
Side-channel attacks: A short tour

Frank Piessens and Paul C. van Oorschot∗

March 2024

We provide a brief, accessible introduction to side-channel attacks, a grow-
ing subarea of computer security. We explain the key underlying ideas, give
a chronological overview of selected classical attacks, and characterize side-
channel attacks along several axes.

Introduction

In computer science we often think of a program as a function that maps input
data to output data. However, execution of a program on a real machine is
much more involved. What is typically viewed as input or output is only a
small fraction of actual interactions that take place between a program and its
environment during execution.

For example, executing a program on a digital electronic computer will con-
sume power, emit electromagnetic radiation, alter memory, and take a mea-
surable (often observable) amount of time. Depending on the execution envi-
ronment, program execution may cause many other effects, including micro-
architectural effects such as moving data from main memory to a cache, archi-
tectural effects such as page faults, and programming language runtime effects
such as garbage collection.

A side channel is any exploitable source of information about a program or
its data (aside from a program’s intended input or output channels) obtained
by examining interaction or interfaces between the executing program and its
environment. Side-channel attacks use the side channel to learn information
about some aspect of program state (as classical examples, by measuring time
or power consumption) or to unexpectedly modify program state (such as by
inducing bit flips through power glitching). A typical goal is to extract secrets
such as a cryptographic key or password.

The closely related term covert channel is used when a program is designed
or altered to intentionally use such a channel to exfiltrate information; in this
article, we focus on side channels where a victim program inadvertently leaks
information.

∗Author’s version of the Security Knowledge column from IEEE Security & Privacy, pp.75-
80 (Mar-Apr 2024), https://www.computer.org/csdl/magazine/sp/2024/02

1



Side-channel leakage can occur while a program is doing computation (for
example, execution time could depend on data being processed), or when mov-
ing input/output (I/O) through an intended channel—for example, the time
between keystrokes could leak information on what keys are being pressed.

A vast array of attack techniques that exploit side channels has been devel-
oped and studied over several decades, and side-channel attacks are a serious
threat to computer security in many settings. As noted, cryptographic secrets
are an important class of targets; a cryptographic primitive might be secure
when considered as an abstract mathematical function, yet depending on the
software implementation details and platform used, could be vulnerable to a
range of side-channel attacks.

We now proceed with a historical overview of some classical attacks.

Leaks through physical side-effects

Electronic computing devices emit electromagnetic signals. That these can often
be picked up by an attacker has been well known for decades in military com-
munities (and longer for electronic communication devices). Ross Anderson’s
book [1] notes many examples providing historical context.

Side-channel attacks came to the attention of the broader security commu-
nity in 1996, when Paul Kocher [6] showed that the execution time of common
implementations of public-key cryptographic algorithms leak information about
their private keys, in some cases enough to recover the entire key.

Example 1. To understand the idea behind time-based side-channel attacks,
recall that two famous public-key algorithms, RSA and Diffie-Hellman key ex-
change, require discrete exponentiation with large secret integer exponents. This
is commonly implemented using a square-and-multiply algorithm, which pro-
ceeds through each bit position in the exponent. For each bit position, one
squaring is done, plus a further multiply conditional on the exponent bit in that
position being 1 (not when 0). A 1-bit therefore requires extra computation,
and the time difference leaks this bit. Recovering this bit from the overall exe-
cution time is trickier, but accumulating timing data over a sufficient number of
executions often allows (perhaps surprisingly) recovery of the entire secret key.

Power use also leaks information about a computation in different ways, so
that even if an implementation is protected against timing leaks, it may remain
vulnerable to a side-channel attack that observes power consumption. It was
again Kocher and collaborators [7] who demonstrated this through a general
attack technique called differential power analysis.

Example 2. A differential power analysis attack is a statistical attack that ex-
ploits correlations between the data processed by a program and the program’s
power consumption. To explain, suppose the program’s immediate power con-
sumption at one specific time point T in execution correlates with the value
of one specific bit b of the program state. Power measurements are stochastic

2



and noisy, and a single measurement may not suffice to infer anything, but the
correlation can be exploited statistically.

For a sufficiently large set S of power measurements of different program
executions (always at time T in the execution), let avg(S) be the average of
these measurements. Differential power analysis relies on the observation:

• If S is randomly partitioned into subsets S′ and S′′, then avg(S′) will be
(statistically) equal to avg(S′′), and both statistically equal to avg(S).

• However, if we partition S in subsets S0 (all executions where b = 0) and
S1 (for b = 1), then due to the correlation, avg(S0) and avg(S1) will differ.

The attacker cannot partition S based on the value of b directly, as they do
not know b for each of the executions in S. Instead, the attack uses a selection
function that partitions executions, based on the (variable) public inputs or
outputs of the program (e.g., ciphertext), and on a part of a (constant) secret to
be extracted from the program (e.g., a byte of the key). The selection function
is designed such that a correct secret will partition executions according to
the value of b (while an incorrect secret will partition executions more or less
randomly). The attacker now partitions S with the selection function using the
known public inputs of each individual execution, and a guess for the secret, and
determines whether the guess is correct or not based on the observation above.
Recovering the secret is now a simple matter of trial-and-error. Differential
power analysis attacks turned out to be surprisingly powerful in practice.

Many of these early attacks focused on smartcards, for an attacker with
direct physical access to it. Timing and power attacks were then developed
further to work as remote attacks. In 2003, Brumley and Boneh [4] convincingly
demonstrated a timing attack that recovered an OpenSSL-based private key
from a remote server over a local network. For power attacks this took longer—a
2021 paper [10] shows how to perform power attacks without physical access, via
software-accessible interfaces that enable measurement of power consumption.

Leaks through micro-architectural side-effects

An important next step in side-channel attacks was the observation that not
only physical side-effects mattered. Processors use a plethora of optimization
techniques such as caching, pipelining, branch prediction, and out-of-order ex-
ecution. These optimizations require the processor implementation (or micro-
architecture) to maintain state, like the contents of the cache, or the state of the
program flow branch predictor. Side-effects of program execution then extend
to this micro-architectural state.

Attacking programs by observing micro-architectural side-effects or their
consequences was an idea already noted in Kocher’s 1996 paper on timing at-
tacks. The first practical attacks appeared in the early 2000s independently by
several researchers.

3



Example 3. Micro-architectural optimizations such as caching may simply en-
hance the power of attacks that measure execution time, as in the 2006 cache-
collision attack by Bonneau and Mironov [3], recovering 128-bit AES keys. The
core idea is that accessing a variable’s value takes less time than otherwise if it
is already in the cache, and some instances of program data (here, plaintexts or
ciphertexts for a fixed unknown key) yield more cache hits than others. This
particular attack exploited data-dependent table lookups into cached memory;
the lookup indexes depended on known data bytes and unknown key bytes.
Software analysis (whitebox analysis) provided equations relating unknown val-
ues to values that were known or could be deduced. Some unknown values had
higher probability in the case of a cache hit, and hits were identifiable by times
that differed significantly from averages. From this, compiled timings and data
values from a sufficient number of samples enabled key recovery. This attack was
for specific software implementations of AES running on Pentium III processors,
and required 213 samples (today’s processors have AES opcodes, obsoleting the
use of AES lookup tables and thus this particular attack).

A more fundamental novelty of micro-architectural side-channel attacks is
that the attacker can measure micro-architectural effects by measuring the ex-
ecution time of attacker code rather than victim code, as in the next example.

Example 4. A simple but very powerful example is a flush+reload attack. This
assumes the attacker and victim share some memory (such as the code pages
of a shared library). The attacker flushes (removes) a specific memory address
from the cache, then waits for the victim to run. Then the attacker measures
how long it takes to reload from the same memory address. A fast reload means
the victim accessed the memory address (causing it to be cached again). If the
reload is slow (not cached), the victim likely did not access it subsequent to the
attacker’s flush. Thus the attacker learns something about the victim program
state from the presence (or absence) of the victim memory access. Yuval and
Falkner [16] demonstrate the power of the attack by using it to extract private
encryption keys from a victim program.

Following early methods such as these, many variants of cache attacks were
developed to match different attacker models. And aside from the cache, various
other micro-architectural elements have been enlisted for side-channel service;
Ge et al. [5] provide an excellent survey circa-2018.

The breadth and severity of micro-architectural side-channel attacks came
into focus in 2019 with the discovery of two transient execution attacks, Spectre
and Meltdown [8, 9]. Processors that use out-of-order and speculative execution
rely on a roll-back mechanism to suppress the effects of mis-speculated execu-
tion; instructions that are speculatively executed and later rolled back are called
transient instructions.

The key idea of a transient execution attack is to influence a processor’s
prediction and speculation mechanisms so as to transiently execute code snip-
pets that send out secrets over a micro-architectural side channel. We thus view
these not as traditional side-channel attacks, but attacks that create conditions
whereby information becomes available through a side channel.

4



With a transient execution attack, an attacker (to some extent) controls the
sending side of the side channel, and this significantly amplifies the amount
of information that can be leaked. Our Sept/Oct 2023 column [13] provides a
detailed explanation of transient execution attacks.

Leaks through architectural side-effects

Analogous to processors, system software implementations employ optimizations
that while intended to be invisible to application software, may enable new side
channels. Two examples of optimizations that have been exploited are memory
deduplication and demand paging, as explained next.

Memory deduplication is an optimization in virtual memory systems. If
different processes or virtual machines have pages with identical contents in
their virtual memory address space, system software can deduplicate them and
store the corresponding page only once in physical memory. The two virtual
address spaces then share this physical page, saving physical memory. The
system software uses the copy-on-write technique to recreate two versions of
the physical page as soon as one of the processes writes to the deduplicated
page. Hence on systems employing this optimization, program execution has
side-effects on the deduplication state.

Suzaki et al. [14] first proposed using such side effects to attack other pro-
grams on the same system. The timing delay from the copy-on-write introduces
a side channel that informs attackers whether a page with the same content
exists elsewhere in the system. This was first used to detect the presence of
executables or downloading of files in other virtual machines in a cloud setting,
and later refined to work from more restricted settings (such as JavaScript code
in a browser) and to leak more fine-granular information.

A trend amplifying the danger of such architectural side channels is the
desire to remove system software from the trusted computing base. Confidential
computing, supported by trusted execution technologies such as Intel SGX, Intel
TDX, and AMD SEV, aims to enable the execution of application software in
the cloud, without the requirement to trust the cloud provider.

In such a setting, system software is necessarily untrusted; protected appli-
cations are shielded from system software, but a direct consequence is that many
architectural side-effects become dangerous side channels. Xu et al. [15] intro-
duced the notion of controlled-channel attack, a category of side-channel attack
allowing untrusted system software to learn information about such protected
applications by observing architectural side-effects of their (shielded) execution.

The prime example of such a side-effect is a page fault due to demand paging
(whereby pages of a process are loaded into main memory only when needed).
System software can mark memory pages of the protected application as in-
valid, and will then be notified by the occurrence of a page fault, whenever the
protected application accesses a memory address in one of these pages.

Controlled-channel attacks have advanced to be more fine grained and more
stealthy (for instance by relying on the system software’s control over inter-

5



rupts), and are now among the most powerful attacks against confidential com-
puting systems, along with micro-architectural side-channel attacks.

Characterizing side-channel attacks

The range of side-channel attacks has expanded tremendously since 1996. The
breadth is highlighted by characterizing attacks along two axes. The first dimen-
sion follows our historical overview, grouping attacks based on the phenomena
on which the information channel is built:

• physical phenomena, such as execution time, consumption of energy or
power, electromagnetic radiation, emission of sound;

• micro-architectural phenomena, such as cache state, predictor state, con-
tention for processor resources like execution ports or floating point units,
data-dependent execution time of instructions; and

• architectural phenomena, such as page faults, page deduplication, perfor-
mance counters, interrupts.

The second axis acknowledges that whether a specific side channel is exploitable
depends heavily on the attacker model—the kinds of power they have, in terms
of observation or manipulation. We identify the following cases:

• the physical-access attacker—with physical access to the computing device
running the victim program. They can place probes or sensors to observe
and measure physical phenomena. This is an important attacker model
for smartcards and IoT systems.

• the remote attacker—with only remote access to the target computing
device through a network interface. They are limited to measuring time,
or side-channel signals available through the network communication itself.
This model is relevant for Internet servers.

• the shared-platform attacker—who can run code on the platform where the
victim program is executing, but is isolated from that program by some
mechanism such as process isolation or virtual machine isolation. This
attacker can monitor micro-architectural and architectural phenomena.
This model is relevant for any platform that runs code from multiple
stakeholders, thus including cloud, mobile and desktop platforms.

• the privileged attacker—who can control the system software of the plat-
form on which the target program runs under protection of trusted execu-
tion technologies. This attacker can monitor a broad selection of physical,
micro-architectural and architectural signals. This model is relevant for
the emerging field of confidential computing.

6



Information Channel Phenomena
Attack Physical Micro-architectural Architectural
Model

Remote timing [4]
Shared flush+reload [16] deduplication [14]

platform fault injection [12]
Privileged power [10] controlled-channel [15]

fault injection [11]
Physical timing [6] cache [3]
access power [7]

fault injection [2]

Table 1: Characterizing selected side-channel attacks.

Table 1 classifies the attacks we discussed along these two axes.
A further distinguishing aspect is whether information is leaked by computa-

tion, or by communication on one of the intended I/O channels. Our discussion
has focused mainly on leakage through computation, but side-channel attacks
have been applied to a wide variety of I/O devices, showing for example how
a phone’s accelerometer can be used to deduce where a user is tapping on the
screen, or showing how to reconstruct the image on a computer display from
the electromagnetic radiation emitted by the display.

Finally, while our main focus has been side channels that directly leak secrets
from a victim program (a confidentiality threat), one can also consider using
side channels to influence program state (an integrity threat), e.g., by inducing
faults as in fault injection attacks. On this, insightful 1997 work by Boneh et
al. [2] explained how transient hardware faults (or inducing them) would enable
attacks on public-key algorithms, inspiring Biham and Shamir’s differential fault
analysis attacks on symmetric-key algorithms later that year. The original
context was the physical access model (as per classic side channel attacks),
but more recent attacks are applicable in shared-platform or privileged attack
models.

As one example, the well known RowHammer attacks [12], first published
in 2014, cause bit-flips in DRAM memory by very frequently accessing memory
locations in the same DRAM bank, but different rows. As another, Plunder-
Volt [11] injects faults in an Intel SGX protected application by using privileged
software interfaces to manipulate CPU voltage and frequency.

We end by noting that having grown immensely in scope and impact since
1996, we expect side-channels to continue as a hot topic in research. They are
recognized as an attack surface to be addressed in the design and implementation
of almost all deployed systems. Due to timing attacks in particular, constant-
time implementations are now an important feature in cryptographic libraries, to
decouple execution times of cryptographic algorithms from the values of secrets,
for example ensuring that branching decisions are not dependent on bit-values
in secret keys. Likewise due to cache timing attacks, memory accesses should

7



be decoupled from the values of secrets. We plan to say more about defenses
against side-channel attacks in a future article.

References

[1] R.J. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. Third edition. John Wiley and Sons, 2020.

[2] D. Boneh, R.A. DeMillo, R.J. Lipton. On the importance of checking crypto-
graphic protocols for faults. EUROCRYPT 1997: 37-51.

[3] J. Bonneau, I. Mironov. Cache-collision timing attacks against AES. CHES 2006:
201–215.

[4] D. Brumley, D. Boneh. Remote timing attacks are practical. USENIX Security
2003: 1–13.

[5] Q. Ge, Y. Yarom, D. Cock et al. A survey of micro-architectural timing attacks
and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8, 1-27, 2018.

[6] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. CRYPTO 1996: 104–113.

[7] P. Kocher, J. Jaffe, B. Jun. Differential power analysis. CRYPTO 1999: 388–397.

[8] P. Kocher et al. Spectre attacks: Exploiting speculative execution. IEEE Symp.
on Security and Privacy 2019: 1–19.

[9] M. Lipp et al. Meltdown: Reading kernel memory from user space. USENIX
Security 2018: 973–990.

[10] M. Lipp et al. PLATYPUS: Software-based power side-channel attacks on x86.
IEEE Symp. on Security and Privacy 2021: 355–371.

[11] K. Murdock et al. Plundervolt: Software-based fault injection attacks against
Intel SGX. IEEE Symp. on Security and Privacy 2020: 1466–1482.

[12] O. Mutlu and K.S. Kim. RowHammer: A retrospective, IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, 39(8): 1555-1571, Aug 2020.

[13] F. Piessens. Transient execution attacks. IEEE Security & Privacy, 21(5): 79–84,
Sept/Oct 2023.

[14] K. Suzaki et al. Memory deduplication as a threat to the guest OS. 4th European
Workshop on System Security 2011: 1–6.

[15] Y. Xu et al. Controlled-channel attacks: Deterministic side channels for untrusted
operating systems. IEEE Symp. on Security and Privacy 2015: 640–656.

[16] Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise, L3 cache
side-channel attack. USENIX Security 2014: 719–732.

8


