
Self-Signed Executables:

Restricting Replacement of Program Binaries by Malware∗

Glenn Wurster P.C. van Oorschot

School of Computer Science

Carleton University, Canada

Abstract

We propose using digital signatures to protect bi-
naries already on the system from modifications by
malware. While applicable to any file which is not
intended to be modified by an end user, we concen-
trate on protecting programs and libraries present on
the system before infection. Our protection does not
rely on a central trusted authority or PKI, and can be
incrementally deployed. While presented in the con-
text of the Linux environment, our approach applies
to other operating systems such as Windows.

1 Introduction and Overview

A modern computer system is composed of many in-
teracting applications installed at various times and
written by different vendors or designers. Each ap-
plication normally consists of a number of program
binaries along with associated libraries. These files
containing executable code may be used by other ap-
plications subsequently installed on the system. Nor-
mally, the installation of a subsequent application will
not overwrite previously installed binaries. A new
application may use libraries previously installed by
other software, but normally does not replace or mod-
ify these libraries.

Malware installed on a system does not necessarily
follow the same practise of leaving system programs
and libraries unaffected. It may replace common sys-
tem binaries (e.g. ls, ps, netstat, and ifconfig in
the Unix environment). This has been long recog-
nized and leveraged in file system integrity checkers.

∗Version: August 3, 2007. (USENIX HotSec 2007) Personal
use of this material is permitted for research or educational
purposes. Permission to publish or otherwise disseminate the
paper must be explicitly obtained from the author (and will
not be granted until a minimum of one year has passed since
original publication by USENIX).

One goal of these checkers is to verify that system
applications and libraries remain unchanged. In this
paper, we propose a method for protecting libraries
and programs against modification while still allow-
ing software updates, without the need to update
data structures commonly associated with integrity
checkers. The design avoids complex scanning mech-
anisms and alerts introduced by software installs and
updates. Current integrity checkers such as Tripwire
[11, 12] make no distinction between approved and
malicious file modifications, resulting in a large num-
ber of alerts during any install or upgrade.

Our approach is to associate with each library file
and executable a digital signature of the file which is
checked by the kernel when performing an update on
the binary. As explained below, the file is in essence
self-signed. Our approach relies on support from the
kernel to prevent modifications to installed binaries.
We therefore assume that the kernel is secure against
attack by malware. While this assumption is cur-
rently not accurate in most current systems,1 we be-
lieve that this will change in the future. Malware
exploitation of the kernel is a growing trend [3]. We
expect that this will result in a concentrated effort
by the security community to protect the kernel (in
fact several proposals already exist [17, 21, 14, 7, 18]).
One technique already commercially deployed in Mi-
crosoft Windows Vista 64bit is kernel module code
signing [6], designed to prevent code not signed from
getting into the kernel. Similar solutions exist on
Linux [13]. As the threat of kernel malware increases,
we believe additional such techniques will be pro-
posed. These will allow our proposal, as discussed
below, to operate securely.

We concentrate on a small piece of the malware
problem, giving a simple solution to maintaining a
flexible base of software which can be trusted even

1This assumption is nonetheless true for some systems as
we mention shortly.

1



after system (but not kernel) compromise. By this,
we mean that we allow for the possibility of, for exam-
ple, malware exploitation of a buffer overflow to gain
root-level privilege running as an application, but as
explained above, not the ability to alter kernel code.
Our solution provides a foothold for reclaiming ma-
chines at the application level, allowing for additional
protection mechanisms. Our mechanism alone does
not guarantee that previously installed security soft-
ware will always be run. Malware can still terminate
security applications (if the kernel allows it) or install
separate copies of core binaries in alternate directo-
ries and cause them to be used through environment
variables (as we discuss in Section 4). Additional
copies of binaries installed by malware, however, can
be avoided during forensic analysis by running appli-
cations from the known trusted base directly (e.g. by
invoking the kernel directly to start a new program),
avoiding such environment variables.

While alternative schemes have been proposed to
deal with the problem of protecting applications
against modification by malware, current solutions
are either highly restrictive (e.g. requiring every ap-
plication to be signed by a central authority [9]),
protect only certain files [22, 15], or are not easily
properly used [12]. Other solutions attempt to solve
a much larger problem at the expense of additional
complexity [2, 10, 7]. In contrast, we believe a smaller
first step has a greater chance of being widely de-
ployed, and accepted. While our proposal is similar
to that of Pennington et al. [16], we focus on pre-
vention rather than detection (although our proposal
can also be implemented on a file server).

2 Implementation

Our method of protecting against modification of bi-
nary files involves a simple but well-planned use of
digital signatures, perhaps best described as provid-
ing a type of self-signed file. The digital signature
consists of a cryptographic hash of the binary signed
with a private key; we do not attempt to tie the sig-
nature to an entity. The public key is embedded in
the file being signed by the developer who compiles
the application, along with the digital signature.2 We
use the digital signature along with kernel modifica-
tions to enforce one simple protection rule: A library

2The portion of the file holding the digital signature itself is
not included in the range of the signature, to prevent a recur-
sive definition. The public key, however, is integrity-protected
by the signature.

file or executable on disk can only be replaced by a
library or executable containing a digital signature
verifiable using a public key in the installed binary.
We propose supporting a few standardized digital sig-
nature algorithms (the particular choice is specified
alongside the digital signature). If the new binary
can not be verified, the kernel refuses to replace the
original. Deployment is incremental – unsigned bi-
naries can be replaced without restriction (which is
how most systems currently operate), but once a bi-
nary is signed it must be replaced by a signed binary.
Our method is quite different than SDSI/SPKI [8];
we trust keys only in a very limited setting (replac-
ing a binary which was signed with the same key).
We do not use names or certificates.

Executable files always follow a specified structure
to allow greater interoperability. Most Unix distri-
butions (including Linux) use the binary format file
ELF (Executable and Linkable Format). On Win-
dows, the PE (Portable Executable) format is used.
Both of these formats allow additional data to be in-
cluded in the file along with executable code. We
propose adding a new element to the file, the dig-
ital signature of the file. When the kernel receives
a request to overwrite a file on the system, it first
checks the current file on the system. If the current
file is signed, the kernel enforces the protection rule.
It verifies that the new file can be verified by a public
key contained in the currently installed version of the
file. If the signature verifies, then the replacement is
allowed to happen, otherwise it is denied. If there
is no previous version of a file (as determined by the
filename) in the target directory at the time of the
attempted install, the kernel allows the file to be in-
stalled. While we concentrate exclusively on binary
code in this note, our method could be expanded to
include other file formats.

The digital signature is embedded into the file as
one of the last steps of the compilation process. Us-
ing standard tools, this process can be simplified and
automated [4]. For programs distributed as source,
a common or universal key would not be distributed
(the person compiling the application would use their
own key with the signature tools).

Our scheme, while similar to Windows File Protec-
tion (WFP) [15], bears several key differences.

1. WFP appears to run at application level. It is
intended to protect against a non-malicious user
[5].

2. WFP only protects certain pre-defined system
files created or signed by Microsoft, not all ap-

2



plications on the system. Our method does not
depend on a central authority, making it acces-
sible to all developers.

3. The list of files protected by WFP is stored in
a separate file (sfcfiles.dll) maintained by
Microsoft. Our protection method does not at-
tempt to maintain a central list of files.

3 Benefits

Benefits of the proposal include the following.

1. No Central Key Repository. Because the
signature on a to-be-installed binary file is verified
using the public key embedded in the previous ver-
sion of the same file (by filename) installed on the
system, there is no need to centrally register a key or
involve any central repository.3 An application au-
thor can create a signing key-pair and begin using it
immediately. Furthermore, if desired, different keys
can be used for each file on a system, limiting the
threat from a key compromise (the attacker incurs
a per-executable cost for replacing protected bina-
ries). Because there is no dependence on a trusted
authority, development of new software remains un-
restricted. We make no effort to restrict the software
which can be installed on a system, as long as that
software does not modify already-installed binaries.
Other digital signature schemes proposed in the past
have relied on a trusted central authority [1, 20].

2. Trusted Software Base Even After Com-
promise. The operating system and core applica-
tions are normally installed before malware has a
chance to infect a machine. We exploit this tempo-
ral property. Typical malware, because it is installed
after the operating system (including core libraries
and programs), is not capable of changing any of the
operating system files. The operating system files,
therefore, can be guaranteed to be unmodified. If
a virus checker is installed before any malware, the
virus checker can also be automatically protected us-
ing the same mechanism.4 This makes it harder for
malware to hide on a compromised system. Core soft-
ware on a compromised system can be trusted, al-
lowing much greater control over an infected system
without requiring a reboot to clean media.

3This includes any form of central certification authority or
public key infrastructure (PKI).

4As noted in Section 1, malware may still terminate a
running virus checker process if allowed by the kernel. Our
method, however, prevents stealthy replacement by a trojaned
virus checker which offers the illusion of protection.

3. Low Overhead. Signatures are only checked
during installation of binary files. During normal
system operation, libraries do not change; hence the
mechanism results in negligible overhead.

4. Incremental Deployability with Incre-
mental Benefit. Kernels which do not yet support
the replacement verification scheme treat signed bi-
nary files as normal binary files, and are unaffected by
the existence of a digital signature. Similarly, bina-
ries without digital signatures are allowed on a kernel
which supports the proposal (in contrast to most pro-
posed code signing schemes [20]). Either the kernel
or libraries can be modified first without an adverse
affect on non-supporting systems.

4 Issues

Here we consider additional issues.
1. Denial of Service. Malware can prevent

files from being installed on the system by installing
its own version before the legitimate application (in
the same directory with the same filename) is in-
stalled. This is not a problem with core system li-
braries as they are always installed first. The issue
occurs with applications installed after the malware.
We presently see no easy way to prevent against this
attack without relying on additional infrastructure.
The attack, however, will be noticed on attempting
to install the legitimate software.

2. Key Updates. Over time, inevitably signing
keys will be lost or compromised. Both situations
can be accommodated by allowing, as an option, the
embedding of multiple verification keys in a binary
file. If one key is lost, the other key(s) can be used to
sign a subsequent version of the file (which can also
contain new keys). We do not specify any conditions
on who or what controls the private keys correspond-
ing to these additional verification public keys, but
many options exist including community trusted or-
ganizations or trusted friends who function as back-
ups. While we specify no specific infrastructure for
key revocation, pro-actively installing a new version
of a file which does not allow future versions signed
with the previous key (i.e. which excludes the old ver-
ification public key(s) from those embedded in the
new version) prevents a compromised key from be-
ing a threat indefinitely (the same technique can be
used to prevent downgrading binaries). Because each
file can be signed with a different key, the effect of a
compromised key can be limited.

3. File Deletion/Movement. Care must be

3



taken to ensure that malware can not delete (or move
a signed file to a different directory) and then install
a new file as a way of avoiding the digital signature
check. For this reason, deleting or moving a file be-
comes more complicated. We believe both can be
dealt with by retaining kernel knowledge of the ver-
ification keys associated with a file which has been
deleted or moved (e.g., by keeping a stub version of
the file containing only the verification keys) – future
files must still obey the verification key constraints.
Because legitimate applications rarely install com-
pletely different binaries in the exact same location,
we believe this may be an acceptable resolution for
deletion. Furthermore, application binaries are rarely
moved once installed.

4. Unverified Modifications. Occasionally, a
system administrator or software developer may have
a valid reason for replacing a file by one which is
signed by a different verification key than included in
the current version. We foresee unverified modifica-
tions as being rare but necessary. We therefore men-
tion a (admittedly cumbersome) method for updating
files on disk despite differing keys, ensuring that mal-
ware is not equally capable of using this method to
install itself. To replace a file with one not signed
by an allowed key (or a file containing no signature
at all), reboot the system into a clean environment
(e.g. from a bootable CD-ROM which is not infected
by malware). Once running a kernel which does not
enforce digital signatures, the file system can be mod-
ified at will by the administrator. The technique for
allowing unverified modifications can also be used to
recover from a denial of service (discussed above).

5. Raw Disk Writes For binaries to remain se-
cure on disk, the kernel must restrict raw disk writes.
Raw disk writes are mainly useful during system ini-
tialization (e.g. partitioning, formatting) and disaster
recovery (e.g. fsck or scandisk). As disabling raw
disk writes on a system also prevents other attacks
[19], we view limiting writes as an acceptable solu-
tion.

6. Aliases. Our mechanism only protects the bi-
naries on disk. If malware can prevent the correct
binary on disk from being invoked, then it retains
a measure of control over previously installed pro-
grams. As an example, running the ps command
from the prompt without a pre-pended path (i.e.,
fully qualified filename) will cause the first copy of
ps found to be run (even though it may not be the
/bin/ps binary). While our scheme is designed pri-
marily to protect binaries against modification, these

binaries are of no use if they are not used. We must
ensure therefore on an infected system that the legit-
imate binary can be easily run instead of one found
at a location of the attacker’s choice. Additional
copies of binaries installed by malware, however, can
be avoided during forensic analysis by running appli-
cations from the trusted base directly, avoiding the
environment. There are a number of methods for
accomplishing this, including calling the kernel di-
rectly (e.g. using the execve system call) to run a
program. Because much of the aliasing functional-
ity is implemented by libraries likely to be protected
by our scheme, the implementation could also be ad-
justed to avoid pitfalls during forensic analysis (e.g.,
restricting PATH during forensic analysis to include
only core directories or not allowing aliasing on crit-
ical programs). Additional difficulties arise from op-
erating system features such as the ability to oper-
ate within a chroot environment or mount/unmount
filesystems. It is not clear what the best approach is
to solving chroot and mounting problems.

5 Concluding Remarks

If widely deployed, it is likely that the method will
be challenged by malware. Therefore, an important
question to ask is: What is the next step of malware,
assuming knowledge of our method of file protection?
Currently, as mentioned, our trust in the kernel leaves
the proposal open to attack in most systems (but
as noted, we expect this to change in the future).
Another issue is aliasing, as discussed above.

Our protection method does nothing to prevent
malware from being installed on the system, but
rather restricts the files that the malware can mod-
ify. By having a core trusted application space remain
after infection, other advantages present themselves.
Anti-virus and host based intrusion detection systems
installed can attempt to detect malware without hav-
ing to worry about being subverted themselves.

One important question we leave open is the ability
to kill applications that are running on the system.
Current Unix kernels allow any program running with
superuser privileges to kill any other program on the
system. In the event of malware infection, malware
could kill any trusted program which attempts to run,
preventing it from completing. One possible solution
is to have the kernel confirm with the program to
be killed whether the kill signal should be honoured
(assuming the kernel is trusted, this method could not
be subverted). This would allow programs such as

4



anti-virus checkers to remain running on an infected
system. A drawback of this is that it results in some
programs on a system which can not be killed.

While simple, we believe our scheme provides sig-
nificant progress in being able to trust installed ap-
plications on an infected system. It protects applica-
tions from being modified directly by malware, allow-
ing programs present on a system before infection to
remain unmodified. It furthermore does not restrict
user choice; new applications can be installed at will.

We have concentrated in this note on solving a
small piece of the malware problem, proposing a sim-
ple solution to maintaining a flexible base of soft-
ware which can be trusted after system compromise.
While many activities of malware are not prevented
by our proposal, it preserves a trusted base, allow-
ing additional research to focus on the detection of
malware while benefiting from file integrity protec-
tion. Our trusted base is immediately beneficial for
current anti-virus and host-based intrusion detection
systems. In the event of system compromise by mal-
ware, our proposal allows partial forensic analysis
using the trusted base without incurring significant
downtime – contrary to traditional forensic analysis.

Acknowledgements. The first author acknowl-
edges NSERC for funding his PGS D scholarship.
The second author acknowledges NSERC for an
NSERC Discovery Grant and his Canada Research
Chair in Network and Software Security. Both au-
thors also acknowledge MITACS. We thank Lionel
Litty and anonymous referees for their comments on
a preliminary draft.

References

[1] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, and
V. Roy. Digsig: Run-time authentication of binaries at
kernel level. In Proc. LISA ’04: Eighteenth Systems Ad-
ministration Conference, pages 59–66, 2004.

[2] A. Baliga, X. Chen, and L. Iftode. Paladin: Automated
detection and containment of rootkit attacks. Technical
Report DCS-TR-593, Rutgers University Department of
Computer Science, January 2006.

[3] A. Baliga, P. Kamat, and L. Iftode. Lurking in the shad-
ows: Identifying systemic threats to kernel data. In Proc.
2007 IEEE Symposium on Security and Privacy, pages
246–251, May 2007.

[4] bsign. Web site. http://packages.debian.org/stable/

admin/bsign.html.
[5] J. Collake. Hacking Windows file protection. Web Page,

May 2007. http://www.bitsum.com/aboutwfp.asp.
[6] M. Conover. Analysis of the Windows Vista se-

curity model. Technical report, Symantec Corp.,

2006. http://www.symantec.com/avcenter/reference/

Windows Vista Security Model Analysis.pdf.
[7] T. Garfinkel and M. Rosenblum. A virtual machine in-

trospection based architecture for intrusion detection. In
Proc. 2003 Network and Distributed Systems Security
Symposium, pages 191–206. Internet Society, February
2003.

[8] J. Y. Halpern and R. van der Meyden. A logical recon-
struction of SPKI. Journal of Computer Security, 11(4),
January 2004.

[9] A. Huang. Hacking the Xbox. No Starch Press, Inc., 2003.
[10] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. De-

tecting past and present intrusions through vulnerability-
specific predicates. In SOSP ’05: Proceedings of the twen-
tieth ACM symposium on Operating systems principles,
pages 91–104. ACM Press, 2005.

[11] G. H. Kim and E. H. Spafford. Experiences with Tripwire:
Using integrity checkers for intrusion detection. Technical
Report CSD-TR-93-071, Purdue University, 1993.

[12] G. H. Kim and E. H. Spafford. The design and imple-
mentation of Tripwire: A file system integrity checker.
In ACM Conference on Computer and Communications
Security, pages 18–29, 1994.

[13] G. Kroah-Hartman. Signed kernel modules. Linux Jour-
nal, 117:48–53, January 2004.

[14] C. Kruegel, W. Robertson, and G. Vigna. Detecting
kernel-level rootkits through binary analysis. In Proc.
20th Annual Computer Security Applications Conference
(ACSAC’04), pages 91–100, Washington, DC, USA, 2004.
IEEE Computer Society.

[15] Microsoft. Description of the Windows file protection fea-
ture. Web Page, May 2007. http://support.microsoft.

com/kb/222193.
[16] A. Pennington, J. Strunk, J. Griffin, C. Soules, G. Good-

son, and G. Ganger. Storage-based intrusion detection:
Watching storage activity for suspicious behavior. In
Proc. 12th USENIX Security Symposium, pages 137–151,
August 2003.

[17] N. L. Petroni Jr., T. Fraser, J. Molina, and W. A. Ar-
baugh. Copilot - a coprocessor-based kernel runtime in-
tegrity monitor. In Proc. 13th USENIX Security Sympo-
sium, pages 179–194, August 2004.

[18] N. L. Petroni Jr., T. Fraser, A. Walters, and W. Arbaugh.
An architecture for specification-based detection of se-
mantic integrity violations in kernel dynamic data. In
Proc. 15th USENIX Security Symposium, pages 289–304,
August 2006.

[19] J. Rutkowska. Subverting Vista kernel for fun
and profit. Blackhat Presentation, August 2006.
http://blackhat.com/presentations/bh-usa-06/

BH-US-06-Rutkowska.pdf.
[20] L. van Doorn, G. Ballintign, and W. A. Arbaugh. Signed

executables for linux. Technical Report CS-TR-4259, Uni-
versity of Maryland, 2001.

[21] Y.-M. Wang, D. Beck, B. Vo, R. Roussev, and C. Ver-
bowski. Detecting stealth software with strider ghost-
buster. In Proc. International Conference on Depend-
able Systems and Networks (DSN-DCCS), pages 368–377,
June 2005.

[22] X. Zhao, K. Borders, and A. Prakash. Towards protect-
ing sensitive files in a compromised system. In Proc.
Third IEEE International Security in Storage Workshop
(SISW’05), pages 21–28, 2005.

5


