime checks—but this combination has been shown to enable use of safe
Rust code to exploit non-Rust code in mixed binaries, e.g., combining output from C/C++, and Rust
compiler tool chains that have differing approaches to delivering memory safety [14].

What remains to be seen is whether Rust will displace C and its cousins in the long term,
or ongoing hardening of C via tools and runtime support (software and hardware) will eventually
mitigate enough classes of vulnerabilities to weaken the motivation to broadly adopt Rust.

Rust also has a steep learning curve, especially for first-time programmers [6]. On the other
hand, there is a big difference between learning enough C syntax to write simple programs, and
gaining sufficient experience to avoid writing C code with hidden vulnerabilities. This observation
has led to suggestions that while it takes time to become a productive Rust developer, it takes longer
to learn C well enough to avoid writing dangerous programs.

References
[1] J. Blandy, J. Orendorff, L. Tindall. Programming Rust: Fast, Safe Systems Development (2e). O’Reilly Media, 2021.

[2] L. Cardelli. Type Systems, pp.2208–2236 in: The Computer Science and Engineering Handbook, CRC Press, 1997.
Revised version in 2nd Edition (2004), http://lucacardelli.name/papers/typesystems.pdf

[3] C. Cifuentes, G. Bierman. What is a secure programming language? 3:1–3:15, Summit on Advances in Program-
ming Languages (SNAPL), 2019.

[4] David J. Eck. Introduction to Programming Using Java. Version 9.0, May 2022. https://math.hws.edu/
javanotes/

[5] D. Evans. Using Rust for an undergraduate OS course, 2013. http://rust-class.org/0/pages/
using-rust-for-an-undergraduate-os-course.html

[6] M. Fluet. Experience report: Two semesters teaching Rust. Pages 45–58 in: Rust-Edu Workshop proceedings, Aug
2022. https://rust-edu.org/workshop/proceedings.pdf

[7] A. Gaynor. Introduction to memory unsafety for VPs of engineering. Aug 12, 2019. https://alexgaynor.net/
2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/.

[8] P. Holzinger, S. Triller, A. Bartel, E. Bodden. An in-depth study of more than ten years of Java exploitation. 779-790,
ACM CCS, 2016.

[9] Steve Klabnik, Carol Nichols. The Rust Programming Language (covers Rust 2018). No Starch Press, August 2019.
https://doc.rust-lang.org/book/

[10] G. McGraw, E.W. Felten. Securing Java: Getting Down to Business with Mobile Code. Wiley, 1999.

[11] Matt Miller (Microsoft). Trends, challenges, and strategic shifts in the software vulnerability mitigation langscape.
BlueHat Israel Conference, 7 Feb 2019. Slides 1-24. https://github.com/Microsoft/MSRC-Security-Research/
blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%

20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

[12] National Security Agency. Software Memory Safety. Cybersecurity information sheet, Version 1.0, Nov. 2022.
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

[13] P C van Oorschot. Memory errors and memory safety: C as a case study. IEEE Security & Privacy 21(2), Mar-Apr
2023.

[14] M Papaevripides, E Athanasopoulos. Exploiting mixed binaries. ACM Trans. Priv. Secur. 24(2) 7:1-7:29, 2021.

[15] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[16] D. Stuttard, M. Pinto. The Web Application Hacker’s Handbook. Wiley, 2007.

[17] Bill Venners. Design with runtime class information. JavaWorld. Feb 1, 1999. https://www.infoworld.com/
article/2076355/design-with-runtime-class-information.html

http://lucacardelli.name/papers/typesystems.pdf
https://math.hws.edu/javanotes/
https://math.hws.edu/javanotes/
http://rust-class.org/0/pages/using-rust-for-an-undergraduate-os-course.html
http://rust-class.org/0/pages/using-rust-for-an-undergraduate-os-course.html
https://rust-edu.org/workshop/proceedings.pdf
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://doc.rust-lang.org/book/
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.infoworld.com/article/2076355/design-with-runtime-class-information.html
https://www.infoworld.com/article/2076355/design-with-runtime-class-information.html

