
Operating System
Stability and Security through

Process Homeostasis

by

Anil Buntwal Somayaji

B.S., Massachusetts Institute of Technology, 1994

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

July 2002

c©2002, Anil Buntwal Somayaji

iii

Dedication

To all those system administrators who spend their days nursemaiding our

computers.

iv

Acknowledgments

Graduate school has turned out to be a long, difficult, but rewarding journey for
me, and I would not have made it this far without the help of many, many people.
I cannot hope to completely document how these influences have helped me grow;
nevertheless, I must try and acknowledge those who have accompanied me.

First, I would like to thank my committee: David Ackley, Rodney Brooks, Barney
Maccabe, Margo Seltzer, and especially my advisor, Stephanie Forrest. They all had
to read through a rougher manuscript than I would have liked, and had to do so
under significant time pressures. They provided invaluable feedback on my ideas
and experiments. Most importantly, they have been my teachers.

I’m also grateful to have been part of the Adaptive Computation Group at the
University of New Mexico and to have been a member of the complex adaptive
systems community here in New Mexico. Fellow graduate students at UNM and
colleagues at the Santa Fe Institute have shaped my thoughts and have inspired me
to do my best work. I will miss all of you.

The Computer Science Department at UNM has been my home for the past
several years. Its faculty members have instructed me and have treated me as a
colleague; its administrative staff have helped me with the practical details of being
a graduate student. The department has been a supportive environment, and it will
be hard to leave. Also, the Systems Support Group of the UNM Computer Science
department helped me collect some of my most important datasets. In the process,
they sometimes had to deal with crises that I inadvertently created. They have been
both helpful and understanding.

Over the past several years many people in the computer security community
have helped us understand important past work, yet have also encouraged us to
pursue our own vision. They have been valuable colleagues and friends.

The Massachusetts Institute of Technology was my home during my undergrad-
uate years, and I was also a visiting graduate student in its Artificial Intelligence
laboratory during the 1996-97 academic year. This year was a valuable part of my
graduate school education.

With the help of my former physics teacher, Bill Rodriguez, the University School
of Nashville’s web server provided the best data on the behavior of pH.

Finally, I must thank my many friends for supporting me, Dana for being there
during the last stages of my graduate career, and my parents and my sister Shalini
for providing the love and support to get me this far.

This work was funded by NSF, DARPA, ONR, Intel, and IBM.

v

Operating System

Stability and Security through
Process Homeostasis

by

Anil Buntwal Somayaji

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

July 2002

Operating System

Stability and Security through
Process Homeostasis

by

Anil Buntwal Somayaji

B.S., Massachusetts Institute of Technology, 1994

Ph.D., Computer Science, University of New Mexico, 2002

Abstract

Modern computer systems are plagued with stability and security problems: ap-

plications lose data, web servers are hacked, and systems crash under heavy load.

Many of these problems arise from rare program behaviors. pH (process Homeosta-

sis) is a Linux 2.2 kernel extension which detects unusual program behavior and

responds by slowing down that behavior. Inspired by the homeostatic mechanisms

organisms use to stabilize their internal environment, pH detects changes in pro-

gram behavior by observing changes in short sequences of system calls. When pH

determines that a process is behaving unusually, it responds by slowing down that

process’s system calls. If the anomaly corresponds to a security violation, delays

often stop attacks before they can do damage. Delays also give users time to decide

whether further actions are warranted.

vii

My dissertation describes the rationale, design, and behavior of pH. Experimental

results are reported which show that pH effectively captures the normal behavior of

a variety of programs under normal use conditions. This captured behavior allows

it to detect anomalies with a low rate of false positives (as low as 1 user interven-

tion every five days). Data are presented that show pH responds effectively and

autonomously to buffer overflows, trojan code, and kernel security flaws. pH can

also help administrators by detecting newly-introduced configuration errors. At the

same time, pH is extremely lightweight: it incurs a general performance penalty of

only a few percent, a slowdown that is imperceptible in practice.

The pH prototype is licensed under the GNU General Public License and is

available for download at http://www.cs.unm.edu/∼soma/pH/.

viii

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Computer Homeostasis . 3

1.3 System-call Monitoring and Response 6

1.4 Contributions . 8

1.5 Overview . 9

2 Background 10

2.1 Computer Security . 10

2.1.1 Intrusion Detection . 12

2.1.2 Automated Response . 16

2.1.3 Kernel-level Security Projects 18

ix

Contents

2.2 Operating Systems . 19

2.3 Compilers . 20

2.4 Fault Tolerance . 21

2.5 System Administration . 23

2.6 Artificial Life & Robotics . 24

3 Homeostasis 27

3.1 Biological Homeostasis . 28

3.1.1 Temperature Control . 28

3.1.2 Immune System . 29

3.2 Process Homeostasis . 32

3.2.1 Requirements . 33

3.2.2 Abstractions . 34

3.2.3 Enclosed System . 36

3.2.4 System Property . 36

3.2.5 Detector . 37

3.2.6 Effector . 39

3.2.7 The User’s View of pH . 40

4 Analyzing System Call Sequences 43

4.1 Requirements . 43

x

Contents

4.2 Description . 45

4.3 Analysis . 49

4.3.1 Speed . 50

4.3.2 Profile Size . 51

4.3.3 Convergence . 52

4.3.4 Anomaly Sensitivity . 54

4.4 Summary . 55

5 Implementing pH 57

5.1 Why a kernel implementation? . 57

5.2 Implementation Overview . 59

5.3 Classifying Normal Profiles . 63

5.3.1 Requirements . 63

5.3.2 Profile Heuristics . 64

5.4 Delaying System Calls . 66

5.5 Tolerization and Sensitization . 69

5.6 Data Structures . 70

5.7 Kernel Integration . 74

5.8 Interacting with pH . 76

5.9 Parameters . 79

5.9.1 System Call Window Sizes . 80

xi

Contents

5.9.2 Logging . 80

5.9.3 Classifying Normal Profiles . 81

5.9.4 Automated Response . 82

5.10 Performance . 84

6 Normal Program Behavior in Practice 88

6.1 What is Normal Behavior? . 89

6.2 A Day in Detail . 91

6.3 Choosing a Method & Window Size 95

6.4 A Few Weeks on a Personal Workstation 98

6.5 Normal Monitoring . 99

6.6 False Positives . 104

6.7 Normal Behavior on Other Hosts . 108

6.8 Profile Diversity and Complexity . 111

6.9 suspend execve Issues & Longer-Term Data 116

6.10 Normal in Practice . 119

7 Anomalous Behavior 121

7.1 What Changes Are Detectable? . 122

7.2 Inetd Perturbations . 129

7.2.1 Daytime . 131

xii

Contents

7.2.2 Chargen . 132

7.2.3 Unknown External Program 135

7.2.4 Unknown Service . 137

7.2.5 Summary . 140

7.3 Intrusions . 141

7.3.1 A Buffer Overflow . 143

7.3.2 Trojan Code . 145

7.3.3 A Kernel Vulnerability . 147

7.4 Other Attacks . 149

7.4.1 Earlier pH Experiments . 149

7.4.2 Linux capability exploit . 152

7.4.3 System-call Monitoring Experiments 153

7.5 Intelligent Adversaries . 156

7.6 Summary . 158

8 Discussion 160

8.1 Contributions . 160

8.2 Limitations . 162

8.2.1 Capturing Normal Behavior 163

8.2.2 Denial of Service . 164

8.2.3 Portability . 166

xiii

Contents

8.3 Computer Homeostasis . 168

References 170

xiv

List of Figures

1.1 A schematic diagram of classes of program behavior. 4

1.2 The process of making a system call. 7

3.1 An MHC-peptide complex . 31

5.1 Basic flow of control and data in a pH-modified Linux kernel. 61

5.2 Training and testing datasets . 62

5.3 pHmon screenshot . 62

5.4 pH’s normal profile heuristics. 65

5.5 Schematic delay graph . 67

5.6 pH task state definitions . 72

5.7 Simplified pH profile definitions. 73

6.1 Frequency of system calls . 92

6.2 Sequence entropy graph . 94

6.3 Lookahead pair entropy graph . 95

xv

List of Figures

6.4 Fraction of normal behavior graph 96

6.5 Lydia 22-day normal classifications per day 99

6.6 Normal classifications per hour for the 22-day lydia data set. 100

6.7 Anomalies and tolerizations per hour graph 106

6.8 USN normal classifications per day 110

6.9 Frequency of lookahead pairs graph 112

6.10 Lookahead pairs per profile graph 113

7.1 hello.c . 122

7.2 hello2.c . 123

7.3 hello.c . 124

7.4 hello.c system calls . 126

7.5 hello2.c system calls . 127

7.6 hello3.c system calls . 128

7.7 inetd pseudo-code . 131

7.8 LFC of inetd chargen anomalies . 134

7.9 fetchmail pop3 getsizes() function 142

xvi

List of Tables

3.1 Organization of biological homeostatic systems 35

3.2 Organization of pH . 35

4.1 A sequence profile . 47

4.2 An implicit lookahead pair profile. 47

4.3 An explicit lookahead pair profile. 48

5.1 The commands of pH. 76

5.2 The parameters of pH. 79

5.3 System call latency results. 85

5.4 Dynamic process creation latency results. 85

5.5 Kernel build time performance. 86

6.1 Top 20 programs by system calls executed (lydia 1-day) 91

6.2 Top 20 most frequent system calls 93

6.3 Parameter setting for pH during lydia 22-day experiment 97

xvii

List of Tables

6.4 Top 20 programs by system calls executed (lydia 22-day) 102

6.5 Number of normal profiles in system directories 103

6.6 False positives for lydia . 104

6.7 Programs with maxLFC ≥ abort execve 105

6.8 Programs exceeding anomaly limit 106

6.9 Host and Data details on the 4 profile data sets. 108

6.10 pH parameter setting for jah, badshot, and USN 108

6.11 Normal profile summary for the 4 profile data sets. 109

6.12 False Positives for the 4 profile data sets. 111

6.13 20 top programs by number of lookahead pairs 114

6.14 Profile similarity . 115

6.15 Host similarity . 115

6.16 Data from lydia with suspend execve set to 1 117

7.1 inetd normal profile details . 129

7.2 inetd daytime service anomalies . 130

7.3 inetd chargen service anomalies . 133

7.4 inetd non-existent executable anomalies 136

7.5 inetd non-existent service anomalies 138

7.6 fetchmail normal profile details . 143

7.7 su normal profile details . 146

xviii

List of Tables

7.8 su ptrace/execve anomalies . 148

7.9 A comparison of attack responses 159

xix

Chapter 1

Introduction

Self-awareness is one of the fundamental properties of life. In humans this property

is commonly identified with consciousness; however, all living systems are self-aware

in that they detect and respond to changes in their internal state. In contrast, com-

puter systems routinely ignore changes in their behavior. Unusual program behavior

often leads to data corruption, program crashes, and security violations; despite

these problems, current computer systems have no general-purpose mechanism for

detecting and responding to such anomalies.

This dissertation is a first step towards fixing this shortcoming. In this and sub-

sequent chapters, a prototype system called pH (“process Homeostasis”) is described

and evaluated. pH can detect and respond to changes in program behavior and is

particularly good at responding to security violations. pH is also an example of a

new approach to system design, one that better reflects the structure of biological

systems.

The rest of this chapter explains the motivations for pH, describes its basic design,

and summarizes the contributions of this dissertation. The final section outlines

subsequent chapters.

1

Chapter 1. Introduction

1.1 Motivation

As our computer systems have become increasingly complex, they have also become

more unpredictable and unreliable. Today we routinely run dozens if not hundreds

of programs on any given computer. Many of these executables require tens of

megabytes of memory and hundreds of megabytes of disk space. As our systems

become faster and larger, programs continue to expand in size and complexity.

Although these programs contain a remarkable amount of functionality, the addi-

tional capabilities have exacted a correspondingly large cost in reliability and security.

New vulnerabilities are found almost every day on most major computer platforms.

Even worse, we have all become inured to program quirks and outright crashes. No

sooner does one version seem to stabilize, than a new one comes out providing new

capabilities and new problems.

One of the main drivers of this rise in complexity is the need to be connected, both

in local area networks and on the Internet. Web browsers and chat clients contin-

uously communicate with the outside world, peer-to-peer file sharing services turn

workstations into servers, and even word-processors have become Internet-aware,

able to transfer documents to and from web servers with a mouse click. Thus, the

complexity of flexible user-friendly software is compounded by the need to interact

with unpredictable outside data sources. Where an isolated system might behave

consistently over time, a networked system is a new system every day, as the rest of

the Internet changes around it.

These two factors, complexity and connectivity, together conspire to undermine

our trust in our computers. Fundamentally, there is too much going on for even the

most sophisticated user to keep track of. If we cannot keep track of what our systems

are doing, our computers must monitor and take care of themselves.

2

Chapter 1. Introduction

1.2 Computer Homeostasis

From its inception, computer science has conceptualized a computer as a machine

that is capable of executing any program it is given. This point of view is the essence

of the Universal Turing machine and is also the basis of the general-purpose personal

computer. In practice, however, any given computer is not used in its full generality;

instead, it is repeatedly used for specific tasks (generally on a daily basis), and only

occasionally is it called upon to run new programs.

Even though devices ranging from large, multi-processor servers to hand-held

Personal Digital Assistants (PDAs) typically run a small set of applications, outside

of the embedded realm computers are built to be general-purpose. Hardware makes

minimal distinctions between different kinds of programs, and operating systems

allocate most resources relatively fairly: memory and network bandwidth are given

out on a first-come-first-served basis (until pre-specified limits are reached), and

schedulers ensure that every process receives some CPU time on a regular basis. This

fairness is good if we assume that no program is more important than any other; if

we assume that users prefer some programs and some program states, though, this

fairness can be harmful.

Most computer users would like a system to function consistently over time, so

that if the computer worked properly when first installed, it would continue to do so

in the future. Given that such consistency cannot be guaranteed, it would be nice

to know when new circumstances cause a change in system behavior — especially if

that behavior could cause problems. We can visualize this distinction by considering

the diagram in Figure 1.1. Most of the time a program’s behavior is confined to the

inner circle of normal behavior. A program wanders out of this region and into that

of legal program behavior when unusual events such as communication failures or

invalid input data cause normally-unused code to be executed.

3

Chapter 1. Introduction

Normal Program
Behavior

Legal Program
Behavior

Possible Program Behavior

Figure 1.1: A schematic diagram of classes of computer behavior. Note that a
program may behave in ways not specified in the source because of inserted foreign
code (buffer overflows), compiler errors, hardware faults, and other factors.

If hardware never executed code incorrectly, and if our programs perfectly ac-

counted for all possible errors and interactions, all legal program behavior would be

permissible and safe, and no other behaviors would be possible. In practice, though,

our programs are far from perfect, and the interactions of these imperfections can

cause any program to behave like any other program, for example turning a word pro-

cessor into a file deletion utility. Such unexpected functionality can lead to security

violations and data loss.

One way to handle dangerous program behavior is to create detectors to recognize

these states explicitly. This approach is used by most misuse intrusion detection sys-

tems, usually through the scanning of data streams for attack signatures. Although

4

Chapter 1. Introduction

it can be effective, this strategy has two basic limitations. The first is that in general

it is impossible to specify all of the ways in which programs can malfunction, and so

we are left with systems that must be continually updated as new threats arise. In

addition, a dangerous pattern of activity in one context may be perfectly valid in an-

other; thus, signatures in software products must be created for the lowest common

denominator to minimize false alarms.

My approach, however, has been to recognize that most programs work correctly

most of the time, and so normal program behavior is almost always safe program

behavior. By learning normal program behavior through observing a system, and

by using this knowledge to detect and respond to unusual, potentially dangerous

program behavior, we can improve the stability and security of our computer systems.

People have had relatively little experience in building systems that can detect

and respond appropriately to unexpected anomalies; nature, however, has had bil-

lions of years of experience. As explained in Chapter 3, living systems employ a

variety of detectors and effectors to maintain homeostasis, or a stable internal en-

vironment. Whether driven by the need to destroy invading organisms or the need

for a consistent temperature and chemical environment, these systems constantly

monitor the state of an organism and react to perturbations.

The fundamental idea of this dissertation is that we can improve the stability of

computer systems by adding homeostatic mechanisms to them. Practical computer

users often do their utmost to avoid program upgrades, precisely to avoid changing

their stable computational environment. By analogy with biology, a homeostatic

operating system would take this idea further and would dynamically maintain a

stable computational environment. A truly homeostatic operating system would

be extremely complex, and would interconnect multiple detectors and effectors to

stabilize many aspects of a system. As a first step towards this goal, I have focused on

developing a simple feedback loop consisting of an abnormal system call detector and

5

Chapter 1. Introduction

an effector which delays anomalous system calls. As the next section explains, there

are technical and aesthetic reasons for these choice; more than anything else, though,

they are interesting mechanisms because they lead to a system that can detect and

respond to harmful system changes, whether they are caused by a configuration error,

misuse of a service, or an outright attack.

1.3 System-call Monitoring and Response

As a first step towards a homeostatic operating system, I have focused on monitor-

ing and response at the UNIX system-call level. This basic approach could be used

anywhere that there is a programming interface, and it is possible to build similar

systems that work with function calls, object method invocations, or even micropro-

cessor instructions. The system call interface, however, has several special properties

that make it a good choice for monitoring program behavior for security violations.

What follows is an explanation of what a system call is, followed by a brief summary

of how pH performs system-call level anomaly-detection and response.

On UNIX and UNIX-like systems, user programs do not have direct access to

hardware resources; instead, one program, called the kernel, runs with full access to

the hardware, and regular programs must ask the kernel to perform tasks on their

behalf. Running instances of a program are known as processes. Multiple processes

can execute the same program; even though they may share code, each process has

its own virtual memory area and virtual CPU resources. The kernel shares memory

and processor time between processes and ensures that they do not interfere with

each other.

When a process wants additional memory, or when it wants to access the network,

disk, or other I/O devices, it requests these resources from the kernel through system

calls. Such calls normally takes the form of a software interrupt instruction that

6

Chapter 1. Introduction

Netscape

Emacs

system call
implementationsscheduler

system call
dispatcher

read bookmarks.html

system
call

user code
and data

read

request disk block
netscape sleeps

wake up emacs

Figure 1.2: The process of making a system call. In this example, a Netscape process
makes a read system call to access a user’s bookmarks. While netscape is waiting for
data from the disk, control is passed to an Emacs process. Note how control moves
from user-space to kernel-space and back.

switches the processor into a special supervisor mode and invokes the kernel’s system-

call dispatch routine. If a requested system call is allowed, the kernel performs the

requested operation and then returns control either to the requesting process or to

another process that is ready to run. Figure 1.2 shows a visual representation of this

transaction between user-space (normal user processes running user programs) and

kernel-space.

With the exception of system calls, processes are confined to their own address

space. If a process is to damage anything outside of this space, such as other pro-

grams, files, or other networked machines, it must do so via the system call interface.

Unusual system calls indicate that a process is interacting with the kernel in poten-

tially dangerous ways. Interfering with these calls can help prevent damage; there-

fore, a computational homeostatic mechanism that monitors and responds to unusual

7

Chapter 1. Introduction

system calls can help maintain the stability and security of a computer system.

pH is a prototype of such a homeostatic mechanism. It is an extension of the

Linux 2.2 kernel that detects and responds to anomalous program behavior as it

occurs. It monitors the system calls executed by every process on a single host,

maintaining separate profiles for every executable that is run. As each process runs,

pH remembers the sequence of recent system calls issued by that process. When a

program is first run, if a given sequence has not been executed before by the program,

pH remembers a simple generalization of this sequence. Once pH sees no novel system

call sequences associated with a given program for a sufficient period of time, it then

delays instances of that program that execute novel system call sequences. This

delay is exponentially related to the number of recent anomalous system calls; thus,

an isolated anomaly produces only a short delay, while a cluster of anomalies cause

a process to be effectively halted.

1.4 Contributions

This work makes several concrete contributions. First, it supports the idea presented

in our past work [43, 49] that system can be used to detect novel attacks caused by

buffer overflows, trojan code, and kernel flaws. System call monitoring can also detect

other problems such as configuration errors, helping administrators find problems

before a loss of service is reported. Further, it shows that system-call monitoring is

practical, in that it can be performed online in real-time with a minimum of overhead.

This work also presents the first graduated approach to automated response in

a computer intrusion detection system, namely proportional delays to anomalous

system calls. This mechanism can limit the damage caused by novel attacks; in

addition, because small system-call delays are barely noticeable, this graduated re-

sponse helps pH achieve a low rate of false positives, with pH requiring as few as one

8

Chapter 1. Introduction

user intervention every five days (on average) on a production web server.

Finally, this work demonstrates that system-call monitoring and response can

form a key component of a homeostatic operating system.

1.5 Overview

The rest of this dissertation proceeds as follows. Chapter 2 presents related work,

situating pH in the fields of operating systems, computer security, and other fields

of inquiry. Chapter 3 describes some example homeostatic systems found in living

systems and explains and motivates the design of pH. Chapter 4 discusses methods

for analyzing system calls.

Chapter 5 discusses the implementation of pH, and presents data on pH’s per-

formance overhead. Chapter 6 presents results showing how pH performs on a few

normally behaving computers. Data are presented which compare lookahead pairs

and sequences. This chapter also examines rates of false-positives, and analyzes the

diversity of profiles between different programs and computers. Chapter 7 addresses

the issue of detecting and responding to usage anomalies, configuration errors, and

real security violations. Anomalies are traced back to the program code that gener-

ated them, and it is shown that pH detects novel code paths. pH is also shown to be

capable of stopping both abuse and attacks. Chapter 8 summarizes the contributions

of this work, analyzes its shortcomings, and presents ideas for future work.

9

Chapter 2

Background

Although my research has been inspired and informed by work from several fields, pH

is perhaps best classified as an “anomaly intrusion detection and response” system,

and as such, it should be compared to other work in this computer security sub-field.

My work also bears some similarity to work in operating systems, fault-tolerance,

system administration, artificial life, and robotics. In the following sections, I discuss

how my work relates to these fields of inquiry.

2.1 Computer Security

The field of computer security ultimately deals with the problem of unauthorized or

dangerous computer access. Covered within this umbrella are issues of data integrity,

confidentiality, and system availability. When dealing with these problems, there are

three basic approaches one can take:

• Build systems in such a way that dangerous or unauthorized activities cannot

take place.

10

Chapter 2. Background

• Detect such activities as they happen, and ideally stop them before systems

are compromised.

• Detect systems that have been compromised, and determine how much damage

has been done.

Clearly the first option is preferable, and before the rise of the Internet this was the

main focus of the field. Military organizations in particular funded the development

of provably secure systems. One famous document produced by the US Department

of Defense, known as the Orange Book [84], enshrined various requirements for dif-

ferent levels of trust. By trust, they meant three things: how much you could believe

that your system was secure; if it was compromised, how much the system would

limit damage; and, after security violation, how well you could trust the logs of the

system to tell you what damage had been done. Several trusted operating systems

have been built and major UNIX vendors, such as Hewlett-Packard and Sun have

trusted (B1-certified) products available [81]. These offerings are generally expen-

sive and hard to administer, and no operating system certified at the B1 level or

higher has been successful outside of niche markets. Instead, the broader market

has been dominated by systems that are inexpensive, fast, flexible, and feature-rich.

Since modern, widely-deployed computer operating systems and applications have

well-known fundamental security limitations, users have turned to add-on programs

to enhance security.

Some of these additions stop attacks before they can succeed. For example, net-

work firewalls [22] and the TCP Wrappers package [113] restrict network connections

in an attempt to exclude dangerous machines and services. Vulnerability scanners

such as SATAN [42] and Nessus [36] search for known vulnerabilities on a host or

network, allowing them to be proactively fixed. Packages such as StackGuard [32]

and the Openwall Linux Kernel Patch [37] prevent many kinds of buffer-overflow

attacks from succeeding, either by killing programs that experience stack corruption,

11

Chapter 2. Background

or by preventing the foreign stack-resident code from running.

Other additions detect damage after it has occurred. Packages such as Tripwire

[59] detect changes to system files by maintaining a set of cryptographically-secure

checksums that are periodically recalculated and verified. Virus-protection software

such as Norton AntiVirus [108] scan local or network storage for signatures of known

viruses, allowing users the opportunity to either clean or delete infected files1.

Systems such as pH which detect attacks as they happen are known as intrusion

detection systems.

2.1.1 Intrusion Detection

The field of intrusion detection dates back to Anderson’s 1980 technical report [3]

and Denning’s 1987 intrusion detection model [35]. Early work in this field was mo-

tivated by the needs of government and the military; the need for better security on

the growing Internet, however, has led to numerous research projects and commercial

systems. Although there is no set of widely accepted rigorous classifications of in-

trusion detection systems, they can be broadly classified by what level they monitor

(host-based or network), and by how they detect attacks (signature, specification, or

anomaly). Within this framework, pH is a host-based anomaly intrusion detection

system. Before describing other such systems it is worthwhile to consider other types

of intrusion detection systems. (For a more complete overview, see Bace [8]; for other

recent taxonomies of the intrusion detection field, see Hervè et al. [34] and Axelsson

[7].)

Since intruders often attack a system through its connections with the outside

1Modern virus-protection packages also scan web pages and email messages for viruses,
and can detect when a program attempts to modify executables (a common method for
virus propagation). When acting in this mode, these programs are also acting as intrusion-
detection systems.

12

Chapter 2. Background

world, a natural approach to intrusion detection is to monitor network traffic and ser-

vices. Because of the complexity of network traffic, much attention has been devoted

to the problem of what parts of the stream should be examined. One interesting

approach is taken by the Network Security Monitor, which focuses on characterizing

the normal behavior of a network by examining the source, destination, and service

of TCP packets [47]. This work served as the basis for Hofmeyr’s work on LISYS, a

distributed anomaly network intrusion detection system [50].

In contrast, commercial network intrusion detection systems such as the Cisco

Secure Intrusion Detection System [24] and ISS RealSecure [52] are signature-based

systems, in that they scan packets headers and payloads searching for attack patterns

defined by hand-crafted matching rules. The primary advantages of signature-based

systems is that they can detect known attacks immediately upon deployment (unlike

anomaly-based systems), and they do not need detailed information on the behavior

of applications (unlike specification-based systems). The downside is that these

systems require frequent signature updates to recognize new attacks, and signatures

developed in the laboratory may generate unexpected false positives in the real world.

Host-based intrusion detection systems potentially can use many different data

sources. Rather than design custom tools to observe system behavior, most early

research in host-based intrusion detection focused on the use of data from audit

packages. Audit packages record events such as authorization requests, program

invocations, and (some) system calls. This voluminous data is generally written to a

special-purpose binary log file. Care is taken to record the data in a secure fashion

so that unauthorized users cannot easily conceal their activities. Audit trails are

designed to provide forensic evidence for human analysts; however, they can also

provide a basis for an automated intrusion detection system. Some of the most

sophisticated uses of audit trails were the IDES and NIDES projects, which used

SunOS Basic Security Module (BSM) audit data and statistical models to look for

13

Chapter 2. Background

unusual patterns of user behavior [71]. Audit packages by themselves tend to be

costly in terms of system performance and storage requirements, and packages such

as NIDES only add to the burden. As a result, audit-based intrusion-detection

systems have not been widely fielded outside of government agencies2.

Although audit data has been a popular data source, many other sources have

been used. Products such as the ISS RealSecure OS Sensor [53] and the free logcheck

package [89] detect intrusions by scanning standard system logs for attack patterns.

Kuperman [64] developed a technique for generating application-level audit data

through library interposition. Zamboni [119], using an “internal sensors” approach,

modified the applications and kernel of an OpenBSD system to report a variety of

attempted attacks and other suspicious activity.

One noteworthy product that uses a similar framework to pH is the the CylantSe-

cure intrusion detection system [105]. Rather than observing system calls, it uses a

heavily modified Linux kernel to detect anomalously-behaving programs. Published

papers [38, 80] indicate that Cylant’s technology can be used to instrument the

source code of arbitrary programs to report when different “modules” are entered

and exited. In the CylantSecure product, the behavior of an instrumented Linux

kernel is fed into a statistical model which then detects dangerous program behavior

and network connections by observing unusual patterns of kernel behavior caused by

those programs and connections. CylantSecure appears to be similar in spirit to pH

in that it gathers data at the kernel level and performs anomaly detection. It is diffi-

cult to make a detailed comparison, though, because little has been published on the

algorithms or performance of the system, particularly with respect to false-positive

2I considered whether I wanted to use an audit package as my data source; unfortu-
nately, I found that they were cumbersome to use, recorded data that I did not care about
(authorization events, network activity), and most importantly recorded events after they
had occurred. An automated response mechanism based on audit data would generally
be triggered after anomalous events had already occurred rather than while they were
happening. In contrast, I wanted pH to be able to respond as anomalies were generated.

14

Chapter 2. Background

rates.

Other groups have chosen to use system calls to detect security violations. Ko

et al. [61] formally specified allowable system calls and parameters for privileged

programs. More recently, Wagner and Dean created a two-part prototype system

that would dynamically monitor the system calls of a program based on a pre-

computed static model derived from the program’s source. An anomaly is noted

when the program makes a system call that the source would not permit [114]. This

approach is effective in detecting two of the most common forms of attack, namely

buffer overflows and trojan code not present in normal binaries; however, it cannot

detect attacks that require only existing code.

Several researchers have built on our original work with system-call sequences

[43], developing a number of related, but different approaches. Some have focused

on applying the sequence technique to other data streams. Stillerman et al. [107] used

sequences of CORBA method invocations for anomaly detection. Jones and Lin [56]

used sequences of library calls to detect attacks. Others have tried developing better

techniques for detecting anomalies in system call data. Lee et al. [65] used RIPPER,

a rule inference system. Marceau [74] developed a method for capturing system-

call patterns using a variable-length window. Michael and Ghosh [78] developed and

analyzed two finite-state machine analysis techniques, and Ghosh et al. [45] compared

sequence analysis with a feed-forward backpropagation neural network and an Elman

network. Some researchers have varied both the data source and the analysis method.

Endler [39] trained a neural network to detect anomalies in sequences of Solaris BSM

audit data. Jones and Li [55] examined “temporal signatures” constructed from

system-call sequences augmented with inter-call timing information. Our work has

also helped inspired some more theoretical studies. Maxion & Tan [77] compared

sequence and Markov anomaly detectors using artificial data sets, focusing on their

coverage of possible anomalies. Separately, they have also set forth a set of criteria

15

Chapter 2. Background

for comparing anomaly detection systems [76].

One of the most promising recent innovations was made recently by Sekar et

al. [99]. They developed a technique for inferring a finite-state machine using system-

call data along with the corresponding program counter values. They claimed that

their method converges much faster than the sequence method; however, because of

the complications introduced by dynamic linking, their tests effectively ignored the

structure of system calls made by library functions. Because the sequence method

recorded this information, the comparison was somewhat unfair. Nevertheless, the

method is promising enough that it deserves a more careful study.

2.1.2 Automated Response

While detecting attacks is important, it is only half the problem: the other half

is what to do once an attack has been detected. The obvious solution is to stop

the attack, perhaps by terminating the offending program or network connection.

Commercial systems such as Cisco Secure Intrusion Detection System [24] and ISS

RealSecure [52] do offer optional responses such as increased logging, termination

of offending processes or network connections, or even the ability to block hosts or

networks. Because false positives can require unacceptable amounts of administrator

attention and cause degradations in service, though, these responses are normally

disabled.

One approach to solving this problem is to say that security policies should be

precise enough so that there aren’t any (interesting) false positives. Systems that

restrict the behavior of untrusted helper applications (Janus [46]), foreign code (Java

Virtual Machines [67], Xenoservers [94]), and privileged programs [61, 100, 101] all

fall in this category. Although this strategy can improve security, it does not remove

the need for intrusion detection: indeed, these systems are vulnerable to exactly the

16

Chapter 2. Background

same problems that plague operating systems.

Another approach is to isolate suspicious activities from the rest of the system.

Attackers believe that they are changing the state of the system, when they are

instead affecting an isolated environment. If the behavior turns out to be legitimate,

changes can be propagated to the rest of the system. This technique is particularly

applicable to database transactions [70], but can also be applied to regular UNIX

services [12, 100, 101]. A related technique is the use of honeypots [25, 109], which

are hosts that offer fake services on instrumented hosts. By monitoring the activities

of attackers in honeypots, it is possible to learn more about their techniques; further,

honeypots trick attackers into wasting resources on useless targets.

One problem with defending against many network attacks is that faked return

addresses can mask the identity of the attacker(s). Systems which try and trace

network-based attacks to their source [115] can be used to help identify the appro-

priate target to block, even in the face of faked return addresses.

Some systems address the response problem by having a repertoire of responses

combined with control rules. This approach is taken by EMERALD [86], the suc-

cessor project to NIDES3. Ragsdale et al. [93] proposed a framework for adapting

responses based upon their usefulness in the past. AngeL [85] is a Linux kernel ex-

tension which blocks several host and network-based attacks using situation-specific

matching and response rules. Portsentry [90] defends against portscans by blocking

connections from suspected remote hosts. Although these systems can be effective

against attacks for which they have been designed to respond, they have little ability

to respond to newly-encountered attacks.

As discussed earlier, pH slows suspicious activity instead of forbidding it. Al-

though this approach hasn’t been used by intrusion detection systems before, it has

3The host-based intrusion detection component of EMERALD, eXpert-BSM, has been
released [68], but the eResponder expert system component is still in development.

17

Chapter 2. Background

been used by other security mechanisms. Nelson [83] recognized that delays in the

form of “unhelpfulness” can be useful security mechanisms. The LaBrea system [69]

responds to rapidly-propagating worms such as Code Red and NIMDA by creating

virtual machines which accept connections but then disappear. Since attacking ma-

chines must wait for the TCP timeout interval before moving onto the next target,

the rate of infection is greatly reduced.

Also, delays have long been used on most UNIX systems to enhance security at the

login prompt. Typically, there is a few second delay after each failed login attempt,

and after a minute the login process times out, forcing a reconnect on remote logins.

These delays can be mildly irritating to a clumsy user; however, they also make it

much more difficult for a remote attacker to try many different username/password

combinations.

2.1.3 Kernel-level Security Projects

The popularity and the open license of the Linux kernel have inspired a variety

of security enhancement projects. Projects such as SubDomain [31], SELinux [82],

Trustix [6], and LIDS [2] allow fine-grained security policies to be implemented using

a variety of techniques and access-control models. AngeL [85] blocks several specific

host-based attacks, and also prevents many kinds of network-based attacks on other

hosts. Medusa DS9 [120] allows access control to be implemented in a userspace

process which can permit, forbid, or modify kernel requests using custom security

policies.

Ko et al. [60] have implemented system-call specification, signature, and sequence

monitoring on FreeBSD using their software wrappers package. This package (which

is also available for Linux, Solaris, and Windows NT) allows one to modify the be-

havior of system calls using code written in their Wrapper Description Language

18

Chapter 2. Background

(WDL), which is a superset of C. These “wrappers” may be layered, allowing one to

compose security policies. It appears that the functionality of pH could be imple-

mented in WDL, although the use of their general framework would probably result

in a significantly slower implementation (see Section 5.10).

Engler et al. [41] have developed an interesting and useful tool for checking code

correctness. Instead of looking for errors based on pre-defined rules, their checker

infers rules based on the “normal” usage of various constructs: it identifies the incor-

rect use of locks, memory, or other resources by detecting anomalous code patterns.

They have applied their system to the Linux and OpenBSD kernels and have found

many errors in both programs [23].

2.2 Operating Systems

Although pH is probably best described as an intrusion detection and response sys-

tem, it can also be seen as a process scheduler that uses an unusual form of feedback.

Typical process schedulers choose what process to run based on its static priority,

CPU usage, and whether its requested I/O has completed. Other schedulers have in-

corporated additional information and decision criteria. Fair-share schedulers [48, 58]

attempt to allocate CPU time fairly amongst users rather than processes. Massalin

and Pu [75] created a fine-grained adaptive scheduler for the Synthesis operating sys-

tem “analogous to the hardware phased lock loop” that scheduled processes based

on timer interrupts, I/O operations, system call traps, and other program behavior

statistics. The feedback of pH is much coarser than the Synthesis scheduler, but

both make scheduling decisions based on learned patterns of behavior.

Experimental extensible kernel systems, such as SPIN [11, 10] and VINO [40],

also have similarities to pH. First, most employ novel OS protection mechanisms such

as safe languages or a transaction system to help ensure the safety of grafts inserted

19

Chapter 2. Background

into the kernel. Similarly, pH is a novel OS protection mechanism for Linux, but one

that protects the standard system call interface. Also, designers of extensible kernels

are interested in gathering data on system behavior and modifying the operation of

the system based on this information. Seltzer & Small [102] in particular discuss

techniques for having a system monitor and adjust its behavior autonomously. Their

focus, however, is on performance, not stability and security.

2.3 Compilers

Most modern compiler environments use some form of “feedback-directed optimiza-

tion” to improve the quality of complied code. All of these systems use profiles of

program behavior to guide program optimization; they differ, however, in how they

gather behavior profiles and in when they perform optimizations. Some systems per-

form optimization and profiling offline (Machine SUIF [103]), some gather profiles

online but optimize offline (Morph [121]). Just-in-time compilation environments

both profile and optimize online, allowing virtual instruction sets such as Java byte-

codes [67] to run as fast as natively-compiled code (Jalapeño [19], HotSpot [79]).

This same basic technology can even be used to speed up native binaries (Dynamo

[9]) or to allow one processor to masquerade as another (Crusoe [30]).

There are many other systems that perform feedback-directed optimization [104];

what these systems have in common, though, is that they optimize code paths that

are run frequently. To do this, these systems must determine how frequently different

functions or basic blocks are executed. It should be possible to build a pH-like system

that uses this frequency information to directly detect unusual program behavior,

and in fact Inoue [51] has recently used Java method invocation frequencies to detect

security violations. The primary drawback to using the infrastructure of feedback-

directed optimization to detect security violations is that few security-critical systems

20

Chapter 2. Background

currently use this technology. As just-in-time compilation environments become

more widespread, it should be possible to use their program behavior-monitoring

capabilities to improve system security without reducing system performance.

2.4 Fault Tolerance

Although my work’s primary application is to computer security, its goals are sim-

ilar to those of the field of software fault tolerance. The field of fault tolerance is

focused on methods for ensuring reliable computer operation in the face of flawed

components, both hardware and software. Most work on fault tolerance has focused

on hardware fault tolerance, primarily through the use of redundant components.

Software fault tolerance, however, focuses on the problem of flawed software [72].

By assuming that the hardware is reliable, flaws in software must come from flawed

specifications, designs, or implementations. These flaws cannot be mitigated through

simple replication; instead, software fault tolerant systems use two basic techniques:

fault detection and recovery, and design diversity.

When there is only one version of the application available, faults are detected

through special error-detection code and are mitigated through exception handlers.

Numerous programs employ these techniques in an ad-hoc fashion. In addition, sev-

eral methodologies for structuring error detection and recovery have been developed,

the most prominent of which is the “recovery block” method. A recovery block con-

sists of an acceptance test, followed by several alternatives. Execution of the block

proceeds as follows. First, the program is checkpointed. Then, the first alternative

is executed, and the acceptance test is run. If the test returns true, the other alter-

natives are skipped, extra state information is discarded, and the program proceeds.

If the test fails, the program is restored to the checkpointed state, the second alter-

native is run, and the acceptance test is run again. This process continues until the

21

Chapter 2. Background

acceptance test returns true, or until the program runs out of alternatives. Recovery

blocks can be nested, allowing for elaborate recovery schemes [72, pp. 1–21]. In the

related field of software rejuvenation, applications are periodically reset to a known

good state when statistics such as run-time and memory usage reach pre-specified

limits. In a clustered environment, nodes may also be reset after first migrating

applications to other, redundant nodes [20, 111]. With the increasing use of clusters

to run large-scale web and database servers, software rejuvenation has become an

effective technique for ensuring system reliability.

Design diversity is based on the hope that independent solutions to a given prob-

lem will have different errors, allowing them to be used to check each other. There

are two major approaches to design diversity: N -version programming (NVP) and

N self-checking programs (NSCP). NVP systems contain N complete implementa-

tions of a given specification, each written by different teams of programmers. These

versions are run concurrently, generally on different processors, with the output of

the system being the output of the majority of the implementations, assuming that a

majority agree on a single action. NSCP systems also consist of multiple implementa-

tions of a given program specification. However, in NSCP only one of these versions

is active at any time, with the others serving as “hot spares.” These programs have

error-checking code that attempts to detect incorrect behavior. If the active version

detects a problem with its behavior, it activates a spare and becomes inactive. The

spare implementations may not offer full system functionality, but like a spare tire,

they should be enough to keep the system limping along until the problem can be

fixed [72, pp. 49–51].

The field of self-stabilization focuses on algorithms which can recover from tran-

sient failures automatically. Self-stabilizing algorithms for mutual-exclusion, clock

synchronization, and other communications protocols [54] can serve as important

building blocks for fault-tolerant distributed systems; however, by potentially mask-

22

Chapter 2. Background

ing the presence of errors, they may cause necessary responses to be delayed.

The spread of the Internet has prompted research into the creation of large-scale

fault-tolerant systems. For example, OceanStore [95] uses byzantine protocols, re-

dundant encodings, automated node insertion and removal mechanisms, and other

techniques to create a robust, self-maintaining storage infrastructure designed to scale

to “billions of users and exabytes of data [95, p. 40].” Phalanx [73] is a software

system for building secure, distributed applications such as Public-Key Infrastruc-

ture (PKI) and national voting systems through the use of quorum-based protocols.

Both of these distributed systems can provide remarkable guarantees of service if

we assume that node failures are independent events; if the underlying software is

homogeneous, though, such assumptions are not necessarily warranted.

2.5 System Administration

System administrators have long created ad-hoc mechanisms to handle routine main-

tenance and to detect and respond to potential problems. For example, most UNIX

systems automatically rotate log files and flush mail queues. Administrators often

add scripts to purge temporary files, perform nightly backups, and to upgrade soft-

ware packages. Burgess’s cfengine [16, 17] provides a customizable framework for

more elaborate automatic administration systems. cfengine periodically runs and

checks for conditions such as low available disk space, non-functional daemons, or

modified configuration files. Scripts are run when a given trigger condition has been

satisfied, solving problems without the need for direct intervention. The design of

cfengine was also inspired by the human immune system [18]; its knowledge-intensive

design, though, is very different from pH’s.

Versions of Microsoft Windows [28] starting with Windows 95 have incorporated

a number of features to help home users maintain their computers. Windows can

23

Chapter 2. Background

automatically detect and configure new hardware. It notices when its primary disk

is nearly full and runs an application to help users delete unnecessary files. Win-

dows can automatically install device drivers and libraries from compressed archives,

and applications such as Microsoft Office XP use new Windows services to repair

themselves if program files are damaged or deleted [29].

The detection and response mechanisms of cfengine and Windows can automate

many system administration tasks; when advanced users try to perform maintenance

manually, though, these mechanisms can cause significant problems. For example,

cfengine can undo configuration file changes, preventing quick fixes from being pre-

served. Windows will often reinstall drivers for devices that have been deliberately

removed, sometimes perpetuating hardware conflicts that the user was trying to

eliminate. pH is not free of this problem, and Section 6.10 describes how pH can

interfere with normal administration tasks. A major challenge for any automated

response system is how to prevent normally helpful mechanisms from causing their

own problems.

2.6 Artificial Life & Robotics

Although very different in form and functionality, much of the inspiration for pH

has come from the field of artificial life, and in particular the work of David Ackley.

Through the ccr project [1], Ackley has advocated the view that some existing compu-

tational systems are in fact living systems, and if we are to tap the possibilities of our

computers, we must at least understand the design principles of biological systems.

Although ccr can be described as a peer-to-peer, distributed multi-user dungeon

(MUD), it can also be described as an experiment in making computer artifacts that

treat communication as a risky endeavor. Communication is inherently dangerous,

and this danger is reflected in the structure of all biological systems. Whether you

24

Chapter 2. Background

examine a cell membrane, the human immune system, or predator-prey interactions

in ecosystems, it is clear that there is a need to manage resources that are devoted

and exposed to interactions with others. Most programs have primitive notions of

resource and access control; either an interaction is permitted, or not. And, if that

interaction is permitted, all requested resources are granted. In contrast, ccr limits

all interactions in a way analogous to trusted operating systems. Movement within

ccr is strictly regulated. Communication between worlds is controlled, both in terms

of what kinds of information, and how much may pass between worlds. There are

bandwidth regulators on all channels, and if one world attempts to flood another

with more data than allowed, the excess information is blocked and eventually the

connection is terminated. Also, certain information is considered inherently private

(such as a world’s private key) — such information is carefully managed, and is not

allowed to flow over any outside connection, no matter how much trust is attributed

to that connection. Such design features have framed my views on how a computer

should behave.

While the ccr project has influenced my aesthetics, the field of robotics has in-

formed my views of implementation. In particular, Rodney Brooks’s work on sub-

sumption architecture has been inspirational. In a 1985 MIT AI Lab memo, Brooks

described what was then a new approach to mobile robot control [13]. Through

the use of loosely coupled feedback loops, each connecting a limited set of sensor

inputs to a small set of actuators, he was able to have a robot interact with real en-

vironments in a rapid and robust fashion. One particular difference with traditional

robotics was that there was no centralized representation of the outside world; dif-

ferent components might in fact have contradictory models. However, by arranging

these modules in a hierarchy (with higher modules “subsuming” lower ones), and

using this hierarchy to arbitrate between conflicting actions, these different (mostly

implicit) representations are able collectively to provide robust control for a robot.

This approach has been quite fruitful, and has produced a number of successful

25

Chapter 2. Background

robots [14]. Other researchers have adopted the subsumption architecture, using

more traditional AI algorithms in the higher levels (such as planners) to produce

more sophisticated behaviors [62, pp. 6–12].

Although the field of robotics might appear distant from that of operating sys-

tems, with the rise of the Internet both face a common challenge: they must interact

with a rapidly changing, potentially threatening outside world on relatively short

time scales. Although a networked computer does not have to deal with faulty sen-

sors and imprecise motor control, it does have to deal with a barrage of network

packets and a multitude of independent programs and users, some of which may be

malicious. In both cases, getting precise and current information about the state

of the world is difficult and expensive, whether it be a room full of furniture and

people, or a busy web server communicating with machines around the world. Like

many robotics systems, pH uses an efficient learning algorithm and a few heuristics

to connect simplified inputs to useful actions.

26

Chapter 3

Homeostasis

The success of biological systems can seem puzzling when considered from the view-

point of computer security and computer science. Most of the standard tools for

producing robust computational systems, namely specification, design, and formal

verification, were not used to create most lifeforms; instead, they have evolved over

time to survive and reproduce within a variety of environments. This process of re-

production, variation, and selection has produced organisms that have fundamental

flaws which leave them vulnerable to disease, old age, starvation, and death; nev-

ertheless, living systems are also remarkably robust, and are able to autonomously

survive and reproduce in the most unlikely of circumstances. One fundamental or-

ganizing principle that enables this robustness is homeostasis.

This chapter explains homeostasis in living systems and discusses how homeosta-

sis inspired and informed the design of pH. The first section describes two examples

of biological homeostasis. The second section outlines the requirements of pH’s de-

sign, explains how four abstractions of biological homeostasis informed the design of

pH, and gives a user’s view of pH in action.

27

Chapter 3. Homeostasis

3.1 Biological Homeostasis

All biological systems maintain a stable internal state by monitoring and responding

to internal and external changes. This self-monitoring is one of the defining properties

of life and is known as “homeostasis.” By minimizing variations in the internal state

of an organism, homeostatic mechanisms help ensure the smooth operation of the

numerous chemical and mechanical systems that constitute an organism.

Although many homeostatic mechanisms have been studied extensively, most are

still incompletely understood. What follows is a high-level description of two mech-

anisms, temperature control and the immune system, that are used by the human

body to keep us alive. Although our knowledge of both is far from perfect, these

examples are still useful as inspiration for analogous computational mechanisms.

3.1.1 Temperature Control

Cells employ numerous enzymes (biological catalysts) to control the chemical re-

actions necessary for their survival [33, pp. 169–170]. The effectiveness of these

enzymes is often influenced by temperature: an enzyme may work well within a nar-

row temperature range, but may become permanently damaged by being exposed

to temperatures significantly outside this range [33, pp. 175–176]. Because malfunc-

tioning enzymes can cause death, living systems have evolved mechanisms to cope

with variations in external temperature.

For example, cold-blooded animals such as reptiles regulate their internal tem-

perature by moving to warmer or colder areas as needed. Although this strategy is

energy efficient, it means that cold-blooded animals can only be active when their

surroundings are warm, i.e. during the daytime. In contrast, warm-blooded animals

such as birds and mammals metabolize food to generate heat, allowing them to be

28

Chapter 3. Homeostasis

active after dark and to survive in very cold climates. Since most enzymes are ef-

ficient only within a narrow temperature range, humans and other warm-blooded

animals employ many mechanisms to maintain a constant internal temperature.

The human body detects temperature changes through sensors (specialized nerve

cells) in the skin and inside the body. As we become cold, blood vessels in the

extremities constrict, reserving a greater proportion of the body’s warmth to the

inner core. Shivering is induced, causing muscles to produce additional heat. In

some animals, feathers or hairs are made to stand up, increasing the amount of air

trapped near the skin, enhancing the insulating properties of the outer layers. In

humans, however, this same mechanism simply produces goose bumps [33, p. 786].

Extended exposure to the cold causes individuals to eat more food, in response to

the increased metabolic demands of heat generation .

Analogous mechanisms happen in response to heat: we sweat, blood vessels in

our extremities dilate, and over time we tend to eat less. Note that at the onset of

a fever, we have reactions (such as shivering) that are associated with cold. These

symptoms occur because our body is attempting to reach a new, higher temperature

equilibrium. While very high temperatures (above 40◦C) can cause dementia and

convulsions, moderately higher temperatures stimulate the immune system and dis-

rupt the functioning of invaders [112, pp. 588–597]. When a fever breaks, we tend to

sweat: the danger has passed, and it is time to move back to a normal temperature

equilibrium.

3.1.2 Immune System

The human immune system is a multi-layered, complex system which is responsible

for defending the body from foreign pathogens and misbehaving cells. Although it

can be seen as analogous to a military defense system, in many ways the immune

29

Chapter 3. Homeostasis

system is closer in spirit to the homeostatic mechanisms discussed above. Millions of

cells roam our bodies, each attempting to detect specific perturbations in the body’s

internal environment. Cellular damage, unusual cellular behavior, or just unusual

chemical compounds can all cause an immune response. Any immune response must

be proportional to the change detected, much as the violence of our shivering depends

on how cold we are. Further, the type and severity of an immune response must

be balanced against other factors. For example, many immune responses result in

the killing of healthy cells; thus, an overzealous immune response can cause more

damage than an invading pathogen. In the end, there is never a complete victory for

the immune system; rather, success is the continued survival of the body.

The immune system has many different components which interact and regulate

each other. Much is known about some of these components, while others are still

quite mysterious. Hofmeyr [98] has written a useful introduction to the complex-

ities of the immune system from a computer scientist’s perspective. Rather than

describing many of these systems, here we focus on one part of the adaptive immune

response: the interaction between T-cells and MHC-peptide complexes.

As each cell recycles its proteins, some peptide fragments are not reused immedi-

ately. Instead, they are used to inform the immune system about the internal state

of the cell. This communication is facilitated by a protein called the major histo-

compatibility complex, or MHC. MHC has a cleft in its middle, large enough for an

8–10 amino acid peptide fragment to fit in. (See Figure 3.1.) This cleft must be filled

with a peptide fragment in order for MHC to be stable; otherwise, it breaks down

into its component polypeptides [21, p. 4:8]. Peptide fragments are transported into

areas that are topologically outside of the cell (the lumen of the endoplasmic retic-

ulum or intracellular vesicles), where unbound MHC constituents are stored. When

a suitable peptide fragment comes into contact with MHC components, a complete

MHC is formed. This MHC is then transported to the cell’s surface, to be presented

30

Chapter 3. Homeostasis

Figure 3.1: A rendering of a MHC molecule with a bound peptide. This diagram
shows an MHC class II DQ8 protein bound to a papilloma virus E4 peptide. The
red part is the alpha polypeptide chain, and the green is the beta chain. The bound
peptide is shown using multi-colored space-filling spheres. [118].

to passing immune system cells called T-cells [21, pp. 4:14–15].

Each T-cell has on its surface receptors that are designed to bind to MHC present

on another cell’s surface. Different T-cells have different receptors, each specialized

to recognize a different MHC/peptide fragment combination. During T-cell develop-

ment, each T-cell constructs its receptors using a random combinatorial process that

can produce 1016 different receptors [21, 4:35]. Note that this set of receptors can

bind to almost any peptide fragment. However, during T-cell development T-cells

that bind to MHCs containing “normal” peptide fragments are killed. Thus, when

roaming the body, if a T-cell is able to bind to a cell’s MHCs, that cell must be

31

Chapter 3. Homeostasis

producing an abnormal protein. As proteins directly control the behavior of a cell, it

can be assumed that the target cell is behaving abnormally, either because of a ge-

netic defect or because it has been invaded by a pathogen such as a virus. Therefore

a T-cell, upon finding a target cell with MHC it recognizes, can initiate an immune

response against that cell and its neighbors, generally resulting in cell death.

3.2 Process Homeostasis

Although are not as complex or robust as biological systems, they do have some mech-

anisms that can be said to maintain homeostasis. For example, because electronics

are sensitive to temperature extremes, computer systems have temperature sensors

(thermistors and silicon-embedded diodes) and regulatory mechanisms (heatsinks

and fans) analogous to those of the human body. If instead we think about com-

puters on the software rather than the hardware level, we must consider other kinds

of “temperature” if we wish to draw biological analogies. In living systems, tem-

perature is regulated because the fundamental operations of life (chemical reactions)

depend upon the proper functioning of temperature-dependent enzymes. Similarly,

computer programs require resources such as CPU cycles and memory to execute

correctly. Hence subsystems that help programs receive sufficient resources, such

as virtual memory and process scheduling, are analogous to biological temperature-

regulation mechanisms.

In contrast, there are relatively few mechanisms in existing computer systems

which are analogous to the immune system. Some computers (particularly corpo-

rate desktop machines) can detect when they have been opened; modern operating

systems have security mechanisms to regulate access to programs and data; virus

scanners and signature-based intrusion-detection systems can detect the presence of

known dangerous activities at the program and network levels (see Chapter 2). None

32

Chapter 3. Homeostasis

of these systems, however, are anywhere as robust, general, or adaptive as the human

immune system.

pH was designed to give computer systems homeostatic capabilities analogous

to those of the human immune system. Because the constraints of living and com-

putational systems are very different, however, we cannot create a useful computer

security mechanism by merely imitating biology. My approach has been first to

choose a set of requirements similar to those of the immune system. I then cre-

ated abstractions that captured some of the important characteristics of biological

homeostatic systems and then used these abstractions to guide my design of pH.

The next section describes the requirements of pH’s design and compares these

requirements with the characteristics of the human immune system. The next sec-

tion explains the abstractions used to translate biological homeostasis into process

homeostasis. Subsequent sections then describe the rationale for each of pH’s instan-

tiations of these abstractions.

3.2.1 Requirements

pH was designed to supplement existing UNIX security mechanisms by detecting and

responding to security violations as they occur. It was also designed to be analogous

to the human immune system. To fulfill both of these constraints, pH was designed

to satisfy the following requirements:

• Broad Detection: Much as the immune system can detect the presence of

almost any pathogen, pH should detect a wide variety of attacks.

• Effective Response: The immune system can prevent most pathogens from

killing a person; similarly, pH should stop attacks before they can do damage.

33

Chapter 3. Homeostasis

• No Updates: Although the immune system performance can be enhanced

through vaccinations, in general it can adapt on its own to new threats. To

provide capabilities analogous to those of the immune system, then, pH should

not require an update every time a new security vulnerability is discovered.

• Lightweight: pH should have a minimal impact on system resources, to the

point that users do not feel motivated to disable pH to improve the performance

of their systems.

• Minimal Administration: Since users and administrators are already over-

burdened with the complexity of current systems, pH should be mostly au-

tonomous, requiring minimal human interaction.

• Secure: It should not be easy to circumvent pH, and it should not add (sig-

nificant) security vulnerabilities.

These are a challenging set of requirements that are not met by existing computer

security systems. Because the requirements were inspired by biology, it made sense

to look to it for means to satisfy them. The next section explains how biology was

used to design pH.

3.2.2 Abstractions

Although biology can be a rich source of inspiration, it can also be misleading. Home-

ostatic systems work well in a biological context; however, there are vast differences

between proteins and silicon chips, and so we cannot assume that the lessons of one

domain directly apply to the other. One way to bridge this gap is to recognize that

there are underlying organizational similarities, or abstractions, between different

homeostatic mechanisms. By identifying and translating each organizational feature

into an appropriate computational context, we should be able to avoid inappropriate

34

Chapter 3. Homeostasis

Abstraction Temperature Regulation MHC Immune Response
enclosed system human individual human individual
system property temperature safe cellular proteins
detector specialized nerve cells MHC on cell surfaces
effector muscles, sweat glands, others T-cells, cell death

Table 3.1: Four organizational divisions present in biological homeostatic systems.

Abstraction process Homeostasis (pH)
enclosed system individual computer
system property normal program behavior
detector sequences of system calls
effector delayed system calls

Table 3.2: The homeostatic organization of pH.

biological imitations, and instead create computational systems that are useful on

their own merits.

To see how this may be accomplished, notice that homeostatic systems generally

seem to have the following divisions: an enclosed system that needs to be main-

tained (typically the interior of the organism), a property that must be monitored

for changes, detectors that summarize the state of that property, and effectors which

change the state of the monitored property. Table 3.1 shows how these abstractions

map onto temperature regulation and the MHC/T-cell response of the human im-

mune system. For a computer mechanism to be homeostatic, then, it should have

similar abstractions.

Table 3.2 summarizes how these four abstractions map onto pH. The following

sections explain and motivate each of these mappings.

35

Chapter 3. Homeostasis

3.2.3 Enclosed System

Living systems all have an internal environment that is distinct from the outside

world. Homeostatic mechanisms must maintain the stability and integrity of this

internal environment if the organism is to survive. If we are to follow the homeostasis

analogy, we must choose the internal environment, or the enclosed system, that is to

be maintained by our computational homeostatic mechanism. This enclosed system

in effect defines the “individual organism” for the purposes of homeostasis.

Although we could maintain homeostasis within a specially defined boundary,

it is simplest to leverage the existing boundaries of a system. There are many

potential boundaries to choose from. For example, the shared configuration, trust,

and administration of networks within an organization can be thought of as defining

a single organism, with firewalls acting as a kind of skin separating an intranet from

the outside world. At the other extreme, programs (particularly mobile applications)

can be seen as autonomous organisms.

The enclosed system for pH is a single networked Linux computer. This choice

leverages existing host-based authentication mechanisms and trust boundaries. Al-

though cells and programs are not completely analogous, there is a similar kind of

“shared fate:” if the integrity of a Linux computer is compromised, none of its pro-

grams are safe, much as all the cells of an individual are in danger if the individual

is infected with a disease.

3.2.4 System Property

Having chosen a system to work with, we next needed to decide what property

of that system our mechanism should stabilize. There are many properties of a

single Linux host that are worth monitoring if we wish to improve system security.

36

Chapter 3. Homeostasis

Rather than looking at users or network traffic, though, pH is designed to preserve

normal program behavior. Much as T-cells monitor expressed MHC complexes to

ensure that cells aren’t producing unusual proteins, pH monitors programs to ensure

that they aren’t running unusual code segments. This evaluation is done relative

to a process’s current executable and does not directly account for user or network

variations; however, because a program’s execution environment affects its behavior,

relevant external variables are implicitly included in a program’s behavior profile.

What this means is that instead of a-priori restrictions on program behavior,

pH merely requires that program usage be consistent. The theory is that on an

uncompromised system with effective conventional security mechanisms, security vi-

olations will cause programs to behave in unusual ways. By detecting and responding

to such unusual behavior, pH stops security violations without having pre-specified

knowledge of what those violations are. If this assumption is not true and security

violations are part of normal program behavior, then either the machine is already

compromised, or the work of legitimate users requires the circumvention of existing

security mechanisms. In the former case, the game has already been lost; in the

latter, there needs to be a change either in user behavior or in the security policy.

Both of these cases are thus outside the scope of pH’s design.

3.2.5 Detector

To distinguish between normal and abnormal program behavior, we need a generic

mechanism for profiling a program’s execution. This method should be lightweight

so that multiple programs can be monitored concurrently without a significant loss

in performance. It should also not interfere with normal program functionality so

that monitored programs will continue to work properly. Most importantly, though,

the class of abnormal program behavior defined by this mechanism should contain

37

Chapter 3. Homeostasis

many kinds of security violations.

There are several reasons why system calls are a good basis for a normal program

behavior detector. As explained in Section 1.3, security violations can be detected

at the system call level because programs access outside resources through this in-

terface. System calls are also relatively easy to observe: since all system calls invoke

the kernel, we can observe every process on a system by instructing the kernel to

report system call events. Standard methods for observing system calls, such as the

ptrace system call, can be very inefficient and can even interfere with normal pro-

gram operation. A custom kernel mechanism, though, can observe system calls with

minimal overhead and without interfering with normal program semantics.

Having decided to observe system calls, we also need a way to classify their

patterns. Here again biology provided inspiration in the form of MHC. To review,

the MHC captures aspects of a cell’s behavior by transporting small chains of amino

acids (peptides) to the surface of a cell where they can be inspected by T-cells. In

our original paper [43], we found that short sequences of system calls can be used to

distinguish normal from abnormal program behavior, much as short chains of amino

acids are used to distinguish normal from abnormal cellular behavior.

There is much more to be said about analyzing short sequences of system calls.

Chapter 4 describes the lookahead pair method for analyzing system call sequences,

which is the method pH uses to detect abnormal program behavior. Chapter 6 ex-

plores how well lookahead pairs characterizes normal program behavior, and Chapter

7 shows that the lookahead pairs method is effective at detecting a variety of anoma-

lies, and explores some reasons why it is so effective.

38

Chapter 3. Homeostasis

3.2.6 Effector

Given that system calls can be used to detect dangerous program behavior, we now

face the challenge of what to do with this information. Other security systems

respond to suspected attacks by increasing the level of logging, alerting an adminis-

trator, or by avoiding the problem by deferring the decision to another component

(see Section 2.1.2). Instead, I wanted pH to react to anomalous calls immediately

and effectively.

One fundamental problem for any sort of anomaly-detection system is that of false

positives. No matter how good our analysis technique, we have to assume that some

detected anomalies are actually instances of acceptable behavior. Further, because

we are monitoring every program on a system, and because we are working at the low

level of individual system calls, these false positives may occur often. Consequently,

we must anticipate that our response mechanism will be invoked frequently, and that

some of these invocations will be erroneous.

The human immune system is also fallible, and it often makes mistakes. Still,

because of the redundancy and resilience of the human body, these mistakes generally

do not cause problems. Individual cells are disposable and replaceable: individually

they can be killed with no consequence, and if too many cells are destroyed, others

can be created to replace them. This disposability of components (cells) allows the

immune system to employ responses that harm both healthy and diseased cells [21,

pp. 7:35–7:36].

Current computer systems are not nearly as redundant as living systems, and

they have much less capacity for self-repair. Nonetheless, there is one aspect of

computers that is almost always disposable: time. Unless there are hard real-time

constraints, minor variations in execution time do not affect the correctness of most

computations. If a web server takes one second rather than one-tenth of a second

39

Chapter 3. Homeostasis

to service a request, it is still operating correctly (albeit with reduced capacity and

performance). Having said that, large variations in time do matter in practice, even

if correctness is maintained. Users get impatient with sluggish programs, and in

a networked environment significant slowdowns can trigger timeouts which cause

connections to be terminated or restarted. Taken to the limit, an extremely slow

program is indistinguishable from one that has crashed. Thus, to accommodate

for inevitable mistakes in detecting abnormal program behavior, pH responds to

anomalous program behavior by delaying system calls in proportion to the number

of recently anomalous system calls.

Note that a response based on slowing down system calls can be both safe and

effective. If false positives cause infrequent anomalies that trigger small delays, then

such false positives will result only in minor changes in system behavior. On the

other hand, if true positives cause more frequent anomalies which in turn produce

larger delays, then such a response can disrupt an attack in many ways. Sufficiently

long delays trigger network timeouts, terminating TCP connections. Delays frustrate

attackers with slowed responses. Also, long delays give time for a more elaborate

analysis of a situation, either by an administrator or by a slower but more sophisti-

cated anomaly detection system.

3.2.7 The User’s View of pH

Before discussing the specifics of pH’s algorithms and implementation, it is worth

considering how pH appears from a user’s perspective. This section explains how

the previously mentioned mechanisms are integrated together, and it also provides a

conceptual roadmap for the next two chapters.

The first step, installation, is relatively simple for a skilled user or administrator:

build and install a patched Linux kernel, and then install an initialization script

40

Chapter 3. Homeostasis

and a few utility programs. When the system boots, pH remains inactive until its

initialization script runs at the start of the multi-user boot process. Once started,

pH monitors the system calls made by every process on the system. Profiles are

maintained for each executable that is run, stored on disk in a directory tree that

mirrors that of the executables themselves. For example, with the default parameter

settings, the profile for /bin/su is located in /var/lib/pH/profiles/bin/su. The

first time su is run, this profile is created; on subsequent invocations of su, the profile

is loaded from disk if it is not already present in memory.

When pH is first started, its behavior is imperceptible except for a few additional

kernel log messages. After a fixed period of time (by default a week), pH starts

reporting that it has begun “normal monitoring” of various executables, meaning

that pH can now detect and respond to abnormal behavior by these programs. Many

of these programs are simple shell scripts which are periodically run by cron at

set time intervals; others are system daemons that run in the background. As it

observes additional system calls produced by normal computer usage, pH creates

normal profiles for more and more commonly used programs; even so, other than the

log messages, pH continues to work quietly in the background.

This all changes when the computer is used for new activities. Actions such as

installing a new program, reconfiguring a backup script, or attacking a web server can

cause pH to delay processes. Applications on UNIX systems often require multiple

programs to work together; consequently, even if the profile for the primary program

has not stabilized, pH will often react to unusual behavior by utilities such as sed

and stty which are run indirectly by shell scripts or other programs.

A graphical monitoring program, pHmon, can be used to monitor pH’s actions.

When programs are delayed, its main indicator icon changes colors. A user can then

click on this icon to interact with a process list. This list can be used to kill the

delayed program or to tell pH that the behavior in question is permissible, in which

41

Chapter 3. Homeostasis

case pH will allow the program to continue at full speed. If many unusual tasks need

to be performed, pH’s responses can be disabled; of course, this also means that pH

will no longer provide any protection.

The net effect of pH is a system that is tailored to a particular set of users and

uses. The more consistent the behavior of this group, the stronger pH’s reaction

when that behavior changes. Even though the underlying mechanisms are extremely

simple, these reactions are easy to anthropomorphize: users will often comment that

pH “doesn’t like” some program or activity. I find that I can even predict when pH

will dislike one of my actions, much like a dog owner can predict that a stranger at

the door will cause a barking fit.

Although the behavior of pH can seem sophisticated and lifelike, the next two

chapters show that pH’s algorithms and implementation are remarkably simple.

Chapter 4 explains how pH performs system call sequence analysis, while Chapter 5

covers the rest of pH’s implementation.

42

Chapter 4

Analyzing System Call Sequences

Inspired by the functioning of MHC in the human body, pH analyses program behav-

ior by observing short sequences of system calls. This chapter describes and analyzes

the method used by pH to analyze these sequences. The next section discusses our

past work on system call sequences and explains why pH observes system calls. The

following section then explains two techniques for creating profiles using system call

sequences. The last part analyzes and compares these two methods. This analysis

gives some rationales for pH using the lookahead pair method for analyzing system

call sequences; Chapter 6 presents data that reinforces the validity of this choice.

4.1 Requirements

A method for classifying program behavior based on system-call usage could measure

system calls in many ways. It could compare the timings of different system calls,

or their relative frequencies. It could analyze arguments to specific system calls,

or could only look at a subset of all possible system calls. As discussed in Section

2.1.1, many others have studied different techniques for using system calls to detect

43

Chapter 4. Analyzing System Call Sequences

abnormal program behavior and security violations. In our initial 1996 paper [43],

however, we decided to use the simplest approach we could conceive, which was to

ignore everything about system calls except for their type and relative order.

Given these constraints, what we needed was a way to compress the traces of

system calls into a compact profile that quickly converges to a fixed state given

“normal” program behavior, while still allowing one to detect abnormal behavior as

sets of patterns that aren’t represented in the profile. In addition, this modeling

algorithm must be able to capture ∼ 200 discrete types of events (the size of the

system-call vocabulary); it must also permit fast incremental updates, detect low-

frequency anomalous events, and have modest memory and CPU requirements.

Without any other knowledge, it might seem that we would need a sophisticated

learning algorithm; program behavior is simple enough, though, that we can make

due with extremely simple methods. We have used two techniques, both of which

use a fixed-length window to partition a process’s system calls into sequences. With

the most straightforward technique, which we call the sequence method, a profile of a

program’s behavior consists of the entire set of sequences produced by that program.

With the other technique, known as the lookahead pair method, the pairs formed by

the current and a past system call are stored in the program’s profile.

The sequence method works surprisingly well in comparison to other, more so-

phisticated algorithms. Warrender [116] compared the sequence method with several

others, including a Hidden Markov Model generator and a rule inference algorithm

(RIPPER). By analyzing several data sets with each method, she was able to esti-

mate the false and true positive rates of each method. She also roughly measured

the execution time required by each method. These experiments showed that the

sequence method was almost as accurate as the best algorithm in any given test,

while being much less computationally expensive.

44

Chapter 4. Analyzing System Call Sequences

Given these and other published results [49, 44], it would seem reasonable for pH

to use the sequence method; however, the lookahead pair method is both very fast

and very easy to implement, and as our initial paper showed [43], it is also effective

at detecting security violations. The rest of this chapter describes and compares

these two methods. The analysis shows that lookahead pairs is better suited to the

requirements of pH. Chapter 6 presents some data on both methods that reinforces

this choice. It also justifies the use of length nine system call sequences.

4.2 Description

In our past work, we used two methods to analyze system-call traces: sequences and

lookahead pairs. For both methods, we define normal behavior in terms of short

sequences of system calls. Conceptually, we take a small fixed size window and slide

it over each trace, recording which calls precede the current call within the sliding

window.

In the sequences method, we record the literal contents of the fixed window in

the profile, and the set of these sequences constitutes the model of normal program

behavior. With the lookahead pairs method, we record a set of pairs of system calls,

with each pair representing the current call and a preceding call. For a window of

size x, we can form x − 1 pairs, one for each system call preceding the current one.

The collection of unique pairs over all the traces for a single program constitutes the

model of normal behavior for the program.

45

Chapter 4. Analyzing System Call Sequences

More formally, let

C = alphabet of possible system calls

c = |C| (190 in Linux 2.2, 221 in Linux 2.4)

T = t1, t2, . . . , tτ |ti ∈ C (the trace)

τ = the length of T

w = the window size, 1 ≤ w ≤ τ

P = a set of patterns associated with T and w

(the profile)

For the sequences method, the profile Pseq is defined as:

Pseq = {〈si, si+1, . . . , sj〉 : si, si+1, . . . , sj ∈ C,

1 ≤ i, j ≤ τ,

j − i + 1 = w,

si = ti,

si+1 = ti+1,

. . .

sj = tj}

Alternately, for the lookahead pairs method, the profile Ppair is defined as:

Ppair = {〈si, sj〉l : si, sj ∈ C, 2 ≤ l ≤ w

∃p : 1 ≤ p ≤ τ − l + 1,

tp = si,

tp+l−1 = sj}

To make these formal definitions more concrete, it is instructive to work through

an example. Suppose we have chosen a window size of 4 (w = 4), and we observe

a program producing this trace of system calls, with the earliest system call on the

left:

46

Chapter 4. Analyzing System Call Sequences

position 3 position 2 position 1 current

execve
execve brk

execve brk open
execve brk open fstat
brk open fstat mmap
open fstat mmap close
fstat mmap close open
mmap close open mmap
close open mmap munmap

Table 4.1: A sample system call sequence profile.

position 3 position 2 position 1 current

execve
execve brk

fstat execve, mmap brk, close open
execve brk open fstat
brk, mmap open, close fstat, open mmap
open fstat mmap close
close open mmap munmap

Table 4.2: A sample lookahead pair profile, with the pairs represented implicitly.
Note how there are multiple entries in the open and mmap rows.

execve, brk, open, fstat, mmap, close, open, mmap, munmap1

The first step in defining a profile for this trace is to record the contents of the

overlapping length 4 windows. Let us number the four positions in this window as

position 0, 1, 2, and 3, with position 0 being the most recent call, and 1 being the call

immediately preceding it. For clarity, let us call position 0 the “current” position,

since it refers to the most recently executed system call.

With these conventions, our trace produces the window contents shown in Table

1Actually, system calls are encoded as numbers between 0 and 255. The numbers
corresponding to these calls are “11, 45, 5, 108, 90, 6, 5, 90, 91.”

47

Chapter 4. Analyzing System Call Sequences

l pairs (current, prev)

2 (brk, execve), (open, brk), (open, close), (fstat, open),
(mmap, fstat), (mmap, open), (close, mmap), (munmap, mmap)

3 (open, execve), (open, mmap), (fstat, brk), (mmap, open),
(mmap, close), (close, fstat), (munmap, open)

4 (open, fstat), (fstat, execve), (mmap, brk), (mmap, mmap),
(close, open), (munmap, close)

Table 4.3: A sample lookahead pair profile, with the pairs represented explicitly.

4.1. For the sequence method, we would simply store the contents of this table. The

incomplete sequences are also recorded, with an arbitrary “empty” value filling the

unoccupied positions.

For the lookahead pair method, we compress the sequence representation by join-

ing together lines with the same current value, as shown in Table 4.2. From this

table, we can generate three sets of lookahead pairs: pairs for l = 2 (current and

position 1), l = 3 (current and position 2), and l = 4 (current and position 3). Table

4.3 lists all of these lookahead pairs.

Given these profiles, the following sequence would be flagged as anomalous:

open, fstat, mmap, execve

The sequence method would signal that the execve was anomalous because this

sequence is not listed in Table 4.1. The lookahead pair method would mark it as

anomalous because the lookahead pairs (execve, mmap) (l = 2), (execve, fstat)

(l = 3), and (execve, open) (l = 4) are all not present in Table 4.3.

This lookahead-pair information is what pH actually uses to monitor program

behavior, with a window size w = 9. This data is stored in a 129K profile on disk,

with one profile for every program that is run. They are loaded every time a new

program is run and are saved when all processes using a given binary have exited.

48

Chapter 4. Analyzing System Call Sequences

For example, when a user types the ls command at a shell prompt, the shell forks

a copy of itself. This child process then runs /bin/ls through the use of the execve

system call. Before this execve completes, pH loads the profile for /bin/ls from disk.

When the ls process terminates, pH saves its profile to disk and frees the profile’s

memory.

The next section analyzes the properties of the sequence and lookahead pair

methods and provides some justification for why pH uses lookahead pairs.

4.3 Analysis

Having described two methods for representing normal program behavior at the

system-call level, we need a set of criteria for choosing which one to use, and for

choosing an appropriate window size for either method. Given the constraints of pH,

we have a number of issues to consider:

• Speed: Above all else, we need a method that is fast enough to run in real-

time without causing significant performance degradation. Thousands of sys-

tem calls are made every second on a graphical workstation; accordingly, the

analysis of each of these calls must be extremely efficient computationally.

• Profile size: We also need a method that generates small profiles of normal

behavior. To some degree we can exchange size for speed; however, profiles

should be significantly smaller than the typical executable size so as to minimize

the load-time performance impact. Also, to protect against denial-of-service

attacks there should be a reasonable upper bound on the size of a profile;

otherwise, a randomly-behaving program could generate an arbitrarily large

profile and exhaust system memory.

49

Chapter 4. Analyzing System Call Sequences

• Generalization and Convergence: The method should converge quickly,

requiring a minimal amount of data to capture an approximation of normal

program behavior. We cannot test for abnormal behavior until we have a

model of normal behavior, so the faster the algorithm converges, the smaller

the window of vulnerability will be. Note that a quickly converging method

must generalize to previously unseen patterns of normal behavior; the greater

the degree of generalization, the faster the speed of convergence, and the lower

the level of false-positives.

• Anomaly sensitivity: The method must be able to clearly detect security-

related anomalies. This requirement is inherently at odds with the previous

requirement: the more normal behavior is generalized, the more likely it is that

abnormal behavior is included in the normal profile.

The sections below compare the sequence and lookahead pair methods on the

basis of these issues.

4.3.1 Speed

Both methods can be implemented efficiently so that lookups run in linear time

proportional to the size of the window. The sequence method can be implemented

using a hash table which stores each sequence, requiring a constant amount of time

on average for the hash table lookup, and O(w) comparisons to verify the presence

of the sequence (assuming a low rate of collisions). If we can ensure a fixed number

of buckets, insertion should take only slightly longer than a lookup; however, if the

table fills up, then we may need to increase the size of the table, at a cost linear in the

number of sequences stored. A tree implementation can provide better worse-case

costs for insertion, but with somewhat higher lookup costs.

50

Chapter 4. Analyzing System Call Sequences

If lookahead pairs are stored in pre-allocated bit arrays, each pair may be looked

up and modified in constant time. As there are w − 1 lookahead pairs in a w-size

window, this means that both lookups and updates are guaranteed to run in O(w)

time, with a much simpler implementation than any sequence storage algorithms.

Due to factors such as cache fill penalties, the performance of these two methods

may be closer in practice than the above analysis would indicate. Nevertheless, the

inherent efficiency of the lookahead pair method makes it slightly preferable in terms

of speed. The fact that this speed can be achieved with very simple code makes

lookahead pairs even more attractive.

4.3.2 Profile Size

Our past research [43, 49] has indicated that a wide variety of programs normally

produce only a few thousand unique sequences. Although both the sequence and

lookahead pair methods can store this many sequences efficiently, these methods

have have very different worst-case storage requirements. The lookahead pair table

can be stored using a c × c bit array for each value of l. As a result, all possible

lookahead pair patterns can be stored in w − 1 bit arrays with c2 bits each, giving

us a very reasonable upper bound of O(wc2). If we limit ourselves to w = 9 and

round up c to 256 (the next largest power of 2), this means we can store any set of

lookahead pairs (and hence the lookahead profile for any program) in a 256 × 256

byte array, or 64K bytes.

In contrast, there are cw possible sequences of length w. If we let w = 9 and

w = 200, this gives us 5.12 × 1020 possible sequences. If we represent each of these

sequences by one bit, we may still need 58 million terabytes to store a profile. To

be sure, in practice we would normally see many fewer sequences; a profile for a

program making random system calls, though, could approach this limit. To prevent

51

Chapter 4. Analyzing System Call Sequences

extremely large profiles from causing a denial of service, we may limit the size of a

sequence profile; inherent in sequence profiles, however, is the potential for exponen-

tially large storage requirements.

4.3.3 Convergence

For w > 2, the lookahead pair method generalizes more than the sequence method,

as the space of possible lookahead pair sets is c2(w − 1) versus cw possible sequences

(as explained in the previous subsection). This increased generalization means that

the lookahead method potentially can converge on a profile of normal behavior more

quickly than the sequence method.

The actual rate of convergence depends on the distribution of patterns produced

by a given program. Consider each position in our system-call window as a random

variable. Let Pi be the random variable corresponding to the window position i,

with P0 being the current system call. We can then define the random variables L

for lookahead pairs and S for sequences as follows:

P (Ll = 〈si, sj〉l) = P (Pl−1 = si,P0 = sj)

P (Sw = 〈si, si+1, . . . , si+w−1〉) = P (Pw−1 = si,Pw−2 = si+1, . . . ,P0 = si+w−1)

The contents of a profile can be thought of as an approximation of the joint distribu-

tions of these random variables as follows. For the lookahead method, the presence

of a lookahead pair 〈si, sj〉l in a program’s profile implies that

P (Ll = 〈si, sj〉l) > 0.

Similarly, the presence in a sequence profile of the sequence 〈si, si+1, . . . , si+w−1〉

implies that

P (Sw = 〈si, si+1, . . . , si+w−1〉) > 0.

52

Chapter 4. Analyzing System Call Sequences

Lookahead profiles are therefore an approximation of the joint distribution of the

current system call and a previous one, while sequence profiles approximate the joint

distribution of all the system calls within the window. If we ignore edge effects,

every call in a trace is eventually in every position of the window. Thus, the Pi’s are

dependent but identically distributed random variables.

We would like to start monitoring a program for anomalies after we have as good

an approximation as possible of the probability distribution underlying a program’s

behavior. The difficulty of this task fundamentally depends on the distribution of

Sw and Ll. This distribution is a function of the number of unique sequences or

lookahead pairs and the frequency of each. If a program can only produce a few

types of sequences or lookahead pairs, then these will occur with high frequency and

we will only need to train on a relatively short trace to see all normal patterns.

Alternately, if a program is characterized by many distinct sequences and lookahead

pairs, and if these patterns occur with roughly similar frequency, then on average we

will have to observe a large amount of normal behavior before we can expect to see

all of these patterns.

One quantification of this difficulty is the entropy of a random variable. Let

sw = 〈si, si+1, . . . , si+w−1〉

ll = 〈si, si+l−1〉

Using the standard definition of entropy, we can define sequence and lookahead pair

entropy as follows:

H(Sw) = −
∑

sw

P (Sw = sw) log2 P (Sw = sw)

H(Ll) = −
∑

ll

P (Ll = ll) log2 P (Ll = ll)

In Chapter 6, sequence and lookahead pair entropy are analyzed to see how they

vary with window size and program type. Section 6.3 shows that programs with

53

Chapter 4. Analyzing System Call Sequences

larger code bases and greater functionality — the ones for which normal behavior is

expected to be most varied — tend to have larger entropy values. It also shows that

both methods are not overly sensitive to window size and that a window size of 9

works well with a wide variety of programs.

4.3.4 Anomaly Sensitivity

When evaluating the number of anomalies detected using different methods and

window sizes, it is useful to consider what happens to the profile of a normal trace

when a system call is added, substituted, or deleted.

When a call is added, up to w anomalous sequences are produced, one for each

possible position of the new call. When the inserted system call is in the first position

in the window, up to w− 1 anomalous lookahead pairs are produced. The remaining

w− 1 sequences each maximally generate between w− 1 and 1 anomalous lookahead

pairs, with the number of possible anomalies decreasing as the inserted call moves

further downstream. In total, these w anomalous sequences can generate up to

(w2 + w − 4)/2 anomalous lookahead pairs.

When a call is substituted, up to w anomalous sequences are produced. The

first such sequence can generate up to w − 1 anomalous lookahead pairs since the

substituted system call is in the first position in the window; however, the rest can

generate at most one anomalous lookahead pair, giving us a total of 2(w−1) possibly

anomalous pairs.

A deleted call can produce up to w − 1 anomalous sequences, one for each place

the anomalous call could be inserted into the window. With lookahead pairs, the

number of anomalous pairs depends on the position of the “hole” where the missing

system call would be. When the hole is between positions 0 and 1, all w−1 lookahead

pairs are potentially anomalous because the current call should have been the deleted

54

Chapter 4. Analyzing System Call Sequences

call. Moving the window over one position, the hole is between positions 1 and 2.

The 0,1 pair is unperturbed by the hole, but the rest potentially are, giving us up

to w − 2 anomalous pairs for the entire window. The number of possible anomalous

pairs continues to decrease as the hole moves across the window until it is between

positions w − 2 and w − 1, where it can trigger at most 1 anomalous pair — the

pair of positions 0 and w − 1. In total, a deletion can generate up to (w2 − w)/2

anomalous pairs over w − 1 sequences.

In all of these cases, if we consider one lookahead pair enough to flag a sequence

as anomalous, both methods can produce the same maximum number of anomalous

sequences. The sequence method, though, is more likely to produce a larger number

of anomalies, especially in the case of a substitution: after the call moves from being

the current system call, there is only one possibly anomalous lookahead pair. If just

one other training sequence contained this pair, the lookahead method will consider

the altered window (and thus the current system call) to be normal.

4.4 Summary

Because lookahead pairs can be updated and tested more quickly, generalize more,

have modest worst-case storage requirements, and can be implemented easily, they

have been used as the monitoring algorithm for pH. Sequences do have the advan-

tage of potentially being more sensitive to anomalies; yet as Chapter 7 shows, the

lookahead pair method is sensitive enough in practice.

Note that these criteria can also be used to compare the lookahead pair and

sequence analysis methods with other algorithms. Hidden Markov models and rule-

based induction algorithms (such as RIPPER) are competitive with these two meth-

ods on the basis of profile size, generalization, and anomaly sensitivity; they are

much slower, however, in terms of training speed [116], making them inappropriate

55

Chapter 4. Analyzing System Call Sequences

for pH. Other methods such as finite-state machine machine induction algorithms

[78] may be competitive with sequence and lookahead pair analysis in all four areas;

more work needs to be done to see whether they would work well in a pH-like system.

56

Chapter 5

Implementing pH

Chapter 3 described the biological inspiration and high-level design of pH. This chap-

ter explains how these ideas are implemented. The first section discusses why pH

is implemented as a Linux kernel extension, and the next section gives an overview

of the implementation. Sections 5.3, 5.4, and 5.5 explain how pH handles training

and response. Section 5.6 presents the basic data structures used by pH, and Section

5.7 gives an overview of how pH’s code integrates with the rest of the Linux kernel.

Sections 5.8 and 5.9 summarize and discuss pH’s runtime commands and parame-

ters. The last section presents performance data which shows that pH has minimal

overhead in practice.

5.1 Why a kernel implementation?

pH has three fundamental components: a mechanism that observes system calls,

an analysis engine, and a response mechanism that slows down anomalous system

calls. Because system calls are the basic interface between the kernel and userspace

processes, these mechanisms could be implemented on either side of this interface;

57

Chapter 5. Implementing pH

with pH, though, all three components reside inside the kernel. To see why, it is

worth reviewing how we have gathered system-call data in the past.

Before pH, most of our system-call traces [43, 49] were gathered using the strace

program, a utility that uses the ptrace system call to monitor the system calls of

another process. strace is extremely easy to use; unfortunately, strace would often

cause security-critical programs like sendmail to crash, and when it worked, strace

would slow down monitored programs by 50% or more.

These limitations led us to explore other options. Audit packages such as the

SunOS Basic Security Module often record system-call data; however, such systems

are slow, difficult to use, and they produce voluminous log files. Another approach

was to insert the monitoring routines directly into the address space of the monitored

program. To test its feasibility, I modified a SunOS C library (without source) to log

all system calls made through library routines. The SunOS C library modifications

were fast and efficient, and were used to observe sendmail on a production mail

server at the MIT Artificial Intelligence Laboratory. By design, though, this monitor

couldn’t detect the system calls made by buffer overflow attacks, since the “shell

code” of such attacks typically make system calls without using library routines.

Although the implementation of an in-kernel system call monitor was challenging

at first, it quickly proved to be the most efficient, robust, and secure technique we had

tried. In addition, kernel modification opened the door to response since a kernel-

based mechanism can easily modify the behavior of system calls. By also placing the

analysis engine in the kernel, all three mechanisms could interact without the use of

voluminous log files. They could also now monitor every process on the system just

as easily as monitoring one process. The drawback, though, was that all three pieces

had to be fast, space-efficient, and robust. Because mistakes in kernel code often

lead to system crashes, the robustness requirement was the most important one, and

the hardest to achieve. It its current form, pH is robust and efficient enough to run

58

Chapter 5. Implementing pH

on production servers.

5.2 Implementation Overview

pH is implemented as a small patch for Linux 2.2 kernels (x86 architecture), consist-

ing only of 3052 lines for pH version 0.18. This patch modifies the kernel so that pH

is invoked at the start of every system call. When this happens, pH first adds the

requested system call to a sequence that records recent calls for the current process.

It then evaluates the current system call sequence, deciding whether it is anomalous

or not. If it is anomalous, the current process is delayed by putting it to sleep, during

which time other processes are scheduled to run. Once pH has finished, execution

of the process’s requested system call continues normally. This flow of control is

illustrated in Figure 5.1.

To determine whether a program is behaving abnormally, pH maintains a profile

containing two datasets for every executable, a “training” dataset and a “testing”

dataset. The relationship between these two datasets is shown in Figure 5.2. These

datasets represent lookahead pairs using bit arrays. Once pH has been activated, pH

continuously adds the lookahead pairs associated with a process’s current system call

sequence to its training dataset (i.e. to the training dataset of the profile associated

with the process’s current executable).

Once no new pairs have been added to a training dataset for a sufficient period

of time, or at a user’s request, this training dataset is copied to the profile’s testing

dataset. This testing dataset is then used by pH to classify sequences as being normal

or abnormal, based on whether the lookahead pairs for a given sequence are present

in the testing dataset. Note that the training dataset is updated even when a profile

has a valid testing dataset.

59

Chapter 5. Implementing pH

When a process loads a new executable via the execve system call, pH loads from

disk the executable’s profile. If a process is behaving sufficiently abnormally, though,

pH delays for two days any execve call made by that process, effectively disabling that

process’s ability to load new programs until a user has an opportunity to evaluate

the process’s behavior. As Chapter 7 explains, this mechanism is necessary to defeat

certain kinds of attacks.

Users interact with pH either by using two command-line utilities, pH-ps and

pH-admin, or through the graphical pHmon utility (see Figure5.3). Both pHmon and

pH-admin allow users to change parameters and modify the state of specific profiles

and processes. pH provides four basic commands that operate on processes, but

which affect both the process and its associated profile:

• Reset: Erase the process’s profile (training & testing datasets).

• Normalize: Start normal monitoring.

• Sensitize: Forget recently learned program behavior.

• Tolerize: Accept recent program behavior.

The precise function of these commands is explained in Section 5.8. The names

of the last two actions are inspired by analogous processes in the human immune

system, and in effect allow a user to manually classify recent program behavior. By

“sensitizing” a profile, we are telling pH that recent program behavior was abnormal

and should not be added to the program’s profile. On the other hand, “tolerize” tells

pH that it incorrectly classified a program’s behavior as abnormal, and therefore pH

should cancel normal monitoring. A tolerized profile may eventually become normal

again, but only after the training profile has re-stabilized.

pH is distributed under the GNU General Public License (GPL), and can be

downloaded from http://www.cs.unm.edu/∼soma/pH/.

60

Chapter 5. Implementing pH

user code
and data

system call
dispatcher

testing
delay
training

pH

system call
implementations

scheduler

train
test

profile:

call
system

delay

kernel data

task_struct:
pH: profile

sequence
LFC

Figure 5.1: Basic flow of control and data in a pH-modified Linux kernel.

61

Chapter 5. Implementing pH

..., open, read, mmap
sequence from netscape::

lookahead pairs

training dataset

testing dataset

insert

parse

copy

copy when:
 seen enough calls
 no changes for 1 week
 now "normal"

read, mmap
open, *, mmap
...

present? missing?

ok
abnormal
system call

test

Figure 5.2: Relationship between the training and testing datasets in the profile of
netscape.

Figure 5.3: Screenshot of the pHmon pH monitoring utility, after a process has been
selected. Notice the actions available in the pop-up menu.

62

Chapter 5. Implementing pH

5.3 Classifying Normal Profiles

5.3.1 Requirements

As previously mentioned, pH maintains two sets of data in each program’s profile: a

training dataset and a testing dataset. If an observed sequence is not present in the

training dataset, it is added. If it is not present in the testing dataset, an anomaly

is generated. Initially, the testing dataset is empty, and the profile is considered

“not normal,” i.e. it does not represent the normal behavior of the program. Once

there is a valid testing dataset, the profile is said to be “normal.” So, before pH can

start detecting anomalies, it must have a valid testing dataset. Because the testing

dataset is never updated directly, this dataset must be copied from the training

dataset. What we need, then, is a set of conditions under which this copying takes

place.

Rather than having a person manually trigger copying after having decided that

enough behavior has been observed, we want pH itself to detect when the training

dataset has stabilized and perform the copy autonomously. Because pH resides in

kernel space, this analysis must be computationally inexpensive; however, it must

also be accurate, otherwise pH will detect too many false positives or it will miss

real attacks.

To detect this stabilization, we must observe (potentially in an extremely sim-

plified form) the distribution of novel system call sequences, both in terms of novel

sequences per system call and novel sequences per unit time. If we just consider

the former, the behavior of a program making frequent system calls may appear to

stabilize after only a few seconds and then may proceed to generate false positives

only a few minutes after being invoked. If we consider just the latter, then the profile

for a program that is run only occasionally will become normal prematurely, again

63

Chapter 5. Implementing pH

generating unwanted false positives.

pH’s normal-classification mechanisms are based on simple, efficient heuristics.

Even though these heuristics were created on an ad-hoc basis, as Chapter 6 shows,

they work well in practice.

5.3.2 Profile Heuristics

pH employs a two-stage algorithm to decide when a given profile is normal. The first

stage involves a simple heuristic, explained below, which decides whether the profile

has stabilized based on the number of calls made since the last change to the profile.

If this heuristic is true, then the profile is marked as frozen, and the time of this

event is recorded. If a program produces a novel sequence while the profile is frozen,

the profile is then “thawed,” and the sequence is added to the profile. The second

stage simply checks to see whether a profile has been frozen for a certain amount of

time. If it has, then the profile is marked as normal.

The first stage’s heuristics depend on two observed values, train count and

last mod count. train count is the number of system calls seen during training;

usually, it is the number of calls executed by all processes running the profile’s exe-

cutable. If a program has been invoked twice, with each invocation making 500 sys-

tem calls, the train count for the corresponding profile will be 1000. last mod count

is the number of calls that have been seen since the last change to the profile. Every

time a sequence is added to a profile, its last mod count is set to 0; otherwise, this

count is incremented on every system call made by processes running a profile’s pro-

gram. The variable normal count is also used in the heuristic calculations, but it is

simply the value of train count minus last mod count. Conceptually, normal count

is the number of calls seen between the first added sequence and the last added

sequence. Figure 5.4 shows the relationship between these three values.

64

Chapter 5. Implementing pH

train_count = 25

last_mod_count = 19

normal_count = 6

normal_count

train_count
>> 44 frozen

frozen for a week normal

new lookahead pairs

time

Figure 5.4: pH’s normal profile heuristics.

A profile is frozen when two conditions are met:

normal count > 0

and
train count

normal count
>

normal factor

normal factor den

Where normal factor is a runtime parameter and normal factor den is a compile-

time parameter. Note that in practice, this equation is cross-multiplied to remove

the need for division. By default, normal factor = 128 and normal factor den is

32, giving us a ratio of 4.

To freeze a profile, two actions must be performed. First, a flag in the profile

65

Chapter 5. Implementing pH

called frozen is changed from 0 to 1. Next, pH records a time which is the current

time plus normal wait. By default, this is 604800 seconds, or one week. If this time

passes and the profile is still frozen, the profile is made normal.

There are four mechanical steps pH takes to make a profile normal. First, the

training lookahead pair dataset is copied to testing. Then, the train count and

last mod count variables are set to 0. And finally, the normal flag is set to 1, while

the frozen flag is set to 0.

Note that by setting train count and last mod count to 0, normal count also

becomes 0, and in fact will stay 0 as long as no new sequences are encountered.

If a profile is frozen, and the program executes a previously unseen sequence of

system calls, the profile is quietly thawed by setting the frozen flag to 0.

5.4 Delaying System Calls

As explained in Section 3.2.6, pH responds to anomalous system calls by delay-

ing them. On the assumption that security violations will tend to produce more

anomalous system calls than other, more benign variations in program behavior, pH

performs delays in proportion to the number of recently anomalous system calls.

To implement proportional delays, pH records recent anomalous system calls in a

fixed-size circular byte array which we refer to as a locality frame. More precisely, let

n be the size of our locality frame, and let Ai be the i-th entry of the locality frame

array, with 0 ≤ i < n and Ai ∈ {0, 1}. Also, let t0 be the first system call executed

by the current process, tk be the current system call for that process, and let tk−1

be the previous system call. Initially, the entries of A are initialized to 0. Then,

as the process runs and executes successive tk system calls, A is modified such that

Ak mod n = 1 if tk is anomalous, and 0 otherwise. As the process runs, A contains the

66

Chapter 5. Implementing pH

Figure 5.5: A schematic graph showing how a process is delayed in response to
different-sized clusters of anomalies.

record of how many of the past n system calls were anomalous. We call the total of

recent anomalies,
∑

Ai, the locality frame count (LFC)1.

If the LFC for a process is greater than zero, pH delays each system call for

delay factor×2LFC , even if the current system call is not anomalous. This continued

response ensures a relatively smooth increase and decrease in the response to a cluster

of anomalies, as shown in Figure 5.5.

1A somewhat different approach was taken in Hofmeyr [49], where the measure of
anomalous behavior was based on Hamming distances between unknown sequences and
their closest match in the normal database. Although this method provides a direct mea-
sure of the distance between a sequence and a normal profile, it requires significantly more
computation to calculate, and so is less suitable for an online system.

67

Chapter 5. Implementing pH

As explained previously, pH maintains profiles on a per-executable basis. A

problem with this approach is that an execve can allow an anomalously behaving

program to escape pH’s monitoring. For example, a buffer overflow attack may cause

the vulnerable program to perform only one anomalous system call, an execve. After

this call, pH will then look for anomalies relative to the new binary. The newly exec’d

program may be behaving completely normally while in fact the entire invocation of

the program is anomalous2.

To counter this problem, pH treats the execve system call as a special case. pH

keeps track of the maximum LFC value seen for a process. If this value exceeds

a certain threshold, pH interferes with execve calls. In earlier versions of pH (pH-

0.17 and earlier), if the maximum LFC value for a process equals or exceeded the

abort execve threshold, any execve calls made by that process would automatically

fail. While this mechanism did solve the problem, it also caused false-positives to

change the semantics of a program.

To avoid this side effect, more recent pH versions use the suspend execve thresh-

old. If the maximum LFC value for a process equals or exceeds suspend execve,

then the program is delayed for susp exec time seconds. Unlike abort execve, erro-

neous suspend execve responses are generally easy to recover from: a user cancels

the delay, and the program continues from where it left off. An attacker, though,

is stopped in his or her tracks for susp exec time seconds, which by default is two

days. Even if the attacker is patient, an administrator thus has plenty of time to

decide whether an attack was genuine and could kill the offending process before the

attack succeeded.

2In much of our past work [43, 49], execve calls did not cause a new profile to be loaded.
Thus, if sendmail loaded bash using execve, the system calls of bash were evaluated relative
to sendmail’s behavior profile. As a result, it was extremely easy to detect buffer overflow
attacks, because bash’s behavior is very different from sendmail’s. This strategy, though,
does not work if we want to monitor every program on a system automatically, especially
if we wish to use more than one profile.

68

Chapter 5. Implementing pH

5.5 Tolerization and Sensitization

As explained in Section 5.2, users can manually classify recent program behavior

through the “tolerize” and “sensitize” commands. pH can also perform both actions

on its own. Automatic tolerization and sensitization are controlled through the

anomaly limit and tolerize limit parameters, respectively.

The anomaly limit is used by pH to ensure that pH eventually stops responding

to minor anomalies. pH keeps a count of the total number of anomalies generated

by each profile. If this value ever exceeds anomaly limit (which by default is 30),

then the profile is tolerized by setting its normal flag to 0, invalidating its testing

dataset. The process is also tolerized by resetting its locality frame and canceling

any pending delays. For pH to reclassify the profile as normal, the training dataset

has to again meet the criteria outlined in Section 5.3.

In contrast, the tolerize limit threshold is used to prevents pH from eventually

learning an attack for which it has mounted a significant response. If the LFC for

a process ever exceeds tolerize limit (which by default is 12), the corresponding

profile is sensitized by resetting the profile’s training dataset. This action causes

all previously learned training lookahead pairs to be erased. The profile’s testing

dataset is preserved, however, allowing pH to continue to respond to anomalous

program behavior. In addition, the anomaly count for the profile is set to 0. This

second mechanism prevents the anomaly limit threshold from being achieved while

pH is mounting a significant response to a process.

To see how these thresholds interact in practice, consider a profile that has just

been classified as normal. If subsequent invocations of the associated program gen-

erate 20 anomalies each, but achieve a maximum LFC of only 10, these program

runs will never exceed the tolerize limit threshold, and thus the training dataset

for the profile will not be reset. On the program’s second invocation, however, the

69

Chapter 5. Implementing pH

anomaly count for the corresponding profile would exceed anomaly limit, causing

normal monitoring for that profile to be canceled. Because the profile is no longer

“normal,” pH now would not delay subsequent program runs.

If the same program’s 20 anomalies had been closer together and had gener-

ated a maximum LFC of 20, then the role of the two thresholds would be reversed:

tolerize limit would be exceeded, the training dataset would be reset, and the pro-

file’s anomaly count would be set to 0. The anomaly limit threshold would never

be exceeded, and without user intervention, every future invocation of the program

would be delayed by pH.

Note that these two thresholds are invoked in practice. Chapter 6 presents some

results on the frequency of automatic tolerization, and Chapter 7 gives some examples

of pH automatically sensitizing a profile in response to an attack. These results

show that although these two thresholds are crude and somewhat arbitrary, they do

allow pH to respond appropriately both to the concentrated anomalies of a security

violation and to the more distributed anomalies of many kinds of false positives.

5.6 Data Structures

In the Linux kernel, processes and kernel-level threads are both implemented in

terms of tasks. A task is a kernel-schedulable thread of control, and is represented

internally by a task struct structure. If a task has its own virtual address space, it is

a complete, single-threaded process. If a task shares its address space with another

task, it is one thread of a multi-threaded process. Like the Linux kernel, pH does not

distinguish between processes and threads and instead operates on running programs

as tasks.

pH has two fundamental data structures: pH task state and pH profile (Fig-

70

Chapter 5. Implementing pH

ures 5.6 and 5.7). A pH profile is maintained for every executable currently running

and a pH task state is kept for every task. Together, these hold the data needed

for pH to monitor programs and respond to anomalies.

Each task struct structure contains information such as the user ID, the process

(task) ID, the parent and children processes, which program the process is executing,

and virtual memory allocations. As shown in Figure 5.6, pH adds one more field to

this structure, pH state, for a pH task state structure. A pH task state holds

information on the task’s locality frame, system call sequence, delay, and a pointer

to the profile for the process.

Multiple tasks may run the same executable, e.g., there may be several run-

ning instances of bash or emacs. pH maintains one pH profile structure per ex-

ecutable, and these are shared amongst the tasks running that executable: thus,

the pH task struct for two processes running emacs will both point to the same

pH profile. The pH profile structure contains information on whether this profile

is normal and holds information on the training and testing lookahead pairs for this

executable. Figure 5.7 shows a simplified version of the C pH profile structure def-

inition. In the actual pH code, in-kernel storage for the lookahead pair datasets is

dynamically allocated as 4K pages. The on-disk profile format, though, uses static

arrays; therefore, while profiles require 129K on disk, they require as little as 8K in

memory (one page for the main profile, and one for a small training dataset).

71

Chapter 5. Implementing pH

#define PH_LOCALITY_WIN 128

#define PH_MAX_SEQLEN 9

typedef struct pH_locality {

unsigned char win[PH_LOCALITY_WIN];

int first, lfc, max_lfc;

} pH_locality;

typedef struct pH_seq {

int last, length;

u8 data[PH_MAX_SEQLEN];

} pH_seq;

typedef struct pH_task_state {

pH_locality lf;

pH_seq seq;

int delay;

unsigned long count;

pH_profile *profile;

} pH_task_state;

struct task_struct {

...

pid_t pid;

...

pH_task_state pH_state;

};

Figure 5.6: Simplified pH task state definitions.

72

Chapter 5. Implementing pH

#define PH_NUM_SYSCALLS 256 /* size of array */

typedef unsigned char pH_seqflags;

typedef struct pH_profile_data {

unsigned long last_mod_count;

unsigned long train_count;

pH_seqflags entry[PH_NUM_SYSCALLS][PH_NUM_SYSCALLS];

} pH_profile_data;

typedef struct pH_profile pH_profile;

struct pH_profile {

int normal; /* is test profile normal? */

int frozen; /* is train profile frozen */

time_t normal_time; /* when will frozen become normal? */

int window_size;

unsigned long count; /* # calls seen by this profile */

int anomalies;

pH_profile_data train, test;

pH_profile *next;

};

Figure 5.7: Simplified pH profile definitions.

73

Chapter 5. Implementing pH

5.7 Kernel Integration

In order for pH to monitor system call behavior, delay anomalous system calls, and

communicate with users, pH must interact with the rest of the Linux kernel in several

ways. This section describes the key pH functions, and explains their purpose and

how they integrate with the rest of the kernel.

The pH process syscall() function is called by the system call dispatcher just

before running a requested system call and is the primary connection between pH

and the rest of the kernel. This routine adds the requested call to the task’s sequence

(stored in pH state), and then, if necessary, adds the sequence to the profile’s train-

ing dataset. Next, it updates the task’s locality frame, adding a 1 if the task’s

profile is normal and the current sequence is anomalous, or a 0 otherwise. It then

decides whether the training profile should be frozen and whether a frozen training

profile should be copied to testing, making the profile normal. Finally, if the locality

frame count is greater than 0, the task is put to sleep for 0.01 × 2LFC seconds. Af-

ter pH process syscall() completes, control returns to the system call dispatcher,

which then proceeds to run the task’s requested system call.

pH do suspend execve() is run near the beginning of every execve system call.

If the current task’s LFC is greater than or equal to the suspend execve threshold,

the task is delayed for susp exec time seconds. After this function completes, the

execve system call is resumed.

The pH execve() function is invoked by the execve system call just before it

returns. This function first finds the correct profile for the program that has just

been loaded. pH checks a linked list of loaded profiles to see whether the pro-

gram’s profile is already in memory. If it is not, pH attempts to load the pro-

gram’s profile from disk. Profiles are stored in a directory tree that mirrors the rest

of the filesystem, but rooted in /var/lib/pH/profiles. (This path can only be

74

Chapter 5. Implementing pH

changed at compile-time.) For example, if a task runs /bin/ls, pH loads the profile

/var/lib/pH/profiles/bin/ls. If a profile for a given executable does not exist,

pH creates a new profile.

After finding the appropriate profile, pH execve() initializes the pH state field

of the task’s task struct: it changes the pH state.profile pointer to refer to

the new profile and re-initializes seq, the current system-call sequence. Note that

pH state.lf, the current locality frame, is preserved, allowing pH to continue delay-

ing anomalously behaving tasks. After this function completes, the task is monitored,

whether it previously was or not.

pH fork() is invoked just before the fork system call is completed. It copies the

pH task state from parent to child (including the task’s system call sequence and

locality frame), ensuring that the child task will be monitored in the same way as

the parent.

When a task exits via the exit system call, the pH exit() function de-allocates

the storage used for that task and writes any freed profiles to disk.

There are two mechanisms for interacting with pH: the pH system call, and the

/proc virtual filesystem. The sys pH() function implements the pH system call,

which allows the superuser to change the parameters of pH and modify the status of

monitored tasks.

The /proc virtual filesystem allows users to view the state of pH. The function

pH proc status() provides the contents of /proc/pH, which shows information such

as parameter values and the total number of system calls pH has processed. In

addition, the monitoring status of every process is available in /proc/<PID>/pH.

This file is generated by get pH taskinfo(), and it reports the values of the process’s

pH state. These status files are used by monitoring programs to determine when

pH is delaying anomalously behaving processes.

75

Chapter 5. Implementing pH

Command Argument Description
on, off none turn system-call monitoring on and off
status none write pH’s status to kernel log
write-profiles none write all profiles to disk
log-syscalls 0/1 (off/on) logging of all system calls
log-sequences 0/1 (off/on) logging of system call sequences
tolerize process ID cancel normal (invalidate testing)
sensitize process ID reset training
normalize process ID copy training to testing
reset process ID reset training and testing

Table 5.1: The commands of pH. In addition, there are commands for changing all
runtime parameters.

5.8 Interacting with pH

Although pH’s basic functionality resides inside the Linux kernel, the /proc virtual

filesystem and the pH system call allow userspace programs to interact with pH. The

pH distribution includes three programs, pH-ps, pH-admin, and pHmon, that use

these interfaces to monitor and change pH’s behavior.

pH-ps is a command-line program that scans through the /proc/<PID>/pH files

and summarizes their contents in a ps-like format. pH-admin is a command-line

utility that exposes the functionality of the pH system call. For convenience, it

is normally configured to run as the superuser; otherwise, only the superuser can

change pH’s behavior.

pHmon is a graphical utility that combines the functionality of pH-ps and pH-

admin. A screenshot of pHmon is shown in Figure 5.3. With the WindowMaker X11

window manager, pHmon maintains a dockable application icon that summarizes the

pH status of programs on the system. This icon shows how many processes currently

have normal profiles (the n value), and how many processes are being delayed (the

76

Chapter 5. Implementing pH

d value). If one or more processes are ever delayed, the colors of this icon change

to be red letters on a black background, providing a clear visual indicator that one

or more processes are behaving unusually. Clicking on this icon brings up a process

list window. The view in this window may be sorted and pruned using the “Order”

and “View” menus. The state of any process can be changed by clicking on it and

selecting the desired command from the pop-up menu. (pHmon runs pH-admin to

actually execute the command.) The “Settings” menu lists the current values of pH’s

parameters. Selecting a parameter from this menu brings up a dialog window for

changing its value.

The commands available through pHmon and pH-admin are summarized in Table

5.1. The “on” command instructs pH to begin monitoring of system calls. After this

command is executed, every execve system call causes pH to load a profile from disk

for the requested executable. If a profile does not exist for that program, a new one is

created. pH then proceeds to monitor subsequent system calls of that process. The

“off” command causes pH to write all profiles to disk and cease monitoring system

calls.

The “status” command tells pH to log pH’s current status to the kernel log. This

status message is very similar to the contents of /proc/pH and contains all of pH’s

parameter settings and the number of system calls monitored by pH.

The “write-profiles” command tells pH to write all currently loaded profiles to

disk. Normally, pH only updates the on-disk profile when every process running an

executable exits. Some programs, such as web servers, run continuously, and so their

on-disk profile is rarely updated. This command is used to ensure that the on-disk

profiles are kept up-to-date.

The “log-syscalls” command tells pH to log every system call executed to a

compile-time specified binary file, by default /var/lib/pH/all logfile. This file

77

Chapter 5. Implementing pH

records the call number, process ID, the time of the call, and the current system call

count of every system call. For forks, the child process ID is logged, and for execve

system calls, the filename of the requested program is recorded. Together, this infor-

mation can be used to retrace and analyze the actions of pH. One problem with this

command is that even though each system call takes only 17 bytes to record, this

file grows very quickly. Further, this file cannot be read while it is in use without

creating a feedback loop: a read of the file is logged in the file, causing it to grow,

causing a read to be logged, and so on. This situation can be avoided by using a

technique borrowed from syslog: /var/lib/pH/all logfile is moved to a new file-

name, and then the “log syscalls 1” is made. pH then closes the old logfile and opens

a new all logfile, all without losing any system call data. The pH print syscalls

program in the pH distribution parses all logfile logfiles into a human-readable

format.

“Log-sequences” instructs pH to log each system-call sequence that is not rep-

resented in a program’s training lookahead pair profile. This binary logfile has the

same name is the program’s profile, except with a “.seq” appended to it. Thus,

the sequences for /bin/ls are stored in /var/lib/pH/profiles/bin/ls.seq. The

sequence, the time of its addition, the profile’s current system call count, and the pro-

cess ID are stored in this file. The pH print sequences program in the pH distribution

parses these logfiles into a human-readable format.

The “tolerize” and “sensitize” commands work as outlined in Section 5.5. “Nor-

malize” manually marks a process’s profile as normal, following the procedure out-

lined in Section 5.3. “Reset” resets the state of a process’s pH state and the associ-

ated pH profile, making it appear that monitoring had just begun for the selected

process. Note that all four of these commands operate on a process and its associated

profile (task). Because multiple processes can share the same profile, these com-

mands can indirectly affect other processes; however, these commands only change

78

Chapter 5. Implementing pH

Parameter Default Description

default looklen 9 lookahead pair window size
locality win 128 locality frame window size
normal factor den 32 denominator for normal factor
loglevel 3 logging verbosity level (0=none)
normal factor 128 ratio for freezing heuristics
normal wait 604800 seconds for frozen to normal (7 days)
delay factor 1 delay scaling factor (0=no delays)
suspend execve 10 process anomalies before execve delay
suspend exeve time 172800 execve delay time seconds (2 days)
anomaly limit 30 profile anomalies before auto-tolerization
tolerize limit 12 process anomalies before train reset

Table 5.2: The parameters of pH. Parameters in boldface can only be set at compile
time; the rest can be set at runtime.

the pH state of one task. For example, consider four processes that are running

bash. If all four are being delayed, tolerizing one will prevent the other three from

generating any new anomalies. Tolerization, however, does not erase the contents

of the other locality frames; therefore, the other three processes to continue to be

delayed, even though they no longer have a normal profile. All four processes must

be manually tolerized if they are to run at full speed.

5.9 Parameters

The previous sections have referred to several parameters. Table 5.2 summarizes

these parameters and their default values. The first three can only be set at compile

time, while the rest can be modified at runtime via the pH system call. To better

understand the rationale for these values, it is useful to explore how the values of

these parameters interact and affect the behavior of pH. The following parts discuss

related groupings of pH’s parameters.

79

Chapter 5. Implementing pH

5.9.1 System Call Window Sizes

First, consider the two compiled-in window size parameters. The default looklen

parameter specifies the size of the window used to record recent system calls. As

explained in Chapter 4, larger window sizes can increase anomaly sensitivity, but

at the cost of longer training times and larger lookahead pair storage requirements.

The first part of Chapter 6 presents results that show that although there isn’t an

optimal window size, windows of sizes ranging from 6 to 15 or so work well on average.

pH uses a default window size of 9 because this is the largest window that can be

represented using the eight bits of an unsigned char. Larger window sizes would

require pH seqflags in Figure 5.7 be changed to a larger type; however, doing so

would at least double a profile’s size.

The size of the locality frame, locality win, determines the window in which pH

can correlate multiple anomalies. In earlier work [44], we arbitrarily used a frame size

of 20. Experiments performed with pH and an ssh backdoor [106], though, revealed

that anomalies for one attack could be separated by 35 system calls. If we assume

that other attacks might have even more widely separated anomalies, it made sense

to choose a significantly larger value for locality win. Since computers tend to prefer

memory chunks in sizes that are a power of two, I chose the default value of 128.

Although this value is arbitrary, it works well in practice.

5.9.2 Logging

loglevel controls the type of logging messages sent to klogd, the kernel logging dae-

mon. A level of 0 means don’t generate any messages. A level of 1 means that

pH should only log errors. loglevel = 2 tells pH to log changes in state, such as

parameter changes and the starting of normal monitoring. loglevel = 3 causes pH

to generate a message every time it detects an anomaly or delays a process. Finally,

80

Chapter 5. Implementing pH

loglevel = 4 produces messages every time pH reads, writes, or creates a profile.

Messages for each level include those of the previous level. Thus, a loglevel of 4 or

greater gives maximum verbosity. By default, loglevel is set to 3, causing pH to

produce all log messages except those involving profile I/O.

5.9.3 Classifying Normal Profiles

normal factor is used in the normal classification heuristics explained Section 5.3.

Rather than using the form outlined there, pH instead uses this form of the test to

avoid division operations:

(train count)(normal factor den) > (normal count)(normal factor)

normal factor den was added to allow normal factor to represent fractional values

without using floating-point numbers. This change was necessary because floating

point variables cannot be used inside the Linux kernel. normal factor den should be

a power of 2 so the compiler can use a shift instead of a multiply instruction; other

than this constraint, it merely needs to be large enough to provide an adequate

fractional range for normal factor. Note that train count ≥ normal count, always.

Therefore, to keep this ratio from always being true, normal factor should never be

less than normal factor den (32).

The default normal factor of 128 seems to work well in practice. This value gives

us a train count/normal count of 4, which means that a program has made 3/4 of

its total system calls without producing any new lookahead pairs. Values such as 64

and 48 tend to make pH a bit too aggressive in its classifications of normal profiles,

causing rarely used programs to be frozen prematurely. Values much greater than

128 cause pH to be too conservative, resulting in fewer normal profiles.

When choosing a value for normal factor, we need to consider it in the context

of normal wait. The default value of a week in seconds for normal wait means that

81

Chapter 5. Implementing pH

programs which pass the normal factor ratio test must also not change for a week.

This value is longer than necessary for frequently used programs; however, it is just

long enough to capture weekly cron jobs and other low-frequency activities.

One thing that normal wait does not specify is how much a program must be

used during its one week waiting time. If a program is used only occasionally, it may

sit on disk for a week without being used. If its profile was frozen before a quiet

week, it is possible it will not make any system calls before its profile is classified as

normal. Thus, if there are many programs that are used infrequently with respect

to normal wait seconds, then normal factor needs to be large, potentially 128 or

greater. Alternately, if there are few infrequently used programs, normal factor can

be 64 or less, causing more profiles to be frozen. Of course, a better solution would

be for pH to also consider how frequently a program is run before classifying it as

normal; currently, though, pH does not have this capability.

One implementation detail to note: because pH uses 32-bit unsigned integers for

its calculations, programs that make more than approximately 135 million system

calls will cause one or both sides of this equation to wrap around to 0. This apparent

flaw is actually an advantage in practice because it can cause pH to freeze profiles

that otherwise wouldn’t be frozen. If these active profiles also pass the normal wait,

the resulting normal is relatively stable; further, since the program makes a large

number of system calls, it is probably also an important program.

5.9.4 Automated Response

The last five parameters in Table 5.2 control different aspects of pH’s automated

response. The value of the first of these, delay factor, determines the intensity of

pH’s reaction to anomalous system calls. If delay factor is 0, then no delays are

82

Chapter 5. Implementing pH

performed; otherwise, all system calls are delayed for

delay factor × 0.01 × 2LFC

seconds. Given the default locality win of 128 and delay factor of 1, a process

that produces one anomalous system call will be delayed in total for 1.28 seconds,

provided it makes 127 system calls after the anomaly. Higher values for delay factor

can thus change this 1.28 seconds to be an arbitrarily large period of time. I have

found that if delays are going to stop an attack, it will be stopped with delay factor

set to 1. Higher values make pH react more severely to anomalies, but this only

tends to make false positives more problematic.

The values of suspend execve and tolerize limit are closely related: the first

says the LFC value at which pH should delay execve requests, while the second

tells the LFC which should cause a profile’s training dataset to be erased. I see

the tolerize limit as the LFC value which implies dangerous program behavior,

while suspend execve denotes the LFC value where one should suspect the behav-

ior of a program. If we assume that most program behavior is acceptable, then

tolerize limit should be high enough so that it is rarely invoked. On the other hand,

suspend execve should be set to the value where an execve should require human

intervention.

The default value of 12 for tolerize limit is slightly high, but is low enough that

attacks often cause training data to be discarded. For more aggressive protection, a

value of 5 or 6 would be better.

On the other hand, the value of 10 for suspend execve is very high and effectively

prevents execve’s from ever being delayed. As Chapter 7 shows, it is necessary to

set suspend execve to 1 to defend against buffer overflow attacks. As discussed in

Section 6.9, though, such a low setting requires that someone monitor pH’s behavior

on a regular basis.

83

Chapter 5. Implementing pH

anomaly limit should be small enough to allow chronic problems to be tolerized

eventually while being large enough to minimize the likelihood that an attacker can

train pH by running an attack multiple times. anomaly limit must be larger than

tolerize limit, otherwise normal monitoring will be canceled before tolerize limit

can be reached. Although this value has not been optimized, anomaly limit’s default

value of 30 seems to work well in most situations.

5.10 Performance

In order to be usable on production systems, pH needed to be fast and efficient enough

so that users would not be inconvenienced by its overhead. Although there are no firm

guidelines, one rule of thumb is that users are not happy with security mechanisms

that slow down a system by more than 10%, and that to be truly unobtrusive,

the slowdown should be 5% or less. Because pH significantly changes system-call

dispatches, pH adds significant overhead to each system call; this overhead, though,

does not cause regular applications to be slowed down by more than 5%.

To determine the performance impact of pH, I ran the HBench-OS 1.0 [15] low-

level benchmark suite on lydia, a Hewlett-Packard Pavilion 8260 (266 MHz Pentium

II, 288M SDRAM, Maxtor 91020 10G Ultra-DMA IDE hard disk) running a pre-

release version of Debian/GNU Linux 3.0 (woody) Linux distribution. Tests were

run for ten iterations on a system running in single user mode. In Tables 5.3 and 5.4,

“Standard” refers to a Linux 2.2.19 kernel patched with the Linux 2.4 IDE back-port

(05042001) and reiserfs 3.5.33. “pH” refers to the same kernel, but patched with

pH-0.18. The pH kernel had monitoring enabled for all processes and was logging

status messages. pH’s delay mechanisms, however, were disabled.

Tables 5.3 and 5.4 show that pH does add significantly to system call overhead.

Table 5.3 indicates that pH adds 1.9 µs to the execution time of simple system calls

84

Chapter 5. Implementing pH

System Call Standard (µs) pH (µs) % Increase
getpid 1.162 (0.0001) 3.079 (0.0010) 165.0
getrusage 2.346 (0.0000) 4.247 (0.0010) 81.0
gettimeofday 1.672 (0.0005) 3.574 (0.0042) 113.8
sigaction 2.545 (0.0001) 4.466 (0.0022) 75.5
write 1.435 (0.0001) 3.352 (0.0007) 133.6

Table 5.3: System call latency results. All times are in microseconds. Standard
deviations are listed in parentheses.

Operation Standard (µs) pH (µs) % Increase
null 427.73 (00.241) 442.02 (02.919) 3.3
simple 2996.40 (09.703) 11193.32 (10.969) 273.6
/bin/sh 30158.94 (22.379) 38941.54 (15.915) 29.1

Table 5.4: Dynamic process creation latency results. Null refers to a fork of the
current process. Simple is a fork of the current process plus an exec() of a hello-
world program written in C. /bin/sh refers to the execution of hello-world through
the libc system() interface, which uses /bin/sh to invoke hello-world. All times are
in microseconds. Standard deviations are listed in parentheses.

that normally would take between 1 and 3 µs to execute. Table 5.4 shows that a

simple fork requires less than 15 µs more time with pH, a 3.3% increase; a fork and

an execve together, however, is almost 4 times slower. This increase comes from pH

causing execve calls to take approximately 8 ms longer to run, which seems to be

the time the kernel needs to load a 129K profile. Although these numbers show that

pH causes a significant increase in system call latency, they are not indicative of the

impact on overall system performance.

As shown by the data in the next chapter, the X-Window server is by far the

heaviest user of system calls on a typical interactive workstation. To see what sort

of impact pH had on system performance, I ran the x11perf benchmark and used it

to calculate the Xmarks for lydia running the XFree86 4.0.3 Mach64 X server. The

85

Chapter 5. Implementing pH

Time Category Standard (s) pH (s) % Increase
user 728.92 (0.74) 733.09 (0.17) 0.57%
system 58.19 (0.80) 80.34 (0.17) 38.06%
elapsed 798.65 (0.87) 825.18 (1.75) 3.32%

Table 5.5: Kernel build time performance. All times are in seconds. Each test was run
once before beginning the measurements in order to eliminate initial I/O transients,
and was followed by five trials. Standard deviations are listed in parentheses.

non-pH system got 11.4681 Xmarks, while pH-enabled system got 11.3750 Xmarks

— a slowdown of only 0.81%.

Although this result is outstanding, it is somewhat misleading because the X

server does not make execve calls during normal operation. Table 5.5 shows pH’s

impact on the compilation of the Linux kernel. As this make process invokes many

different programs, it gives a better view of the impact of slow execve calls. The

performance hit is especially noticeable in the system time. This category measures

the time spent in the kernel, and it shows that pH requires 38% more time in the

kernel. Overall this translated into a 3.32% increase in execution time — a much

more acceptable value. Thus, an application that creates numerous processes and

loads many different executables experiences a slowdown of less than 5%.

To put these results in perspective, it is worth comparing pH’s performance with

another kernel security extension that monitors system-call sequences. Ko et al. [60]

implemented a generic “software wrappers” system for augmenting the behavior of

system calls under FreeBSD. To show the flexibility of their framework, they imple-

mented a module that analyzed system-call sequences. In test builds of the FreeBSD

kernel, they reported a 3.47% slowdown with the Wrapper Support System (WSS)

kernel module loaded, and a 6.59% overall slowdown when their Seq id was loaded

on top of the WSS. If we assume that the build processes of the Linux and FreeBSD

kernels are comparable, the overhead of just the system-call wrappers system is ap-

86

Chapter 5. Implementing pH

proximately the same as all of pH (3.47% for WSS vs. 3.32% for pH). The addition

of sequence analysis makes the software wrappers system almost twice as slow as

pH on average. It seems that Ko et al. implemented a variation on full sequence

analysis instead of lookahead pair analysis; therefore, it is possible that lookahead

pair analysis implemented using their WSS would be more efficient than these results

would suggest.

In summary, these results show that pH incurs an acceptable performance penalty

of less than 5%, even when monitoring every process on a system. And, although

pH’s current implementation can certainly be further optimized, its efficiency is quite

competitive with similar existing systems.

87

Chapter 6

Normal Program Behavior in

Practice

Because pH detects intrusions by noticing anomalous sequences of system calls, it

only detects attacks against programs for which it has a normal profile. This chapter

examines some of the basic properties of these normal profiles and explore how well

pH can acquire them in practice.

The first part of the chapter describes a 1-day data set in which every system call

made on one computer was recorded. This data set is used to compare sequences to

lookahead pairs and to evaluate different window sizes. Next a 22-day dataset from

this same computer is presented, consisting of profiles and kernel log messages pro-

duced by pH. This dataset is used to explore how well pH captures normal program

behavior and how often it generates false positives. pH datasets from three other

hosts are then used to elaborate on this analysis. The chapter concludes with an

analysis of profile diversity and a discussion of the nature of pH’s false positives.

88

Chapter 6. Normal Program Behavior in Practice

6.1 What is Normal Behavior?

When we say that a program’s profile is normal, we mean that the profile represents

all of the system call sequences that are likely to be observed when running the

program under normal conditions. The “normal” behavior of a program or system

is not a well-defined concept; indeed, our view of normal changes based on the

circumstances of our observations. For example, normal behavior for a high-profile

web site server might include vulnerability probes each hour, while such behavior

would be extremely unusual for a web server within a protected corporate intranet.

Lacking a compelling formal definition of “normal behavior,” we can instead de-

fine it operationally. From this perspective, normal behavior is behavior that is

observed when we are reasonably certain no activity is occurring that requires non-

routine direct human administrative observation and interaction. A system showing

signs of imminent disk failure is not behaving normally. A program which has sud-

denly lost its configuration files is not behaving normally. A system being successfully

attacked is not behaving normally. In contrast, timeouts when connecting to distant

web servers and failed intrusion attempts are normal for a server on today’s Internet.

In our original experiments with system-call monitoring, we explicitly exercised

programs under a variety of conditions, recording the system calls produced [43]. The

set of traces produced by a given program was then designated as our normal set,

and a normal profile was compiled based on this data. Such “synthetic normals” are

a straightforward, replicable way to study the nature of normal program behavior;

however, such studies have two fundamental problems.

One problem is that it is surprisingly hard to exercise all of the normal behavior

modes of any non-trivial program. Interactions with the file system, network, and

other processes cause enough variations that system-call traces from two apparently

identical program invocations often have significant differences. Indeed, such vari-

89

Chapter 6. Normal Program Behavior in Practice

ations are to be expected, given the nondeterministic nature of computer networks

and operating-system process scheduling. And although it may be possible to isolate

a system sufficiently so that one may obtain repeatable results, it is hard to say that

such a setup corresponds to the normal behavior of “real” systems.

Moreover, even if a synthetic normal captures most normal modes of behavior, it

will not describe the relative frequency of these behaviors: this information depends

on the program’s usage environment. For example, one person may frequently use

the “-l” flag to ls on their personal workstation to get detailed file listings, while

another would never use the “-l” flag. This difference would mean that the normal

profile for ls would differ between these two hosts. If the command ls -l were typed

on the second machine, and if pH had a valid normal profile for ls, pH would signal

this action as being anomalous.

Thus, with synthetic normal profiles one cannot determine whether the excluded

modes of behavior are frequent or rare, and so one cannot get a true sense of false

positive rate in practice. My approach here, then, is to examine the behavior of

systems out “in the wild,” by gathering data from production systems.

This strategy has some disadvantages. First, the experiments cannot be exactly

replicated, because the conditions of the tests cannot be exactly duplicated. Data

gathered from live sources may also be contaminated with actual security violations,

potentially making it difficult to distinguish between true positives (genuine attacks)

and false positives (other anomalous behavior). Also, such experiments are poten-

tially dangerous and intrusive, in that pH could interfere with legitimate computer

usage. These disadvantages are outweighed, however, by the prospect of discovering

how well pH works in practice.

90

Chapter 6. Normal Program Behavior in Practice

Percent # Calls Program Description
31.193 73,955,823 XFree86 X-Window server
16.112 38,199,165 VMWare virtual PC running Windows 98
13.016 30,860,620 pHmon pH monitoring program
10.165 24,099,508 wmifs network monitor
7.918 18,772,374 wmapm power monitor
3.545 8,404,518 wmmixer sound mixer
2.984 7,075,673 WindowMaker window manager
2.900 6,875,761 asclock-gtk clock
2.660 6,305,727 Mozilla web browser
1.947 4,617,057 tar tape archiver
1.918 4,547,693 wmppp dial-up network
0.868 2,059,118 Netscape web browser
0.852 2,019,702 sendbackup Amanda: send backup
0.530 1,255,458 bzip2 compression program
0.401 950,471 ntpd Network Time Daemon
0.340 805,408 rsync synchronize directories
0.323 766,073 find list files by properties
0.309 731,942 taper Amanda: write tape
0.243 576,237 gnuplot plotting program
0.182 431,669 RealPlayer streaming media player

Table 6.1: The 20 top programs by number of system calls executed, out of 304 total,
on a system monitored by pH. Note that these programs account for over 98% of the
system calls executed. (Data is from the lydia 1-day training set.)

6.2 A Day in Detail

A normally functioning system makes a huge number of system calls. To better

understand the nature of these calls, I recorded all of the system calls made by my

home computer (lydia) for the period of one day, starting on August 17th, 2001 at 9

PM. During this day I performed typical tasks such as reading email, surfing the web,

editing text files, and listening to streaming audio. In addition, background daemons

and cron jobs were running, including a daily backup performed every weeknight at

2:15 AM. Over the course of these 24 hours, lydia made 237,224,596 system calls

91

Chapter 6. Normal Program Behavior in Practice

0 50 100 150 200 250
System Call

0

1e+07

2e+07

3e+07

4e+07

5e+07

of
 I

nv
oc

at
io

ns

read

ioctl

gettimeofday

newselect

write

Figure 6.1: Frequency of different system calls. (Data is from the lydia 1-day data
set.)

while running 304 different programs.

Looking at Table 6.1, it is remarkable to see how a few programs make almost all

of the system calls. Similarly, Table 6.2 and Figure 6.1 show how just a few system

calls also dominate. The dominating programs clearly influence which system calls

are most frequent: for example, the most frequent system call, gettimeofday, was

called over 17 million times by XFree86, the X server.

A simple measure of frequency doesn’t capture the differing complexity of these

programs, though. One way to get a handle on this is to look at the sequence

and lookahead entropy, as explained in Chapter 4. Figure 6.2 shows how entropy

increases exponentially as we consider the joint distribution of more adjacent system

92

Chapter 6. Normal Program Behavior in Practice

Percent # Invocations Call # Call Name
20.83 49,403,645 78 gettimeofday
18.62 44,182,442 3 read
14.38 34,119,064 142 newselect
12.88 30,552,704 54 ioctl
6.44 15,277,874 4 write
3.36 7,968,458 104 setitimer
3.09 7,341,818 162 nanosleep
2.55 6,046,034 108 fstat
2.01 4,771,191 6 close
1.95 4,625,396 5 open
1.90 4,505,801 119 sigreturn
1.85 4,386,163 90 mmap
1.83 4,342,443 91 munmap
0.99 2,358,735 168 poll
0.90 2,129,580 13 time
0.88 2,096,626 107 lstat
0.87 2,075,123 140 llseek
0.87 2,059,081 114 wait4
0.69 1,636,532 175 rt sigprocmask
0.63 1,503,479 19 lseek

Table 6.2: The top 20 most frequent system calls. There were 139 different system
calls that were called at least once. Note that these 20 calls make up over 97% of all
system calls. (Data is from the lydia 1-day training set.)

calls; it also shows a significant difference in entropy for programs making a similar

numbers of calls. Simple monitoring programs such as wmapm, wmifs, and pHmon

repeatedly make the same basic set of system calls as they periodically update their

view of the system’s state. Since these patterns are repetitive, they can be captured

on average by short descriptions; thus, the sequence entropy for these programs is

relatively low. In contrast, we have VMWare, a program that emulates an entire

computer system, allowing “guest” operating systems to run as a Linux process. On

this machine, VMWare was used to host a guest system running Microsoft Windows

98. Since VMWare is using all of the resources of a complete operating system, it is

93

Chapter 6. Normal Program Behavior in Practice

0 8 16 24 32 40
Sequence Length (w)

0

4

8

12

16
E

nt
ro

py
 (

bi
ts

)

XFree86
VMWare
pHmon
wmifs
wmapm
average
median

Figure 6.2: A graph of H(Sw) (sequence entropy), for the top 5 programs by number
of system calls, along with the average and median for all 304, vs. different sequence
length (w). (Data is from the lydia 1-day training set.)

no surprise that it makes many system calls, and that the pattern of these system

calls varies significantly. This complexity is the source of VMWare’s large sequence

entropy.

Oddly enough, however, the flat curves in Figure 6.3 show that the lookahead

entropy is rather consistent. This pattern seems to imply that there isn’t a natural

distance at which to look for correlations between system calls, at least for windows of

size 33 or less. This result corroborates earlier past work by Kosoresow and Hofmeyr

on sendmail behavior [63].

94

Chapter 6. Normal Program Behavior in Practice

0 8 16 24 32 40
Lookahead (l)

0

2

4

6

8
E

nt
ro

py
 (

bi
ts

)

XFree86
VMWare
pHmon
wmifs
wmapm
average
median

Figure 6.3: A graph of H(Ll) (lookahead pair entropy), for the top 5 programs by
number of system calls, along with the average and median for all 304, vs. different
sequence length (w). These entropy values for the pairwise distribution show how
lookahead pairs of different separations roughly give the same amount of information
about a program’s behavior. (Data is from the lydia 1-day training set.)

6.3 Choosing a Method & Window Size

The smoothness of the average and median curves in Figures 6.2 and 6.3 imply that

there is no specific window size beyond which there is no correlation. This conclusion

is reinforced by Figure 6.4. In this graph, we see how much normal behavior was seen

on average before we saw 50%, 90%, or 95% of the lookahead pairs or sequences1.

The smoothness of these curves also suggest that there isn’t a natural window size.

1Note that for the lookahead values, this fraction includes all smaller lookahead values:
at w = 4, the lookahead curves include the fraction of lookaheads for l=2, 3, and 4.

95

Chapter 6. Normal Program Behavior in Practice

0 8 16 24 32 40
Window size (w)

0

0.2

0.4

0.6

0.8

1
Fr

ac
tio

n
of

 N
or

m
al

 T
ra

ce
(s

)

95% seq
95% look
90% seq
90% look
50% seq
50% look

Figure 6.4: This graph shows the fraction of normal behavior that was seen, on
average, before a percentage of patterns in a given profile were seen. For example,
the 50% look curve at w = 9 shows that on average we had to observe .243 (24.3%)
of the normal trace to get 50% of a profile’s lookahead pairs for a window size of 9.
Data comes from the lydia 1-day data set.

Even if there isn’t a natural window size, however, there is one simple trade-off

that should be considered: the larger the window, the more potential anomalies,

but also the more storage and training required. A larger window produces more

anomalies because any deviation from previously-seen patterns will create new se-

quences or lookaheads in proportion to the length of the window. Some of these

patterns may already be in the profile, but with the greater set of possibilities in a

larger window, it is more likely that some of these patterns will not be present in the

normal profile. At the same time, storage requirements grow linearly for lookahead

pairs and (potentially) exponentially for sequences as one increases the size of the

96

Chapter 6. Normal Program Behavior in Practice

Parameter Value
loglevel 3
log syscalls 0 (1)
log sequences 0
delay factor 1 (0)
normal factor 48 (128, 64)
normal wait 172800
anomaly limit 30
tolerize limit 12
abort execve 10 (0)

Table 6.3: The parameter settings for pH during the lydia 22-day experiment. Note
that there were a few changes during the run. log syscalls was 0 except for August
17-18th, when it was 1, causing every system call to be logged to disk. delay factor
and abort execve were temporarily set to 0 on August 13th, from 8:30-10 PM. Also,
normal factor was 128 from August 10-15th, 64 from the 15-17th, and 48 from
August 17th to September 1st.

window. (See Section 4.3 for a more detailed explanation.)

To maximize speed and efficiency and to minimize storage overhead and code

complexity, pH uses lookahead pairs to observe program behavior. Because we can

fit eight bit arrays in a 256 by 256 byte array, pH uses a window size of 9. Anything

larger than this size would require a doubling of storage requirements; anything

smaller means wasted space and a lower chance of detecting anomalies. In the past

we have used smaller window sizes, particularly size six; the curves of Figure 6.4

show that on average, we will pay a small penalty in training time for this increase

in window size. In return, the larger window allows pH to be more sensitive to

anomalies.

97

Chapter 6. Normal Program Behavior in Practice

6.4 A Few Weeks on a Personal Workstation

One motivation for implementing pH was to allow large amounts of system behavior

to be observed over an extended period of time. For example, the single day of

system calls used in the previous section takes up over 803M of highly compressed

(bzip2) storage. In contrast, profiles and logs for three weeks of running pH take

up 538K similarly compressed (70M uncompressed). Clearly much information has

been lost; however, what remains provides insight into pH’s perception of normal

system behavior.

The data set used in the following sections was gathered from August 10th at

3:05 PM to 2:20 PM on September 1st, 2001. The test system again was my home

computer, lydia, which was used on a daily basis during this time. This computer

is continuously connected to the Internet through a shared T-1 line with a static IP

address, and sits behind a simple NAT firewall which routes outside SSH connections

to it. Thus, although it is a home machine, it is also a full-fledged Internet worksta-

tion. There is a risk in using myself as a test subject, in that my knowledge of pH

influences how I use the computer; the advantage, though, is that I can correlate my

actions with the actions of pH.

Table 6.3 shows the parameter settings that were used for pH during this time.

These settings were kept consistent with a few exceptions. On August 13th, between

8:30 and 10 PM, both delay factor and abort execve were set to 0 to deal with a rash

of false positives; this incident is detailed in Section 6.6. In addition, normal factor

was changed from its initial value of 128 to 64 on August 15th (11:25 AM), and then

to 48 on August 17th (9:53 PM). These settings were changed to make pH freeze

profiles with less data, and as explained below, these changes did accelerate the

normal classification of several programs — at the cost of additional false positives.

This 22-day data set contains profiles for 528 programs which have in total made

98

Chapter 6. Normal Program Behavior in Practice

0 5 10 15 20 25
Day

0

10

20

30

40

50
N

or
m

al
 C

la
ss

if
ic

at
io

ns

Total
New

Figure 6.5: Normal classifications per day for the 22-day lydia data set. The crosses
mark the total number of normal classifications, while the bars show the number of
new normal classifications.

5,772,818,962 system calls. Table 6.4 shows the top 20 programs by system call for

this data set. Although the numbers are significantly larger, the list is otherwise

similar to that of the 1-day data set.

6.5 Normal Monitoring

As described in Section 5.3, pH uses a two-part algorithm to decide when it may

classify the training data for a program as representing normal program behavior.

As the first part of this process, pH “freezes” a profile when a sufficient number of

99

Chapter 6. Normal Program Behavior in Practice

0 100 200 300 400 500
Hours

0

10

20

30

40
N

or
m

al
 C

la
ss

if
ic

at
io

ns

Figure 6.6: Normal classifications per hour for the 22-day lydia data set.

calls have been made without generating any new lookahead pairs. (This amount

is controlled by the normal factor ratio.) If a profile remains frozen for two days

(normal wait seconds), then the training data is copied to the testing array, and the

profile is marked as normal.

During the 22 days of monitoring, pH classified 184 programs as normal in 230

distinct events (some programs were classified as normal multiple times). Figure 6.5

shows how many programs were classified as normal each day. Figure 6.6 shows the

same but on an hourly basis. These events are relatively evenly distributed except

for a few large peaks. The largest peak, at day 7 and hour 184, corresponds to 7-8

AM on August 18th. Daily, weekly, and monthly cron jobs get run at 7:30 AM, and

this peak corresponds to the first time that they were run after normal wait was

100

Chapter 6. Normal Program Behavior in Practice

reduced to 48 on August 17th. There are smaller, but higher-than-average peaks at

24 hour intervals after this.

This pattern of peaks shows that pH is good at profiling the behavior of small,

simple programs that are run frequently. In Table 6.5, we can see that the two

directories with the highest percentage of normal profiles correspond to programs

that are run at the same time every day: The programs in /etc/cron.daily are run

each day at 7:30 AM to perform tasks such as log rotation and updates to the locate

database; the programs in /usr/lib/amanda are part of the Amanda client/server

backup system, which runs each weekday night at 2:15 AM on my home network.

Looking at the broader system, this pattern continues to hold. Complicated,

frequently used programs such as Emacs and Mozilla are never classified as normal.

Small, infrequently-called programs such as those in /etc/init.d (which are called on

system startup/shutdown) also rarely become normal. In contrast, simple programs

that are primarily called by scripts, such as cut, mesg, and file tend to settle down.

Large programs can sometimes be classified as normal: VMWare was marked as

normal near the end of the testing period on August 31st, and subsequently it only

generates a few false positives per run (which are barely noticeable). It is surprising

that pH could do this. It is true that I primarily use VMWare to run Quicken under

Windows 98 and to make sure there are no glaring bugs in new versions of pH;

however, VMWare is still a rich, complicated program.

System daemons are also often classified as normal. During this run, programs

such as named (day 16), inetd (day 13 and 17), and dhcpd (day 21) were classified as

normal. Unfortunately, other less-used programs such as sshd were not classified as

normal, and so pH did not provide any protection directly for these programs. This

limitation does not mean that pH would provide no protection, since novel uses of

other protected programs would likely cause an attacker difficulty. Since pH has not

yet responded to an attack “in the wild,” however, this claim is still unproven.

101

Chapter 6. Normal Program Behavior in Practice

Percent # Calls N/F Program
30.29 1,748,920,800 XFree86
14.02 809,861,982 F wmifs
12.77 736,981,914 pHmon (inst)
8.75 504,996,876 NF wmapm
6.71 387,217,845 F Mozilla
6.17 355,977,607 F pH-print-syscalls (inst)
2.95 170,085,293 N wmmixer
2.49 144,009,812 WindowMaker
2.41 139,150,260 F asclock-gtk
2.12 122,290,709 N wmppp
2.02 116,662,846 N VMWare
1.58 91,336,269 pH-print-syscalls (dev)
1.20 69,159,315 Acrobat Reader
1.15 66,587,812 tar
0.61 35,419,072 sendbackup
0.54 31,321,283 pHmon (dev)
0.52 30,023,696 Netscape
0.36 20,579,896 F /usr/bin/top
0.31 18,023,251 /usr/sbin/ntpd
0.28 16,129,866 /usr/bin/find

Table 6.4: The 20 top programs by number of system calls executed, out of 528
total. The N/F column indicates whether the corresponding profile was normal
and/or frozen at the end of the experiment. The dev/inst tags refer to the program
being either installed on the system in /usr/local/bin, or residing in my development
home directory. Note that these programs account for over 97% of the system calls
executed. (Data is from the lydia 22-day training set.)

102

Chapter 6. Normal Program Behavior in Practice

Directory # Profiles # Normal % Normal
/usr/bin 209 56 26.8
/bin 44 21 47.7
/usr/sbin 42 18 42.9
/etc/init.d 38 2 5.3
/sbin 24 5 20.8
/usr/X11R6/bin 23 10 43.5
/etc/cron.daily 19 19 100.0
/usr/lib/amanda 12 9 75.0
/etc/menu-methods 9 0 0.0
/usr/local/bin 8 2 25.0
/etc/cron.weekly 8 0 0.0
/usr/lib/netscape/base-4 3 1 33.3
Total 439 143 32.6
System Total 528 161 30.5

Table 6.5: The number of normal profiles in 12 system directories. (Data is from the
lydia 22-day data set.)

103

Chapter 6. Normal Program Behavior in Practice

Per Hour Per Day Total
Anomalies 2.01 48.3 1061
Unique Anom. Programs/hour 0.247 5.92 130
Unique Anom. Programs/day 0.195 4.69 103
Unique Anom. Programs 0.125 3.00 66
Tolerizations 0.0929 2.23 49

Table 6.6: False positives statistics, in terms of anomalies, unique anomalous pro-
grams, and tolerization events. Note how unique anomalous programs are listed by
hour, day, and for the whole data set, since the number of unique programs varies
depending on the granularity of the time bins. There were 21.968 days, or 527.24
hours in the data set. (Data is from the lydia 22-day data set.)

6.6 False Positives

In past work, we have estimated the number of false-positives that a system-call

monitoring system might generate [49, 116]. With pH, we now have our first chance

to measure a false-positive rate in practice.

Table 6.6 shows that the false-positive rate of pH varies greatly depending upon

how you measure it. If we look at the raw number of anomalies generated by pH,

we get a bit over two per hour. If we consider the number of unique anomalous

programs per day, there are fewer than five false positives per day. But probably

the most important statistic is the frequency of user tolerization events, which come

out to two per day. As explained in Section 5.5, user tolerization events occur when

the user decides that a given program is being wrongly delayed and tells pH to stop

monitoring that program for anomalies. The normal flag for the corresponding profile

is set back to 0, and training resumes from where it left off. Because such events are

initiated by a person, they represent the false-positive rate as perceived by the user

or administrator.

Figure 6.7 shows that low numbers of anomalies often do not lead to intervention,

104

Chapter 6. Normal Program Behavior in Practice

Cause MaxLFC Program

anacron 13 /etc/cron.daily/0anacron
(weekly cron) 18 /etc/init.d/ntp

18 /usr/sbin/anacron
19 /usr/sbin/logrotate

Amanda 20 /usr/lib/amanda/driver
(backup) 21 /usr/sbin/inetd
User actions 10 /bin/chmod

10 /bin/cp
10 /bin/egrep
14 /bin/netstat
10 /bin/run-parts
10 /bin/zcat
10 /sbin/route
15 /usr/lib/netscape/base-4/netscape-remote
10 /usr/bin/AbiWord
16 /usr/bin/basename
12 /usr/bin/glib-config
10 /usr/bin/top
13 /usr/local/bin/pH-admin
10 /usr/local/bin/pH-ps
13 /usr/sbin/nmbd

Table 6.7: False positives: The 21 programs in the lydia 21-day data set that had a
maxLFC value equal or greater to the abort execve threshold of 10. Note that most
of these false positives, the “user actions,” were caused by my using these programs
in new ways. Thus, pH was acting properly in these situations.

while a large clumping of anomalies is almost always followed by one or more user

tolerization events. One disturbing trend is that there appears to be more frequent

clusters of low-level anomalies as time goes on. This increase is due to the greater

number of program profiles that pH has classified as normal. Clearly, pH makes some

mistakes.

These mistakes are more evident if we look at which programs are generating

anomalies. Table 6.7 shows the 21 programs that had a maxLFC score of 10 or

105

Chapter 6. Normal Program Behavior in Practice

0 100 200 300 400 500
Hour

0

25

50

75

100

125

150

A
no

m
al

ie
s

Anomalies

0

1

2

3

4

5

6

7

8

T
ol

er
iz

at
io

ns

User Tolerizations

Figure 6.7: The number of anomalies and user tolerization events per hour for the
22-day lydia data set.

higher. Because abort execve was set to 10, these programs, in addition to being

(potentially) delayed for over twenty minutes, would also have been forbidden from

No Anom. for Tol. After MaxLFC Program
85.7h 8s 6 /bin/ln
85.0h 2s 3 /usr/bin/tail

302.7h 1s 5 /usr/sbin/oidentd
6.5h 43.3h 1 /usr/X11R6/bin/XFree86

Table 6.8: The four programs which exceeded the anomaly limit threshold dur-
ing the 22-day lydia experiment. The first column denotes the time between the
program’s profile being classified as normal and the program’s first anomaly. The
second column contains the time from the first anomaly to when the anomaly limit
threshold of 30 was exceeded.

106

Chapter 6. Normal Program Behavior in Practice

making execve calls. This chart shows that most of these false positives were the

direct result of user actions, while the rest came from programs that run periodically,

either on a nightly or weekly basis.

Whether it is caused directly by a user or is run automatically, pH has problems

with programs that are run frequently but which occasionally (or periodically) change

their behavior. pH can be taught about periodic events by increasing the time of

normal wait to include the events in question, or through the manual triggering of

these events. User-caused false positives are harder to address and probably require

more sophisticated heuristics, possibly in a userspace daemon. Such possibilities are

examined in the discussion.

pH can sometimes recover from its mistakes through the anomaly limit mech-

anism, which allows pH automatically to tolerize programs that are repeatedly de-

layed for short periods of time. Table 6.8 shows how pH automatically tolerized four

programs. The first three went significant periods of time without generating any

anomalies; then, when several instances of the same programs were invoked with each

incurring only a few anomalies, pH tolerized them within a matter of seconds. The

last program, the XFree86 X-server, incurred anomalies 6.5 hours after starting nor-

mal monitoring, and had repeated, but short, delays for almost two days. Eventually

the anomaly count for its profiles exceeded anomaly limit and it was tolerized.

107

Chapter 6. Normal Program Behavior in Practice

Host lydia badshot jah USN
Location apartment UNM CS UNM CS K-12 school
OS Debian 3.0 Debian 2.2 Debian 2.2 Debian 2.2
Workload devel./prod. productivity mail/web server web server
Start Time 10 Aug 2001 12 Sep 2001 09 Sep 2001 19 Oct 2001
End Time 01 Sep 2001 07 Oct 2001 21 Nov 2001 08 Jan 2002
Total Days 21.97 24.82 72.74 81.65
Reboots 4 2 3 0

Table 6.9: Host and Data details on the 4 profile data sets.

Parameter Value
loglevel 3
log syscalls 0
log sequences 0
delay factor 1
normal factor 128
normal wait 604800
anomaly limit 30
tolerize limit 12
suspend execve 10
susp exec time 172800

Table 6.10: The parameter settings for pH on jah, badshot, and USN for the exper-
iments listed in Table 6.9.

6.7 Normal Behavior on Other Hosts

To see whether the results from my home computer were typical, I monitored pH’s

on three other hosts. The datasets collected from these machines (along with the

lydia 22-day dataset) are listed in Table 6.9. Badshot is used by one person primarily

for personal productivity tasks such as email, web access, and document creation.

Jah is the UNM Computer Science Department’s mail and web server; in addition,

users can use jah for remote interactive sessions. USN is the webserver www.usn.org,

108

Chapter 6. Normal Program Behavior in Practice

lydia badshot jah USN
Total Days 21.97 24.82 72.74 81.65
Normal-min Days 2 7 7 7
Total Profiles 528 279 823 213
Normal Profiles 161 72 105 62
% Normal Profiles 28.6% 25.8% 12.8% 29.1%
New Normal Events 184 84 133 71
Total Normal Events 230 85 161 88

Table 6.11: Normal profile summary for the lydia, badshot, jah, and USN datasets
listed in Table 6.9.

a site belonging to the University School of Nashville, a kindergarten through 12th

grade school in Nashville, TN. Note that two of the machines, USN and jah, are

web servers, and two of the machines, badshot and jah, are located in the UNM

Computer Science department. Also, all three machines are running the same Linux

distribution, Debian GNU/Linux 2.2. The same 2.2.19 Linux kernel patched with

pH was installed on all three machines. pH’s parameter settings for these three

experiments are listed in Table 6.10.

Table 6.11 compares the ability of pH to capture normal profiles on the four tested

hosts. Note that at the end of the test run, pH had only classified 12.8% of jah’s

profiles as normal, in contrast to the 25% or more fraction on the other three hosts.

This discrepancy was probably due to multiple users each using different programs

on jah for brief periods of time. In contrast, USN saw relatively little interactive

usage, while badshot and lydia were each primarily used by one person.

The graph in Figure 6.8 shows the pattern of new and total normal classifications

on USN during the test period. (Compare this graph with Figure 6.5.) The pattern

on the other two hosts is similar. Note how the number of new normal profile

classifications tapers off over time. The less consistent pattern of total classifications

shows that pH periodically re-classifies some profiles as normal.

109

Chapter 6. Normal Program Behavior in Practice

0 20 40 60 80
Day

0

4

8

12

16
N

or
m

al
 C

la
ss

if
ic

at
io

ns

Total
New

Figure 6.8: Normal classifications per day for the USN data set. The crosses mark
the total number of normal classifications, while the bars show the number of new
normal classifications.

Table 6.12 compares the false-positive rates for these four datasets. To account

for differences in training time, each of the rates are reported in terms of “response

days,” or the number of days during which pH could have mounted a response. This

number is the total number of days minus normal wait days (2 for lydia, 7 for the

other three hosts). Note that USN only required one user tolerization every five days

on average. These results imply that program behavior on USN was particularly

regular; this observation is reasonable since USN was not generally used for email,

web surfing, or other interactive activities. In contrast, jah was used both as a server

and for interactive use; thus, its behavior was more variable.

110

Chapter 6. Normal Program Behavior in Practice

lydia badshot jah USN
Response Days (RD) 19.97 17.82 65.74 74.65
Anomalies 1061 557 1435 469
Auto Tolerizations 4 5 22 5
User Tolerizations 49 8 40 15

(24)
Anomalies/RD 53.13 31.26 21.83 6.28
Auto Tolerizations/RD 0.20 0.28 0.33 0.07
User Tolerizations/RD 2.45 0.45 0.61 0.20

(0.37)

Table 6.12: False positives for the lydia, badshot, jah, and USN datasets listed in
Table 6.9. “Response Days” is the total days minus normal min days, and so is the
number of days during which pH could have responded to anomalies. “Auto Toler-
izations” are tolerizations caused by profiles having more than anomaly limit (30)
anomalies, and “User Tolerizations” are tolerizations caused by direct user interven-
tion. The numbers in parentheses exclude erroneous manual tolerizations performed
on jah by a CS systems administrator.

One surprising detail in this table is the number of automatic tolerizations, espe-

cially on jah. Apparently variations in jah’s behavior caused pH to delay programs

that were behaving normally; the anomaly limit mechanism detected these problems

and prevented pH from permanently degrading the behavior of the these programs

without requiring user intervention.

6.8 Profile Diversity and Complexity

One somewhat surprising observation is that program profiles are quite diverse. Con-

sider the graph in Figure 6.9. Here we see that relatively few lookahead pairs are

shared by most profiles, and that most lookahead pairs belong to only a few pro-

grams. More specifically, there are only 2314 (6.76%) lookahead pairs that are in 10%

or more of the profiles (53 out of 528). Further, 12,908 of the lookahead pairs (out

111

Chapter 6. Normal Program Behavior in Practice

1 10 100 1000 10000
Lookahead Pair

0

100

200

300

400

500

600

Pr
of

ile
s

Figure 6.9: This graph shows the number of profiles containing each lookahead pair
sorted by frequency. Note that the X axis scale is logarithmic. There are 528 profiles
which in total contain 34227 distinct lookahead pairs. The data is from the 22-day
lydia data set.

of 34,227 pairs total, 37.7%) belong to only one profile. This diversity is remarkable,

considering that most programs at a bare minimum rely on the standard C library,

either directly or through an interpreter.

Another way to see profile diversity is to look at the number of lookahead pairs

per profile. Figure 6.10 shows the number of lookahead pairs and the corresponding

number of system calls per profile. Clearly the raw number of system calls seen

does not directly correspond to the complexity of the resulting profile. Table 6.13

shows this even more starkly. Programs such as Emacs and StarOffice generate

a remarkable number of unique lookahead pairs while making a relatively modest

112

Chapter 6. Normal Program Behavior in Practice

0 100 200 300 400 500 600
Profile

0

2000

4000

6000

8000
L

oo
ka

he
ad

 P
ai

rs

Lookahead Pairs

5e+08

1e+09

1.5e+09

2e+09

Sy
st

em
 C

al
ls

System Calls

Figure 6.10: This graph shows the number lookahead pairs and system calls observed
per profile, sorted by the number of lookahead pairs. This graph shows that programs
with the largest lookahead pair profiles do not necessarily make the most system calls.
There are 528 profiles which in total contain 34227 distinct lookahead pairs. The
system call peaks at profile 194, 291, and 292 correspond to wmifs, pH-print-syscalls,
and wmapm, respectively. The data is from the 22-day lydia data set.

number of system calls. The complexity of StarOffice is particularly notable since I

use it infrequently.

Although these results are suggestive, they do not give a clear indication of how

variable profiles are on a given host. One way we can quantify the diversity of profiles

on a host is to define a measure of profile similarity. I define profile similarity as being

the following ratio:

profile similarity =
lookahead pairs in intersection

lookahead pairs in union

Although profile similarity can be computed for several profiles at once, pairwise

profile similarity is the easiest to understand. For example, consider two profiles, A

113

Chapter 6. Normal Program Behavior in Practice

System Calls N/F Pairs Program
387217845 F 7883 Mozilla

8933028 7577 Emacs
30023696 6913 Netscape

73341 5797 StarOffice
116662846 N 5169 VMWare

6194085 5086 kdeinit
1748920800 4707 XFree86

2616915 4487 bash
93659 4447 smbd

2455989 4412 RealPlayer
3820209 4071 exim

71723 3741 konqueror
28731 3701 lpd

8770368 3666 xmms
1315093 3584 sshd
455286 3400 kspread

3394680 3376 aviplay
40310 3122 cvs
31865 3081 gdm

144009812 3069 WindowMaker

Table 6.13: The twenty top programs by number of lookahead pairs. The second
column indicates whether the profile was frozen or classified as normal. Note how
the top five programs correspond to packages that are generally considered to be
complex.

and B, where A has 500 lookahead pairs, and B has 1000 lookahead pairs, and A is

a strict subset of B. The similarity of A and B would then be 500/1000, or 0.5.

To measure the diversity of profiles on a given host, we can compute the similarity

of every pair of profiles. The average of these similarities gives us the expectation of

how similar any two profiles will be on a host. As Table 6.14 shows, any two profiles

are on average 1/5 to 1/4 similar. As the large standard deviations indicate, though,

there is much variation in this measure.

A more interesting measure is the similarity of programs between hosts. Table

114

Chapter 6. Normal Program Behavior in Practice

Host # Profiles Comparisons Similarity
lydia 528 139,128 0.228 (0.148)
badshot 279 38,781 0.213 (0.144)
jah 823 338,253 0.232 (0.159)
USN 213 22,578 0.248 (0.182)

Table 6.14: The average profile similarity for the four tested hosts. The pairwise
profile similarity was computed for each pair of profiles on a given host. Standard
deviation is given in parentheses.

6.15 shows the result of computing the similarity of profiles for the same binaries.

Thus, the comparison between jah and USN compared jah’s ls profile to USN’s ls

profile, jah’s emacs to USN’s emacs, and so on. The first number in each box is the

average similarity of profiles for the same program on different hosts. The second

number is the standard deviation of this average. The third number in each box lists

lydia badshot jah USN

lydia 1.000 0.461 0.451 0.446
(0.000) (0.124) (0.116) (0.124)

528 197 246 144
badshot 0.461 1.000 0.754 0.785

(0.124) (0.000) (0.201) (0.211)
197 279 226 142

jah 0.451 0.754 1.000 0.730
(0.116) (0.201) (0.000) (0.209)

246 226 823 173
USN 0.446 0.785 0.730 1.000

(0.124) (0.211) (0.209) (0.000)
144 142 173 213

Table 6.15: The average host similarity for the four tested hosts. The pairwise
profile similarity was computed for each profile that two hosts have in common.
The first number (in bold) is the average profile similarity. The second number (in
parentheses) is the standard deviation for this average. The third is the number of
profiles that the two hosts have in common.

115

Chapter 6. Normal Program Behavior in Practice

the number of profiles that the two hosts have in common.

One thing that is apparent from this table is that lydia’s profiles appear to be

significantly different from the other three hosts. This difference is probably due to

the fact that lydia was running a pre-release of Debian 3.0, while the other three

hosts were running Debian 2.2. Another observation is that the profiles from two

hosts are at most 0.785 similar (for USN and badshot). The standard deviations are

as high as 30% of the similarity value, so some programs are very similar between

two hosts; nevertheless, this table shows that pH’s profiles do differ from machine to

machine based on their configuration and usage, and not just based on differences in

program versions.

These results show that pH’s definition of normal behavior varies from program

to program and from machine to machine. This diversity offers the possibility that

a successful attack against one machine may not work on another, even if both

are running the same program binaries. More work needs to be done, however, to

determine whether this diversity adds much protection in practice.

6.9 suspend execve Issues & Longer-Term Data

Up to this point, all of the results in this chapter have come from pH running with the

suspend execve parameter set to 10. This value is actually rather high, and means

that each system call is being delayed for 10 seconds before attempted execve calls

trigger a two-day delay. In practice, such a value means that the suspend execve

response is almost never invoked.

This setting was chosen to minimize the likelihood of pH causing significant prob-

lems for users. Every time the suspend execve response is used, a person needs to

either kill or tolerize the affected process; since I couldn’t guarantee that someone

116

Chapter 6. Normal Program Behavior in Practice

Total Profiles 1467
Normal Profiles 80
% Normal Profiles 5.4%
Response Days 14.77
Anomalies 172
Tolerizations 23
Anomalies/RD 11.65
Tolerizations/RD 1.56

Table 6.16: Data from lydia with suspend execve set to 1. pH’s other settings were
the same as those listed in Table 6.10.

would be able to interact with pH on a timely basis, it seemed wise to keep the

suspend execve threshold high. The results of Chapter 7, however, suggest that

pH needs to have suspend execve set to 1 in order to catch buffer overflows and

backdoors.

To see how practical it is to run pH with lower suspend execve values, I have

run pH on lydia with suspend execve set to 1 from September, 2001 through March

24, 2002. pH has not run without interference during this entire period, though. A

C library upgrade in late December required that all normal profiles be tolerized.

lydia was not in use for three weeks in February. Other kernels were run to diagnose

hardware problems. Altogether, though, pH was used for approximately two months

after the December tolerizations.

Table 6.16 presents data from the last two weeks of this extended pH run. This

data set had only half of the normal profiles of the earlier lydia dataset (80 vs. 161);

this number, however, is comparable to the number of normal profiles on the other

three hosts, even though the total number of profiles is much larger (1467 vs. 528).

Although relatively few profiles are normal, this set has one particularly notable

member: the XFree86 X-Server, version 4.1.0. It was classified as normal ten days

before the end of the run with 5551 lookahead pairs (up from 4707), and in those ten

117

Chapter 6. Normal Program Behavior in Practice

days it made over one billion system calls. Only one of these billion system calls was

anomalous, and this anomaly was safely ignored. Like VMWare, this example shows

that given a sufficient period of time (in this case, several months) and system calls

(billions), pH can capture the normal behavior of complicated programs.

Approximately 5 of the 23 tolerizations during this period were due to experi-

ments involving inetd (see Chapter 7); if we remove these actions, we are left with

1.15 tolerizations per day. As Table 6.12 shows, this value is more than double the

rate from the other three hosts, but it is still relatively low, and is less than half the

rate of the earlier tests on my home computer.

These results show that it is practical to run pH with a small suspend execve

threshold, provided that there is a person or daemon process which can evaluate

suspended processes. With simple delays, most false positives are transient, and

tolerizations are generally used to speed up sluggish programs. Processes delayed

by the suspend execve mechanism, however, are effectively killed unless some action

is taken. Even if such responses are rare, Murphy’s law guarantees that they will

happen at the worse possible moment, potentially resulting in a significant loss of

functionality or data. Fixing such situations only requires a few mouse clicks with

pHmon; of course, users first need to be educated about pH before they can perform

these actions.

As with so many other security mechanisms, pH can provide better security at

the cost of more administration. Yet, because this administration involves evaluating

simple, easy-to-understand responses through a simple graphical interface, pH can

be maintained by unsophisticated users.

118

Chapter 6. Normal Program Behavior in Practice

6.10 Normal in Practice

Although the preceding figures and tables are quantitatively accurate descriptions of

how pH behaves, they do not fully convey the “feel” of pH. In practice I have found

that with the settings in Table 6.10, pH almost always delays programs because

of some change in the usage or configuration of the machine. Because I frequently

change my usage patterns, I tend to encounter a relatively high rate of false positives;

as the badshot dataset shows, other users with more consistent usage patterns have

reported many fewer problems.

On lydia, false positives almost always come from me using a program in a new

way, either directly or indirectly. For example, I once generated a number of anoma-

lies in response to running a new program, kdf. This program is a KDE interface to

df, a standard utility for obtaining the amount of free space on mounted volumes.

Because I frequently use df on the command line, pH had classified its profile as

normal. kdf invokes df but uses options that I normally do not use. pH detected

this difference and responded with significant delays. Another time pH delayed cron

after I had commented out an entry in a crontab file, removing a normally-run job.

pH detected and reacted to the change in cron’s behavior.

Because pH reacts by slowing down abnormally-behaving programs, however,

false positives have not created many problems for me in practice. If the program is

behaving more slowly than I would like, I merely click on the process in pHmon and

tell pH to tolerize it. Unless a timeout has somehow been triggered (a rare event,

unless the anomaly happened overnight), execution then proceeds normally.

Nevertheless, reactions such as these have changed the way that I interact with

my computer. Before choosing a new activity, I now first wonder how pH will react

to the change. When my computer hesitates, I automatically ask myself what have

I done differently. By detecting and delaying novel program behavior, pH has given

119

Chapter 6. Normal Program Behavior in Practice

me the sense that my computer doesn’t like change. As long as I continue to do

the things I have done in the past everything behaves as expected. If I decide to

change the way background services run, though, or if I use an old program in a new

context, I often expect pH to react. pH often ignores actions that I suspect might

set it off; also, after periodically correcting pH’s behavior, over time I find that pH

reacts less and less often to my direct actions. Even so, with a bit of thought I can

generally set it off. My normal usage patterns, however, do not alarm pH at all.

pH has also changed the way I administer my computer. In December 2001,

I bought a new printer for lydia. To use this printer I had to install some new

software. Installing a new program can cause a few pH anomalies; this software,

however, required me to upgrade my C library as well. Because almost every program

on a UNIX system is dynamically linked to the C library, this one upgrade caused

almost every program on my system to behave anomalously. To make my system

usable again, I had to tolerize manually every profile on my system. Although I

was unhappy with the need for these tolerizations, they were simple to perform: I

rebooted in single-user mode and executed a one-line command.

Yet in contrast to systems like Tripwire [59], pH does not always react to program

upgrades. In particular, security-related upgrades normally generate no anomalous

program behavior. This observation is partially a by-product of Debian’s security

policy: instead of upgrading packages when security fixes are incorporated, the De-

bian project backports security fixes to the older program versions that are part of

the stable Debian distribution. Because Debian works hard to ensure that secu-

rity fixes are made with minimal source code changes, security upgrades are almost

guaranteed to not interfere with the stability of a system. This same stability also

keeps pH from reacting to security updates that do not significantly change program

behavior.

To better understand pH’s behavior, the next chapter analyzes pH’s anomalies.

120

Chapter 7

Anomalous Behavior

Once pH has a profile of normal program behavior, it then monitors subsequent

program behavior, delaying any unusual system calls. In this chapter, I explore

the nature of these anomalies, and examine how they correlate with unusual and

dangerous events. The first part discusses what type of changes in program behavior

should be detectable by pH by examining the system calls produced by a few simple

programs. The next section examines how pH detects and responds to changes in

inetd behavior and shows that pH can detect some kinds of configuration errors and

the usage of normally disabled internal services.

Following this, I test whether pH can detect and respond appropriately to a

fetchmail buffer overflow, an su backdoor, and a kernel ptrace/execve race condition

that allows a local user to obtain root access. The attacks are explained and the

specific detected behaviors are explored. I then summarize pH’s actual or simulated

response to several other previously tested intrusions and explain how an intelligent

adversary might try to avoid detection by pH. The chapter is concluded with a

discussion of the effectiveness of pH’s responses.

Since abnormal program behavior can only be defined in terms of normal behav-

121

Chapter 7. Anomalous Behavior

#include <unistd.h>

#include <string.h>

int main(int argc, char *argv[])

{

char *msg = "Hello World!\n";

write(1, msg, strlen(msg));

return 0;

}

Figure 7.1: hello.c: A simple “hello world” program, written to use a minimal amount
of library code for output.

ior, all of the anomalies reported in this chapter are relative to specific lookahead-pair

system call profiles. Some of these normal profiles reflect program usage on one or

more computers (“real” normal profiles); however, for programs that were not as fre-

quently used the profiles reflect deliberate tests of program functionality (“synthetic”

normal profiles). Chapter 6 discussed some of the trade-offs of real and synthetic

normal profiles.

Except where otherwise noted, pH’s parameters were set to the default values in

Table 5.2.

7.1 What Changes Are Detectable?

By detecting changes in the pattern of system calls, pH is able to observe changes

in the flow of control of a program. Some changes in flow will not be detectable

if they produce previously seen lookahead call patterns; however, novel lookahead

pairs are proof that a previously unseen flow of control is being observed. Although

a previously unseen execution path may be perfectly safe, pH assumes that such a

122

Chapter 7. Anomalous Behavior

#include <unistd.h>

#include <string.h>

int main(int argc, char *argv[])

{

char *msg = "Hello World!\n";

if (argc > 1) {

execl("/bin/ls", "ls", NULL);

} else {

write(1, msg, strlen(msg));

}

return 0;

}

Figure 7.2: hello2.c: A second simple “hello world” program, but which executes the
ls command when given any command line arguments.

path is potentially dangerous and so merits a response.

To better see what this means in practice it is helpful to look through a few

simple examples. The programs listed in Figures 7.1, 7.2, and 7.3 all print “Hello,

World!” when run without any command-line arguments. Without arguments these

programs also produce exactly the same trace of 22 system calls, which are shown in

detail in Figure 7.4. This figure shows the output of strace, and except for the initial

execve, is identical to the trace as seen by pH. Of these calls, only the write system

call is actually produced by the main part of the program: the calls before this point

are made by the dynamic linker and the C library pre-main initialization routines,

while the final exit terminates the program after the main function returns.

Because there are no branches in the main function of hello.c, the write system

call will always be executed; however, the context of this write may change if the

system’s configuration changes. For example, the fstat64 call is implemented in Linux

123

Chapter 7. Anomalous Behavior

#include <unistd.h>

#include <string.h>

int main(int argc, char *argv[])

{

char *msg1 = "Hello World!\n";

char *msg2 = "Goodbye World!\n";

if (argc > 1) {

write(1, msg2, strlen(msg2));

} else {

write(1, msg1, strlen(msg1));

}

return 0;

}

Figure 7.3: hello3.c: A third simple “hello world” program which also says goodbye
when given a command-line argument.

2.4 kernels: when the C library is run on such a system it detects fstat64’s presence

and changes its initialization appropriately. Except for such initialization changes,

we would expect pH to generate a profile containing 156 lookahead pairs and we

would never expect to see any anomalies relative to this profile.

If the program hello2.c is run with no arguments, it produces the same trace

of system calls as hello.c and generates an identical profile. If we give hello2.c an

argument, we instead see the write replaced with an execve call (see Figure 7.5).

This substitution generates one anomalous system call (the execve) if the profile is

marked as normal. If we are still training, this change generates eight new looka-

head pairs, one for each system call preceding the execve. After the execve, control

passes to the program ls and its profile, and so no further novel behavior is detected.

In this fashion, pH can detect the novel code path triggered by the presence of a

command-line argument by detecting the anomalous execve call. In addition, if the

124

Chapter 7. Anomalous Behavior

suspend execve variable was set to 1 and the profile for hello2.c was marked as nor-

mal, the anomalous execve would automatically trigger a two-day delay before ls was

run.

The execution of hello3.c is similarly perturbed by the presence of any command-

line arguments; its profile, however, is not perturbed by this change, and if the profile

is marked as normal, it produces no anomalies. pH cannot detect this change because

the alternative code path invokes exactly the same system call (write) as the “normal”

code path, and pH does not examine system call arguments (see Figure 7.6).

These simple examples show how pH detects and responds to significant changes

in a program’s flow of control. In these examples the perturbations were caused by

changes in command line arguments. With more complicated programs, anomalies

can be caused by similar changes, e.g., by a user trying out using --help as an

option. Although this action might appear innocuous, such anomalies do not occur

frequently in practice. Thus, an otherwise benign anomaly can indicate the presence

of an unauthorized user who was unfamiliar with the system. To be sure, this would

be weak, indirect evidence of a security violation; as Section 7.3 shows, pH can also

detect security violations directly.

125

Chapter 7. Anomalous Behavior

execve("./hello", ["hello"], [/* 36 vars */]) = 0

uname({sys="Linux", node="lydia", ...}) = 0

brk(0) = 0x804957c

old mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40015000

open("/etc/ld.so.preload", O_RDONLY) = -1

ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat64(3, 0xbfffee44) = -1

ENOSYS (Function not implemented)

fstat(3, {st_mode=S_IFREG|0644, st_size=67285, ...}) = 0

old mmap(NULL, 67285, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40016000

close(3) = 0

open("/lib/libc.so.6", O_RDONLY) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0X\324\1"...,

1024) = 1024

fstat(3, {st_mode=S_IFREG|0755, st_size=1124904, ...}) = 0

old mmap(NULL, 1141380, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0)

= 0x40027000

mprotect(0x40134000, 39556, PROT_NONE) = 0

old mmap(0x40134000, 24576, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED, 3, 0x10c000) = 0x40134000

old mmap(0x4013a000, 14980, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x4013a000

close(3) = 0

munmap(0x40016000, 67285) = 0

getpid() = 11318

write(1, ”Hello World!\n”, 13) = 13
exit(0) = ?

Figure 7.4: The 22 system calls emitted by hello.c, as reported by strace.

126

Chapter 7. Anomalous Behavior

execve("./hello2", ["hello2", "foo"], [/* 36 vars */]) = 0

uname({sys="Linux", node="lydia", ...}) = 0

brk(0) = 0x80495ec

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40015000

open("/etc/ld.so.preload", O_RDONLY) = -1

ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat64(3, 0xbfffee34) = -1

ENOSYS (Function not implemented)

fstat(3, {st_mode=S_IFREG|0644, st_size=67285, ...}) = 0

old_mmap(NULL, 67285, PROT_READ, MAP_PRIVATE, 3, 0)

= 0x40016000

close(3) = 0

open("/lib/libc.so.6", O_RDONLY) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0X\324\1"...,

1024) = 1024

fstat(3, {st_mode=S_IFREG|0755, st_size=1124904, ...}) = 0

old_mmap(NULL, 1141380, PROT_READ|PROT_EXEC,

MAP_PRIVATE, 3, 0) = 0x40027000

mprotect(0x40134000, 39556, PROT_NONE) = 0

old_mmap(0x40134000, 24576, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED, 3, 0x10c000) = 0x40134000

old_mmap(0x4013a000, 14980, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x4013a000

close(3) = 0

munmap(0x40016000, 67285) = 0

getpid() = 11331

execve(”/bin/ls”, [”ls”], [/* 36 vars */]) = 0
...
[System calls of /bin/ls]
...
_exit(0) = ?

Figure 7.5: The system calls emitted by hello2.c when given a command line argu-
ment, as reported by strace. Note how the boldface region is different from hello.c
(Figure 7.4).

127

Chapter 7. Anomalous Behavior

execve("./hello3", ["hello3", "foo"], [/* 36 vars */]) = 0

uname({sys="Linux", node="lydia", ...}) = 0

brk(0) = 0x80495bc

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40015000

open("/etc/ld.so.preload", O_RDONLY) = -1

ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat64(3, 0xbfffee34) = -1

ENOSYS (Function not implemented)

fstat(3, {st_mode=S_IFREG|0644, st_size=67285, ...}) = 0

old_mmap(NULL, 67285, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40016000

close(3) = 0

open("/lib/libc.so.6", O_RDONLY) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0X\324\1"...,

1024) = 1024

fstat(3, {st_mode=S_IFREG|0755, st_size=1124904, ...}) = 0

old_mmap(NULL, 1141380, PROT_READ|PROT_EXEC,

MAP_PRIVATE, 3, 0) = 0x40027000

mprotect(0x40134000, 39556, PROT_NONE) = 0

old_mmap(0x40134000, 24576, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED, 3, 0x10c000) = 0x40134000

old_mmap(0x4013a000, 14980, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x4013a000

close(3) = 0

munmap(0x40016000, 67285) = 0

getpid() = 11333

write(1, ”Goodbye World!\n”, 15) = 15
_exit(0) = ?

Figure 7.6: The system calls emitted by hello3.c when given a command line ar-
gument, as reported by strace. Note how the arguments to the last write call (in
boldface) are different from those of hello.c (Figure 7.4).

128

Chapter 7. Anomalous Behavior

Program /usr/sbin/inetd
Version Debian netkit-inetd 0.10–8
Window Size 9
Total Calls 3563667
Days of Training 37
Lookahead Pairs 1467
Novel Sequences 385

Table 7.1: Details of the inetd normal profile used for perturbation experiments.
Note that the number of novel sequences refers to the number of sequences that
contained new lookahead pairs.

7.2 Inetd Perturbations

Sometimes pH detects anomalies because of benign changes in usage patterns; other

times it detects anomalies because of significant changes in program functionality.

These changes can be of interest to a system administrator even when they do not

represent a security threat because they can indicate a configuration error or the

presence of an undesirable service. In this section I explore how pH responds to such

changes in the behavior of inetd.

The inetd program is a kind of “super-server” daemon that runs on most UNIX

machines to provide access to a variety of services. It has a configuration file called

inetd.conf which associates TCP and UDP ports with different built-in services or

external executables. When started, it binds the ports listed in this file, and upon

connection to any of these ports it responds by either running an internal routine

(for built-in services) or by spawning an external program. Because of the overhead

of invoking a new process on every connection, inetd generally is not used for high-

volume services; instead, it is used for needed services that are not run frequently

enough to justify having their own dedicated daemon.

Although the inetd.conf file is the source of much of inetd’s flexibility, it is also

129

Chapter 7. Anomalous Behavior

Count LFC Delay (s) Call # Call Name
302 1 0.02 175 rt sigprocmask
303 2 0.04 13 time
304 3 0.08 5 open
305 4 0.16 108 fstat
306 5 0.32 90 mmap
307 6 0.64 3 read
309 7 1.28 91 munmap
310 8 2.56 4 write
311 9 5.12 6 close
312 10 10.24 142 newselect

Table 7.2: System call anomalies for the inetd daytime service. “Count” refers to
the position in the trace of the anomalous inetd process.

the source of many problems. Secure systems typically disable all of inetd’s internal

services since they provide at best non-critical services, many of which can be used for

denial-of-service attacks; however, the default install of some systems still leaves these

services enabled. Also, typographical errors in the configuration file can accidentally

disable desired services. In the rest of this section I examine the impact of these

types of inetd.conf changes by examining four perturbations: an enabled daytime

service, an enabled chargen service, a misspelled filename in the finger service, and

a misspelling of the finger service designation. The data is presented relative to a

normal profile of inetd behavior from August 10th through September 17th, 2001

generated on my home computer, lydia. This profile is summarized in Table 7.1.

Also, where pH’s data was insufficient to reconstruct the behavior of the program,

strace was used to obtain arguments to the system calls.

130

Chapter 7. Anomalous Behavior

for (each requested service) {

identify service

pid = 0

if (dofork) {

do the fork + many system calls

pid == 0 in child

}

...

clear blocked signals (sigprocmask(empty mask))

if (pid == 0) {

if (dofork) {

setup uid, gid, etc.

duplicate standard file descriptors

closelog()

}

if (built-in service) {

run service

} else {

execv external program

}

}

}

Figure 7.7: Pseudo-code of the inetd main loop.

7.2.1 Daytime

The TCP daytime service [88] is an extremely simple network service where a re-

mote machine may connect to port 13 on a server to receive a human-readable text

string describing the current time. Although most Internet systems are capable of

supporting this service, it is generally disabled because it provides more information

about a server than is strictly necessary, and because any open port can represent a

potential vulnerability.

To see how pH would react to the enabling of daytime, the inetd.conf file on

lydia was changed to enable the service. Restarting inetd produced no anomalous

131

Chapter 7. Anomalous Behavior

system calls; a telnet to port 13, though, produced 10 anomalous system calls with

a maximum LFC of 10. With delay factor set to 1, inetd was explicitly delayed

for 21.1 seconds, which resulted in an overall delay of less than 30 seconds. The

anomalies and delays are detailed in Table 7.2. Because the last anomalous system

call was a select, inetd still had an LFC of 10 when the daytime access completed.

Thus, the next 117 system calls (for subsequent requests) would each be delayed for

10.24 seconds1.

The daytime service generated these anomalies because of three factors: the

service didn’t require another process to be spawned, another executable didn’t need

to be run, and the built-in daytime() service function executes the time system call

which is not invoked for any external service. To see this more clearly consider the

pseudo-code of inetd’s main loop in Figure 7.7. For a normal external, nonblocking

service, inetd follows the branches corresponding to dofork being true and of the

request being for an external service. Neither of these conditions are true for daytime.

Further, the daytime() function invokes the time system call, a call which isn’t used

by the external service code path.

Thus, pH does detect that inetd is behaving in an unusual manner; however, its

response causes only a relatively minor delay in service, and even worse, delays on

subsequent service requests. Nevertheless, the anomalies and the subsequent delays

can alert an administrator that an unneeded service is enabled and being used.

7.2.2 Chargen

The TCP chargen service [87] is a simple network service designed to help test the

reliability and bandwidth of a connection. Upon connection to port 19, the server

1To prevent delay of the main inetd daemon from causing a denial of service, we can
borrow a trick from the software rejuvenation field [20, 111] and use a “watchdog” daemon
to restart inetd whenever it is substantially delayed.

132

Chapter 7. Anomalous Behavior

Count LFC Delay (s) Call # Call Name
35 1 0.02 63 dup2
36 2 0.04 6 close
37 3 0.08 63 dup2
38 4 0.16 63 dup2
40 5 0.32 6 close

1059 1 0.02 102 socketcall
1060 2 0.04 4 write
1061 3 0.08 4 write
1062 4 0.16 4 write
1063 5 0.32 4 write
1064 6 0.64 4 write
1065 7 1.28 4 write
1066 8 2.56 4 write
1067 9 5.12 4 write
1068 10 10.24 4 write
1069 11 20.48 4 write
1070 12 40.96 4 write
1071 13 81.92 4 write
1072 14 163.84 4 write
1073 15 327.68 4 write
1074 16 655.36 4 write
1075 17 1310.72 1 exit

Table 7.3: System call anomalies for the inetd chargen service. “Count” refers to the
position in the trace of the anomalous inetd process.

sends a full-speed continuous stream of repetitive ASCII characters until the client

terminates the connection. Because the service obeys TCP congestion control, in

theory it should not consume an excessive amount of bandwidth; in practice, such

throttling is not sufficient to prevent abuse. A forged connection (created through

spoofed IP packets) can cause data to be sent to an arbitrary target machine. Several

chargen streams converging on a given network can constitute an effective denial-of-

service attack; thus, most current machines have this service disabled.

As with daytime, enabling chargen caused no anomalies during inetd’s startup.

133

Chapter 7. Anomalous Behavior

0 500 1000
System Call Count

0

5

10

15

20
L

oc
al

ity
 F

ra
m

e
C

ou
nt

 (
L

FC
)

Figure 7.8: The locality frame count of the inetd chargen anomalies, as seen with
delays enabled. Note that each system call is delayed for 2LFC/100 seconds.

A telnet to port 19, however, quickly produced a flood of anomalies. With all delays

disabled, pH recorded over 13,000 anomalies within the first minute of the connection.

With delay factor set to 1, only 22 anomalies were generated during the first 23

minutes of the connection, achieving a maximum LFC of 17 (see Table 7.3 and

Figure 7.8). Only 13 lines of output were produced in contrast to a few megabytes

with no response. Thus, delays are sufficient to stop the use of this unneeded service.

Because the maximum LFC for these anomalies exceeded the tolerize limit of 12,

pH reset inetd’s training profile, preventing pH from learning the use of chargen as

normal inetd behavior.

Like the daytime service, chargen is built in to inetd; the anomalies generated

by chargen, however, are rather different from those for daytime. There are two sets

134

Chapter 7. Anomalous Behavior

of anomalies. The first set corresponds to the second dofork code path shown in

Figure 7.7, the part where the uid and gid of the child process is changed. None of

the other regularly used external programs on lydia run as root, so system calls are

made to change the process’s uid and gid appropriately. In contrast, chargen does

run as root. Since inetd is already running as root, inetd never makes any system

calls to change its uid or gid; instead, it skips ahead and duplicates the standard file

descriptors, producing the “dup2, close, dup2, dup2” calls in Table 7.3. The second

close comes from a call to closelog() function, which closes the process’s connection

to syslog.

The second set of anomalies correspond to the chargen stream() function — a

function that is normally never invoked on lydia. Here, inetd sets the name of

the process after finding out the name of the socket’s peer (socketcall) and then

repeatedly writes a set of bytes to the socket (multiple write’s). When one of these

writes returns an error, the process terminates with an exit system call.

7.2.3 Unknown External Program

Because the inetd.conf file is often edited by hand, there is a significant risk that

a typographic error can invalidate part of the file. One error that can go unnoticed

is that of an incorrectly spelled filename. pH can detect such problems if they arise

from recent configuration changes and can help alert a system administrator as to

the problem.

For an example of this type of error, consider the following configuration line:

finger stream tcp nowait nobody /usr/sbin/tcpd /usr/sbin/in.fingerd

This line is an entry in /etc/inetd.conf for finger [122], a service that allows one

to find out who is logged in to a given machine. Because the Internet is a much

135

Chapter 7. Anomalous Behavior

Count LFC Delay (s) Call # Call Name
1074 1 0.02 45 brk
1075 2 0.04 13 time
1076 3 0.08 5 open
1077 4 0.16 108 fstat
1078 5 0.32 90 mmap
1079 6 0.64 3 read
1080 7 1.28 6 close
1081 8 2.56 91 munmap
1089 9 5.12 1 exit

Table 7.4: System call anomalies for inetd with a configuration entry for a non-
existent executable. Note that these delays are for the spawned child process and
not for the parent server process.

less trusting place now than it used to be, it is common for finger to be disabled

or restricted to certain hosts. The /usr/sbin/tcpd file is part of the TCP Wrappers

package [113], which is used to restrict access on the basis of DNS names or IP

addresses. So, when inetd receives a finger request, it spawns a process which then

runs tcpd. This program tests to see if the access should be allowed, and if so it

invokes in.fingerd. Consider what would happen if we were to replace /usr/sbin/tcpd

with /usr/sbin/tcp. The two filenames look very similar, but the latter doesn’t exist.

It turns out that pH detects no anomalies when inetd starts with this configuration

error; however, once a finger request is received, pH detects 9 anomalies and delays

the spawned child process for approximately 10 seconds before it exits. The behavior

of the child process is detailed in Table 7.4. Note that the main server inetd process

is unaffected.

These anomalies come straight from this fragment of inetd’s main() function:

execv(sep->se_server, sep->se_argv);

if (sep->se_socktype != SOCK_STREAM)

136

Chapter 7. Anomalous Behavior

recv(0, buf, sizeof (buf), 0);

syslog(LOG_ERR, "execv %s: %m", sep->se_server);

_exit(1);

If the execv() call succeeds, the appropriate external program replaces inetd in the

spawned child process. In this case, however, the call fails because the specified file

does not exist. The anomalous system calls all come from the syslog() and exit()

calls. The syslog() function obtains some additional memory (brk), gets the time,

reads /etc/localtime to find out the current time zone (open through the munmap),

connects to the syslog socket (no anomalies), and then returns. The final anomaly

is the exit() call, which merely calls the exit system call to terminate the process.

With this sort of error, pH’s delay response does not make much of a difference.

The service is incorrectly specified, so there is no additional denial of service. The

main daemon is unaffected, therefore connections for other services continue to be

serviced. The anomalies and delays, however, do serve to alert an administrator that

there is a problem with inetd’s configuration.

7.2.4 Unknown Service

In the last section I examined how a typographic error in a filename could cause

anomalies. In this section, I examine a similar error: a misspelling of the service

name. At the beginning of each line is an ASCII string or a number representing the

port upon which inetd should listen for requests. If this service is a TCP or UDP

service, the ASCII name to number mapping is specified in the /etc/services file.

To test how pH would react to a service name not listed in /etc/services, the

letters of the finger service were transposed to “figner” and inetd was restarted. As

shown in Table 7.5, during inetd’s initialization pH detected 15 anomalies and delayed

137

Chapter 7. Anomalous Behavior

Count LFC Delay (s) Call # Call Name
120 1 0.02 3 read
121 2 0.04 6 close
122 3 0.08 91 munmap
134 4 0.16 3 read
135 5 0.32 6 close
136 6 0.64 91 munmap
137 7 1.28 45 brk
138 8 2.56 13 time
139 9 5.12 5 open
152 10 10.24 5 open
153 11 20.48 55 fcntl
155 12 40.96 108 fstat
156 13 81.92 90 mmap
157 14 163.84 3 read
158 15 327.68 3 read

Table 7.5: System call anomalies for inetd with a configuration entry for a non-
existent service.

it explicitly for almost 11 minutes. The next 113 system calls (which would be made

by subsequent requests) would each be delayed for over five minutes, meaning that

we wouldn’t expect normal responses times for at least 10 hours.

Unlike the three previous perturbations, these anomalies were generated by in-

etd’s configuration file parsing routine. In the config() routine, inetd reads through

each line of inetd.conf and sets up the ports and data structures needed for each

service. The fact that the “figner” service does not exist causes this function and

the routines it calls to behave differently than normal.

The anomalies in Table 7.5 split into three groups: by count, they are 120–122,

134–139, and 152–158. The middle group is the easiest to explain. It is generated

by the following bit of code in config():

u_short port = htons(getservbynum(sep->se_service));

138

Chapter 7. Anomalous Behavior

if (!port) {

struct servent *sp;

sp = getservbyname(sep->se_service,

sep->se_proto);

if (sp == 0) {

syslog(LOG_ERR,

"%s/%s: unknown service",

sep->se_service, sep->se_proto);

continue;

}

port = sp->s_port;

}

The “figner” service is not a number, so the (!port) branch is taken. The code then

calls getservbyname(), which consults /etc/services for the right port number.

Since there is no appropriate entry in this file, the (sp == 0) branch is taken, and

an error is logged. The loop then proceeds to check the next service entry.

System calls 137–139, the brk, time, open sequence, correspond to the call to sys-

log(). Calls 134–136, though, are generated by the getservbyname() routine. It turns

out that other invocations of this routine to look up existing services require at most

four reads. Because figner is not in /etc/services, getservbyname() has to read the

entire file, which requires five reads. This extra-long sequence of reads, along with

the fact that this routine mmap’s the file to speed access, together generate these

three anomalies. Similarly, 120–122 come from a previous invocation of getservby-

name() within the same loop iteration in a “silly” code fragment (according to the

source comments) which is designed to detect multiple entries of the same service

that use different aliases. The third set, 152–158, also corresponds to the “silly” code

139

Chapter 7. Anomalous Behavior

getservbyname(), but on the next loop iteration. The continue statement causes

it to be executed prematurely; normally a valid service would be initialized before

returning to the top of the loop.

From the above description, it is apparent that pH does detect novel code paths,

although sometimes its view of novelty doesn’t correspond to one’s intuitive under-

standing of the code. Because pH sees things at an extremely low level and observes

actual behavior, it often uncovers patterns not apparent at the source level. Also,

pH’s response to an unknown service potentially does result in a denial of service;

since this sort of anomaly would only arise after a change to inetd’s configuration file,

though, such a response is more likely to alert a system administrator to a potential

problem rather than actually cause a true loss of service.

7.2.5 Summary

These four examples show that pH can detect interesting errors in inetd’s configura-

tion by detecting novel code paths. In three of the four cases, pH’s delay response

merely serves as an alert to an administrator that things aren’t quite as they should

be; however, in the case of the chargen service, pH’s delays prevents a misconfigured

service from being used as a tool for distributed denial-of-service attacks.

Also, the regularities that pH uses to distinguish between normal and abnormal

behavior can be difficult to determine from the source of a program. Almost any

program (even in a low-level language like C) calls library functions, each of which

can make a significant number of system calls. As was shown in the last example,

detected anomalies may have their roots in changes in the behavior of these library

functions.

Although such low-level regularities (and irregularities) may make diagnosis dif-

ficult, they also serve as examples of the complexity and inefficiency of common pro-

140

Chapter 7. Anomalous Behavior

grams. For example, the getservbyname() function reads the entire contents of the

/etc/services file every time it is called. inetd calls getservbyname() twice for each

configured service; thus, if inetd has ten services configured, it will indirectly read

the /etc/services file twenty times. In contrast, if inetd read in /etc/services

manually and stored its contents in a hash table, it could have accessed the file

only once. Since getservbyname() is only called during inetd’s initialization, these

redundant (though individually efficient) file accesses do not impose a significant

performance penalty; nevertheless, such behaviors are a small example of how the

increasing modularity of current systems leads to numerous inefficiencies.

7.3 Intrusions

In the last part, pH was shown to be able to detect configuration errors and normally

unused services. In this section, I will address how pH is able to detect and respond

to security violations. Because most attacks involve normally unused code paths,

their dangerous behavior is detectable; further, a delay-oriented response can be

very effective in thwarting these attacks.

In our past work we showed that several different kinds of attacks can be detected

through system-call monitoring [43, 49]; what we haven’t addressed is why pH is able

to detect them. Therefore in this section I will focus on trying to understand what

sorts of behaviors pH is able to detect along with behaviors it will miss. By showing

how three attacks exploiting three distinct vulnerabilities can be both detected and

stopped, it should become apparent that pH can flexibly deal with a wide variety of

security violations.

141

Chapter 7. Anomalous Behavior

static int pop3_getsizes(int sock, int count, int *sizes)

/* capture the sizes of all messages */

{

int ok;

if ((ok = gen_transact(sock, "LIST")) != 0)

return(ok);

else

{

char buf [POPBUFSIZE+1];

while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)

{

int num, size;

if (DOTLINE(buf))

break;

else if (sscanf(buf, "%d %d", &num, &size) == 2)

sizes[num - 1] = size; /* OVERFLOW */

}

return(ok);

}

}

Figure 7.9: The function pop3 getsizes() from fetchmail 5.8.11. Note how the line
marked “OVERFLOW” assigns values to the sizes array without doing any bounds
checking.

142

Chapter 7. Anomalous Behavior

Program /usr/bin/fetchmail
Version fetchmail 5.8.11
Window Size 9
Total Calls 4461219 (4464889)
Lookahead Pairs 2597 (2683)
Novel Sequences 725 (767)

Table 7.6: Details of the fetchmail normal profile used for the buffer overflow experi-
ments. The values in parentheses refer to the augmented profile to which interactive
fetchmail behavior was added.

7.3.1 A Buffer Overflow

A surprisingly common type of vulnerability is the buffer overflow. Although in prac-

tice they can be both complex and subtle, buffer overflows are simple in concept.

They all involve a program using a fixed amount of storage to hold data that is

influenced by external input. If the program does not properly ensure that the data

fits within the allocated space, adjacent memory locations can be overwritten, poten-

tially causing foreign data and code to be inserted and even executed. Such overflows

may overwrite variables, pointers, or stack-resident function return addresses, and in

doing so they can influence program behavior in arbitrary ways, limited only by the

imagination and determination of the attacker.

Because buffer overflows are a well-known and widespread problem, numerous

solutions have been proposed (see Chapter 2). pH is also able to detect and stop

buffer overflow attacks; however, instead of detecting dangerous stack modifications

[32] or preventing stack-based code from being executable [37], pH detects buffer

overflows by recognizing the unusual, malicious code that is inserted into the victim

program. To see why pH is effective, consider the following attack against fetchmail.

fetchmail is a utility that allows one to retrieve email from a variety of remote

servers using POP3, IMAP, and other protocols. The retrieved email is delivered

143

Chapter 7. Anomalous Behavior

using the local mail transport program, making it appear to have been delivered

directly to the user’s workstation. Standard UNIX email clients can then access the

user’s email spool file normally without having to know how to access the remote

servers.

In August 2001, Sanfilippo [4] publicized a buffer overflow vulnerability in fetch-

mail versions prior to 5.8.17. The vulnerable code is in the pop3 getsizes() and

imap getsizes() functions of fetchmail. The dangerous code is extremely similar in

both functions, and so for this discussion I will focus on pop3 getsizes().

The error in this function comes from the following two lines (see Figure 7.9):

else if (sscanf(buf, "%d %d", &num, &size) == 2)

sizes[num - 1] = size; /* OVERFLOW */

These lines read message lengths from the POP3 server and place them in the sizes

array. The code is compact and elegant; unfortunately, it does no sanity checking

on the value of num. If the server is malicious and returns message indices which are

outside the range previously given, it can cause fetchmail to write 4-byte values to

arbitrary stack memory locations.

Sanfilippo’s advisory included a sample exploit script which behaves as a ma-

licious POP3 server and causes fetchmail to execute an ls of fetchmail’s working

directory. After adjusting a constant in the exploit’s code which specified the mem-

ory location of the sizes array, I was able to successfully exploit a fetchmail 5.8.11

executable2.

When the sample exploit was run while pH was monitoring with the profile in

2Although it is possible to create more robust buffer overflow exploits, most available
attack scripts are extremely brittle, and are specialized to the memory layout of specific
binaries. Thus, adjusting memory constants is a normal part of making buffer overflow
attacks work in practice.

144

Chapter 7. Anomalous Behavior

Table 7.6, pH detected 19 anomalies with a maximum LFC of 15. These anoma-

lies caused pH stop the attack by delaying fetchmail for several hours, even with

suspend execve set to 0. This result is not entirely fair, though, in that almost all

of these anomalies occur because the sample exploit requires fetchmail to be invoked

in interactive mode. My normal usage of fetchmail is in daemon mode in which it

periodically retrieves mail in the background. To make the test more challenging, I

then augmenting the normal profile with a few interactive invocations of fetchmail.

With this expanded normal profile, pH reported one anomalous system call, an ex-

ecve present in the injected code. Since this anomaly was an execve, pH was able to

stop the attack, but only with suspend execve set to 1.

Sometimes pH detects buffer overflows because the exploit’s memory corruption

causes unusual program behavior before the inserted code can take control. In situ-

ations such as this, though, the foreign code takes control before any unusual system

calls get made, and so pH must detect and respond to calls made by the inserted

code. As explained in the next section, it is at least sometimes possible for the for-

eign code to be modified to make system call sequences that look normal; current

attacks, though, take no such precautions.

7.3.2 Trojan Code

Most programs contain features that are normally unused. Many of these features

are safe; others, though, can have severe security consequences. Some of the most

dangerous “features” are provided by trojan code, or code designed to circumvent

existing security mechanisms. For example, it is common for intruders to install “root

kits” containing several compromised system binaries once they have gained access to

a system; once this has been completed, they effectively control that machine even if

an administrator removes the original vulnerability. [D: a few random cites?] On such

145

Chapter 7. Anomalous Behavior

Program /usr/su
Version Debian login 20000902-6.1
Window Size 9
Total Calls 18021
Lookahead Pairs 1377
Novel Sequences 318

Table 7.7: Details of the su normal profile used for the trojan back door and kernel
race experiments. Note that the number of novel sequences refers to the number of
sequences which contained new lookahead pairs.

a modified system, daemons such as ssh will have “back doors” which give a remote

user full system access through a password not contained in the system password

file. Even worse, monitoring programs such as ps and netstat often are replaced

with versions that hide the presence of the intruder by masking their processes and

network connections. Once a root kit has been installed, generally the only safe

course is to do a complete re-install.

Another form of trojan code that can be much more insidious is a back door that

is built-in to a program. Perhaps the most famous example of this problem was with

an early version of sendmail. The vulnerability was extremely simple: a remote user

could connect to the SMTP port and type “WIZ”. Instantly, that user was given

access to a root shell. While such a feature might be useful for debugging, it was

also a staggering security vulnerability.

By detecting the novel code paths produced by a trojan program, pH can detect

and interfere with the running of these programs. As an example, I added a simple

back door to the su program. The modification consisted of the following code

fragment which was inserted at the beginning of main():

if ((argc > 1) && (strcmp(argv[1], "--opensesame") == 0)) {

char *args[2];

146

Chapter 7. Anomalous Behavior

char *shell = "/bin/sh";

args[0] = shell;

args[1] = NULL;

execv(shell, args);

}

This code allows a user to type su --opensesame to gain instant access to a root

prompt, without requiring a password.

To see how well pH could detect this back door, it was tested against the normal

profile summarized in Table 7.7 (p. 146). This profile was originally generated during

the lydia 22-day test period but was later extended as false positives were seen. The

profile used for these experiments was used for a week without experiencing any

additional false positives.

When the trojan binary was used to run su - (the normal usage of su on lydia),

it generated no anomalies. When the back door was invoked, though, there was

one anomaly generated: an execve, which was the 68th system call made by the

process. With delay factor set to 1, pH delayed the execve and the first 127 system

calls of the spawned shell each for 0.02 seconds. This 2.56 second delay was barely

noticeable. With suspend execve set to 1, the process was delayed for two days

before the execve would complete, effectively preventing the backdoor from being

used.

7.3.3 A Kernel Vulnerability

One class of vulnerabilities that are particularly difficult to defend against are ker-

nel implementation errors. Since user-space programs depend upon the kernel for

security and integrity services such as memory protection, user-based access control,

147

Chapter 7. Anomalous Behavior

Count LFC Delay (s) Call # Call Name
5 1 0.02 23 setuid
6 2 0.04 46 setgid
7 3 0.08 11 execve

Table 7.8: System call anomalies for su produced when the kernel ptrace/execve
exploit was run. Note that the execve was suspended for two days after being delayed
for 0.08 seconds.

and file permissions, an error in the kernel can lead to a breach in security. Because

pH observes program behavior, though, it is capable of detecting and responding to

security-related kernel errors.

As an example, consider a subtle vulnerability [92] that affects Linux 2.2 ker-

nels prior to 2.2.19. The vulnerability is a race condition in the execve and ptrace

implementations that allows local root access to be obtained. More specifically, if

process A is ptrace-ing process B (e.g., A is a debugger, and B is being debugged),

and B does an execve of a setuid program, it is possible for process A to control B

after the execve. Then, through the ptrace mechanism, process A can make B run

arbitrary code. Since the setuid mechanism causes the exec’d program to run with

special privileges, process A’s modifications to process B would now also run with

those special privileges — ones which A did not have previously. In practice, this

vulnerability allows a local user to obtain a root shell using almost any setuid-root

binary on the system.

To see if pH could detect the exploitation of this hole, I ran Purczynski’s sample

exploit [92]. The targeted setuid root program I used was su, and I used the profile

summarized in Table 7.7. Because 2.2.19 is not vulnerable, I back-ported pH-0.18

to a 2.2.18 kernel patched with the 2.4 IDE code and reiserfs. This kernel was only

used to test this vulnerability.

148

Chapter 7. Anomalous Behavior

The anomalies produced by this exploit are listed in Table 7.8. There are just

three anomalies, and they directly correspond to the three system calls present in

the inserted code. The exponential delay causes a barely noticeable slowdown of a

tenth of a second with delay factor set to 1; the suspend execve mechanism, though,

detects the anomalous execve and suspends the process for two days, stopping the

attack.

7.4 Other Attacks

Having looked at a few attacks in detail, it is reasonable to ask whether these specific

results are typical. We have published several papers which report how several

attacks can be detected through the analysis of system calls [43, 49, 44, 116, 106].

The rest of this section reviews five past experiments that I performed and addresses

how pH performed or should have performed in these tests.

7.4.1 Earlier pH Experiments

In the original pH paper [106], we presented results on three security exploits: an

sshd (Secure Shell daemon) backdoor [110], an sshd buffer overflow [5], and a Linux

kernel capabilities flaw that could be exploited using a privileged program such as

sendmail [91]. This section summarizes these results and discusses how the current

version of pH would respond to the same vulnerabilities.

First, it should be noted that these experiments were performed with pH 0.1

instead of pH 0.18. One difference is that this version uses abort execve instead of

suspend execve; thus, instead of delaying anomalous execve requests, it causes them

to fail. Another difference is that in this older version, the locality frame is not

updated if a process’s profile is not normal, even though its system calls are delayed

149

Chapter 7. Anomalous Behavior

in proportion to its LFC. This difference can cause a newly loaded program to inherit

a perpetual delay — something that never happens with the current pH.

These experiments were also performed using different parameter settings: it

looked at length 6 sequences (instead of 9) and a delay factor of 4 (instead of 1).

The locality frame size (128) and tolerize limit (12), though, were the same. The

net result of these differences is that with the current code and parameter settings,

pH would detect more anomalies but would delay each of them for 1/4 of the time.

sshd backdoor

The sshd backdoor [110] is a source-code patch for the commercial Secure Shell

package (version 1.2.27) that adds a compiled-in password to sshd. Secure Shell

[97] is a service that allows users to remotely connect to a UNIX machine using

an encrypted communications channel. When a remote user connects but uses the

built-in password, sshd bypasses its normal authentication and logging routines and

instead immediately provides superuser access. This modified binary can be installed

on a previously compromised machine, providing the attacker with an easy means

for regaining access.

pH’s responses to this backdoor were tested relative to a synthetic normal profile

of the modified sshd daemon. In these tests, use of the backdoor generated 5 anoma-

lies: 2 (LFC 2) in the primary sshd process, and 3 (LFC 3) in the child process

spawned to service the attack connection. This number of anomalies was not suffi-

cient, in itself, to stop the use of the backdoor; with abort execve set to 1, though,

the child process was unable to perform an execve, preventing the remote user from

obtaining root access. pH 0.18 would react similarly to these attacks, except that it

would probably detect a few more anomalies because of the longer default lookahead

pair window size.

150

Chapter 7. Anomalous Behavior

Note that because the main server process experiences a maximum LFC of 2,

child processes created to service future connections will also have a maximum LFC

of 2. If suspend execve is set to 1, this will cause these post-attack connections to

be delayed for two days until sshd is either tolerized or restarted.

sshd buffer overflow

The sshd buffer overflow attack [5] exploits a buffer overflow in the RSAREF2 library

which optionally can be used by sshd. To test this attack, sshd version 1.2.27 was built

and linked to the RSAREF2 library, and a synthetic normal profile was generated

for this binary3. The attack program, a modified ssh client, caused the primary sshd

process to execute 4 anomalous system calls (LFC 4).

Simple delays were not sufficient to stop this attack; however, with pH 0.1, the

exec’d bash shell inherited an LFC of 4 that caused every bash system call to be

delayed for 0.64 seconds (with a delay factor of 4). Setting abort execve to 1,

though, caused the attack to fail.

With pH 0.18 and a delay factor of 1, pH would only delay the first 125 system

calls of the exec’d bash shell for 0.16 seconds; shortly after that, the shell’s system

calls would have no delay at all. With suspend execve set to 1, though, the current

pH version would stop the attack before the bash shell were run, and instead the

primary sshd daemon would be delayed for two days. To restore service, the sshd

daemon would have to be killed and restarted.

3This binary also incorporated the backdoor patch, and was used for the backdoor
experiment. The same synthetic normal profile was used for both experiments.

151

Chapter 7. Anomalous Behavior

7.4.2 Linux capability exploit

The Linux capability attack takes advantage of a coding error in the Linux kernel

2.2.14 and 2.2.15. Within the Linux kernel, the privileges of the superuser are subdi-

vided into specific classes of privileges known as capabilities which can be individually

kept or dropped. This mechanism allows a privileged program to give up the ability

to do certain actions while preserving the ability to do others. For example, a priv-

ileged program can choose to drop the capability that allows it to kill any process

while keeping the capability to bind to privileged TCP/IP ports. In vulnerable ver-

sions of the Linux kernel, this capabilities code has a mistake that causes a process

to retain capabilities that it had attempted to drop, even when the drop capability

request returns with no errors.

A script published on BUGTRAQ [91] exploits this flaw by using sendmail [27],

a standard program for transporting Internet email. It tells sendmail (version 8.9.3)

to run a custom sendmail.cf configuration file that causes it to create a setuid-root

shell binary in /tmp4. Normally, sendmail would drop its privileges before creating

this file; with this kernel flaw, though, the drop privileges command malfunctions,

allowing the shell binary to be given full superuser privileges.

Profiles based on normal sendmail usage on my home computers, lydia and at-

ropos (my desktop and laptop, in June 2000), were used to test this exploit. The

exploit script caused sendmail to behave very unusually, producing multiple anoma-

lous processes, some with a LFC of 47 or more with responses disabled. This level of

anomalous behavior may seem remarkable, but it is understandable when we realize

that sendmail’s configuration language is very complex, and that the exploit uses

a very unusual custom configuration file. In effect, this custom configuration turns

sendmail into a file installation utility; thus, pH sees the reconfigured sendmail as a

4A setuid-root executable always runs as the superuser (root), no matter the privileges
of the exec-ing process.

152

Chapter 7. Anomalous Behavior

completely different program.

This behavior change causes pH to react vigorously. With delay factor set to 4,

the attack’s processes were delayed for hours (before being manually killed) and were

prevented from creating the setuid-root shell binary. Setting abort execve to 1 made

no difference, since the anomalously behaving sendmail processes did not make any

execve calls.

pH 0.18 would react almost identically to this exploit. Even with delay factor

set to 1, the sendmail processes would be delayed for days (or much, much longer)

before creating the setuid-root shell binary. Similarly, the suspend execve setting

would make no difference since this attack doesn’t cause sendmail to make an execve

call.

7.4.3 System-call Monitoring Experiments

Before pH, I tested the viability of system-call monitoring by monitoring system

calls online and analyzing them offline. To further validate the design of pH, I

revisited two past datasets to see how well pH would have performed under those

circumstances. Using the pH-tide offline system-call analysis program included in the

pH distribution, I analyzed the named [116] and lpr [49] datasets. It turns out that

pH could detect both attacks; the response story, though, is a bit more complicated.

named buffer overflow

The Berkeley Internet Name Daemon (BIND) [26] is the reference implementation of

the Domain Name Service (DNS), the standard Internet service that maps hostnames

to IP addresses. named is the program in the BIND package that actually services

DNS requests.

153

Chapter 7. Anomalous Behavior

Several security vulnerabilities have been found in named over the years. In May

1998, ROTShB distributed an exploit script [96] that creates a remotely accessible

superuser shell by overflowing a buffer in named’s inverse query routines. To test

this exploit, I recorded named’s normal behavior on a secondary domain name server

in the UNM Computer Science Department from June 14 through July 16, 1998

using a Linux kernel modified to log the system calls of specified binaries. During

this month named made approximately nine million system calls. After manually

annotating with parent/child fork information, re-analysis of this dataset using pH-

tide and a window length of 9 produces a lookahead pair profile with 2137 pairs.

The exploit script was run twice: one where the id command was run, and one

where the superuser shell was immediately exited. When these traces are compared

against the named normal profile, the first exploit run produced 7 anomalies (LFC

7), while the second produced 5 anomalies (LFC 5). Delays would not have been

sufficient to stop either attack; however, setting suspend execve to 1 would have

caused pH to delay the attacked named process for two days. Again, to regain

service, named would have to be restarted.

lpr temp file exploit

lpr is a standard BSD UNIX program that sends data to a local or remote printer. In

1991 [8lgm] reported that the lpr program on SunOS 4.1.1 and other UNIX systems

only used 1000 temporary filenames for pending jobs. By inserting symbolic links

into lpr’s queue directory, an attacker could use lpr to overwrite arbitrary local files.

The [8lgm] lprcp attack script takes advantage of two infrequently used command

line flags, -q and -s. The -q tells lpr to place the job in the queue instead of printing

it, and the -s flag instructs lpr to create a symbolic link to target instead of copying

it to the queue directory. The attack is very simple, and basically works as follows:

154

Chapter 7. Anomalous Behavior

• Create a symbolic link to the target file: lpr -q -s target

• Increment the temporary file counter: lpr /nofile 999 times

• Print the new contents of the file: lpr source

When the last lpr command copies the source file to its queue directory, it follows

the symbolic link in that directory to the desired target, overwriting it.

To see how well pH could distinguish this attack from normal lpr behavior, I

installed the lpr binary from SunOS 4.1.1 and installed on SunOS 4.1.4 hosts at the

MIT Artificial Intelligence Laboratory. I also installed a script which used strace to

record lpr’s system calls. Over the course of two weeks, Febuary 18 through March

4, 1997, lpr was run 2766 times on 77 different hosts [49]. Analysis of these traces

with pH-tide and a window size of 9 produced a lookahead pair profile with 2144

entries.

When compared with this normal profile by pH-tide, the anomalies of the 1001

attack lpr traces fall into three categories. The first trace (lpr -q -s) produces 4

anomalies (LFC 4), the middle 999 traces (lpr /nofile) each produce 2 anomalies

(LFC 2), and the last trace (the final copy) generates 7 anomalies (LFC 7). In total,

these traces produce 2009 anomalous system calls.

If pH were ported to SunOS 4.1.4, though, it would not have been able to stop

this attack — even with all of these anomalies. With delay factor set to 1, the first

several lpr requests would each be delayed for a few seconds; however, once pH had

recorded anomaly limit anomalies, it would automatically tolerize the lpr profile,

preventing pH from generating any further anomalies. Increasing anomaly limit

from 30 to 2500 would cause every job to be delayed; even this change, though, would

only cause pH to delay the attack script for less than an hour. Setting suspend execve

to 1 would not change this result because lpr does not make any execve system calls

155

Chapter 7. Anomalous Behavior

during this attack.

7.5 Intelligent Adversaries

The past sections have shown that pH can respond to many kinds of attacks. Each

of these attacks, though, were developed on systems that did not monitor system

call activity. Could attackers design their intrusion to evade detection by pH? To

examine this possibility, consider one of the most challenging attack scenarios: a

program containing trojan code. pH successfully stopped the su backdoor described

in Section 7.3.2; what would it take to hide it from pH?

The first thing the attacker would have to do is to obtain the correct version of su.

It turns out that many root kits contain utilities based on older versions or different

code bases than current distributions. For example, one rootkit I recently found had

programs such as login and netstat from 1994. Also, different distributions often use

their own versions of basic commands such as su and login. Even if the binaries come

from the same code base, they may be built with different options.

To see how this diversity could work to pH’s advantage, I tested Red Hat 7.1’s

version of su. This version functions correctly on Debian systems even though it is

based on a different (but related) code base. Running this su versus the normal profile

generated by Debian’s su listed in Table 7.7 produced a maximum LFC of 25 before

the password prompt was printed. Such a concentration of anomalies would cause

the program to be delayed for days even without the suspend execve mechanism.

If we assume that the attacker has modified the correct program version and

has tricked an administrator to install the modified binary on the target system (for

example, through a compromised security update), then we are left with the following

question: Could the attacker modify su in such a way that use of the backdoor was

156

Chapter 7. Anomalous Behavior

invisible to pH?

The su backdoor described in Section 7.3.2 only produced one anomalous se-

quence:

fstat, mmap, mprotect, mmap, mmap, close, munmap, getpid, execve

Except for the l = 4 lookahead pair of (close, *, *, execve), all of the lookahead pairs

encoded in this sequence are anomalous. To hide this sequence from pH, we have to

make the execve look normal, meaning that it must occur in a context where execve’s

normally happen. This context must be true for every system call in pH’s sequence

window.

To make things simple, let us assume that we only have a window size of 2, and

so we only have lookahead pairs for l = 2. Our anomaly, then, only consists of one

lookahead pair: (getpid, execve). We now need to form a chain of system calls that

can be inserted between getpid and execve which would mask our anomalous use of

execve. The simplest scenario would be if su’s normal profile contained the lookahead

pairs (getpid, x) and (x, execve). If this were the case, we could hide the backdoor’s

execve by preceding it with system call x.

Reality is not quite so simple. su has 111 l = 2 lookahead pairs in its normal

profile out of 1377 total lookahead pairs. Of these 111, execve is the current system

call in two of them: (chdir, execve) and (setuid, execve). Also, getpid is the position

1 system call in two other pairs: (getpid, rt sigaction) and (getpid, brk). There is

no overlap between these two sets, and so we must look for at least one other system

call to connect them.

The close system call can serve this role: su’s normal profile has both the looka-

head pairs (rt sigaction, close) and (close, setuid), giving us the chain of (getpid,

rt sigaction), (rt sigaction, close), (close, setuid), and (setuid, execve), or more sim-

157

Chapter 7. Anomalous Behavior

ply getpid, rt sigaction, close, setuid, execve. Thus, if the inserted backdoor first

executed a rt sigaction, close, and setuid system calls before making an execve, pH

would detect no anomalous l = 2 lookahead pairs. If the pH’s window size is 2, the

backdoor could now be used without any interference.

If pH uses a larger window size, though, the execve will still appear to be anoma-

lous. For example, the pair (getpid, *, *, *, execve) is not in su’s profile; instead, su

only has two l = 5 lookahead pairs with execve as the current system call: (socket-

call, *, *, *, execve) and (rt sigaction, *, *, *, execve). If pH used a window size of

5, these lookahead pairs would also have to be masked with additional system calls.

This example shows that although possible in principle, it can be difficult in

practice to create trojan code that is invisible to pH, even if we assume that the

attacker knows the correct program version and the precise contents of a program’s

normal profile.

7.6 Summary

Table 7.9 summarizes pH’s response to the security violations reported in this chap-

ter. pH was able to successfully detect all of these attacks, and it was able to stop all

except for the lpr temp file vulnerability. These results show that pH can successfully

defend a monitored program against many kinds of attacks by observing unusual pat-

terns in its behavior. pH detects this unusual behavior by observing novel system call

patterns produced by previously unexecuted code paths. Because such code paths

also correlate with other problems such as the misconfiguration of a network service,

pH can also detect administration issues before they become otherwise apparent.

pH’s responses can stop attacks that generate many anomalous system calls in

one process or that make anomalous execve calls; pH is less able to stop attacks

158

Chapter 7. Anomalous Behavior

Attack Normal Effective Response?
Attack Type Type Delay Suspend Both
inetd chargen denial of service real yes no yes
fetchmail buffer overflow real no yes yes
su back door trojan real no yes yes
Linux ptrace/execve kernel (race) real no yes yes
sshd overflow [106] buffer overflow synthetic no yes yes
sshd back door [106] trojan synthetic no yes yes
Linux capability [106] kernel (error) real yes no yes
named (BIND) [117] buffer overflow real no yes yes
lpr lprcp [49] temp file real no no no

(SunOS 4)

Table 7.9: A comparison of attack responses. The first five are discussed earlier in
this chapter; the other five attacks were first presented in the cited papers. The
first three of these attacks were tested with an earlier version of pH, while responses
to the last two attacks were inferred based on offline data. Note that of these ten
attacks, only two could not be stopped by pH’s responses: the inetd failed fork and
the lpr temp file attacks.

that only produce a few clustered anomalies per process. Most attacks that can

be exploited remotely (such as the sshd and fetchmail attacks) fall into the former

category; thus, pH is well-equipped to defend a host against attacks made by outside,

unauthorized users.

159

Chapter 8

Discussion

The past several chapters documented the creation and testing of pH. This chapter

reviews these results and places them in perspective. The first part describes the

concrete contributions of the research and explains why these advances are important.

Section 8.2 explains the limitations of the current pH prototype and suggests several

ways in which it could enhanced. The last section places pH in the context of a

full homeostatic operating system and describes my view of how pH-like mechanisms

could make our computers more stable, secure, and autonomous.

8.1 Contributions

This work makes several contributions to the literature of computer security and

operating systems. It has shown that system-call monitoring and response can be

performed efficiently in real-time, can detect problems such as configuration errors,

and can stop a variety of security violations. The rest of this section discusses past

chapters and explains these contributions in more detail.

Before any new operating system mechanism can be widely deployed, it must be

160

Chapter 8. Discussion

shown to have minimal performance impact. The results in Section 5.10 show that

lookahead-pair system call monitoring can be performed in real-time with little over-

head: most system calls are slowed down by less than 2 µs, an X server experiences

a 0.81% slowdown, and Linux kernel builds incur less than a 5% performance hit.

pH’s performance is competitive with other kernel security extensions such as Ko et

al.’s security wrappers [60]. Most importantly, pH’s overhead is small enough that

normal users do not notice any difference in system performance.

Chapter 6 shows that the performance of both the sequence and lookahead pair

methods are not especially sensitive to the choice of window size. Larger window

sizes require more storage space, with the requirements growing linearly for lookahead

pair method and exponentially for the full sequence method; the data requirements

for convergence, however, grow sub-linearly with window size. The lookahead pair

method is also shown to converge more quickly on normal program behavior than

the sequences method. The modest storage requirements, extremely fast implemen-

tation, and the faster convergence properties of the lookahead pair method made it

the natural choice for pH.

Chapter 6 then presents one of the principal contributions of this dissertation,

showing that this monitoring can be combined with a few simple training heuristics

and delay responses to form a system that can run on production systems with a

relatively low rate of false positives. pH automatically obtains normal profiles for

dozens of programs on a typical system. Most such profiles are of small utilities

and scripts; given sufficient time and usage, however, pH also captures the normal

behavior of large, complex programs like VMWare and the XFree86 X-Server. With

aggressive parameter settings, pH requires user intervention once or twice a day;

more conservative settings, however, require as few as one intervention every five

days. Chapter 6 also showed that pH’s profiles vary between programs and hosts.

This diversity allows pH to provide customized protection for individual machines

161

Chapter 8. Discussion

and programs based on their usage patterns.

Chapter 7 shows that these normal profiles capture the normal code paths used

by the monitored programs. Novel code paths are shown to correspond to interest-

ing situations such as configuration errors, the use of (potentially dangerous) new

program functionality, and the execution of foreign code. Although pH’s detection

of these phenomena is imperfect and could be subverted under certain conditions, in

practice it is remarkably effective.

Chapter 7 also shows that execution delays are a safe, generic, and often effective

response to anomalies. If there are only a few anomalies, and they are not execve

calls, the delays are barely noticeable and at most contribute to the feeling that per-

haps things aren’t working quite right. In situations such as the use of the dangerous

chargen service or the running of trojan code, delay can be sufficient to interrupt an

attack before damage occurs. In addition, if a significant delay is imposed inappro-

priately, pH can be instructed to allow (tolerize) the suspect behavior. The program

then continues to execute normally, and unless a timeout has been triggered, the

program won’t detect that anything has gone wrong.

Altogether, these results illustrate the viability of system-call monitoring and

system-call delay response as a mechanism for improving system stability and secu-

rity.

8.2 Limitations

Although pH is both remarkably efficient and effective, it is not perfect. It some-

times has difficulty capturing normal program behavior, it sometimes causes denials

of service, and its current implementation is not easily portable from Linux. The

following sections discuss these limitations and how they could be overcome.

162

Chapter 8. Discussion

8.2.1 Capturing Normal Behavior

Before an anomaly detection system can be effective it must have a model of normal

behavior. pH requires that a profile be quiescent for a week before it is classified as

normal. This constraint is rather stringent, and as a result, complicated programs

are rarely monitored, and 70% or more of all executed programs are never monitored

for anomalies.

One way to protect more programs would be to allow pH to detect anomalies

while new pairs were still being added to a profile. For example, a per-profile anomaly

threshold could be tightened as a profile stabilized. If pH never saw a locality frame

count greater than 5 for a program for a week, it could then mount a response to

any LFC greater than 5. Another approach would be to begin responses almost

immediately upon observing program behavior. To keep the system running with

acceptable performance, the delay equation could start off as being very close to zero.

The equation could then be adjusted on a per-profile basis as each profile stabilizes.

A weakness of this strategy is that small changes in user behavior can result in

very different patterns of system calls. In general the rate of novel sequences goes

down; yet for all programs, there are discontinuities when usage patterns change. A

profile that has “almost settled down” is not “almost stable”; the appearance of even

a few novel sequences means that previously unseen code paths are being executed.

The next new code path may generate a dozen new sequences or none at all.

Perhaps the simplest way to ensure that pH has profiles of normal program behav-

ior would be for software developers to distribute default profiles of normal program

behavior. These synthetic normal profiles could be easily generated by running some

or all of a program’s regression test suite. If pH detects anomalous program be-

havior relative to such a profile when a program is being used properly, then the

program’s test suite is not comprehensive enough. Over time, pH will replace many

163

Chapter 8. Discussion

of these profiles with ones that are specialized to the usage patterns of a host. These

profiles would generally be smaller than the default synthetic normal profiles and

would restrict program behavior to those code paths that are actually used on a

given machine.

pH could also be improved through the addition of a userspace daemon to manage

pH’s profiles and regulate pH’s responses. Such a daemon could note when new pro-

grams are run and use site-specific policies to determine whether it should be allowed

or not. It could periodically scan the profiles directory for normal or almost-normal

profiles that are likely to generate false positives. Except for the tolerize limit mech-

anism, pH never forgets program behavior even if a given behavior was encountered

only once. To mitigate this limitation, the daemon could prune profiles to remove

entries that hadn’t been recently used.

By correlating anomalies with network connections or log entries, a monitoring

daemon could also decide whether a few scattered anomalies indicates that the system

is under attack. It could then use this information to amplify pH’s delay responses,

or it could trigger a customized response. To prevent such a daemon from becoming

a single source of failure, kernel-based mechanisms should continue to work on their

own even in the absence of userspace analysis.

8.2.2 Denial of Service

By slowing down anomalously behaving programs, pH can prevent attackers from

gaining unauthorized access; in the process, however, pH can also prevent legitimate

access. The low false-positive rates reported in Chapter 6 show that pH rarely causes

problems on normally behaving systems. What if an attacker deliberately attempts

to provoke pH?

For example, it is possible for an attacker to cause a web server to behave un-

164

Chapter 8. Discussion

usually merely by sending it packets of random data. If pH had a normal profile for

this server, this random data could cause pH to delay one or more of the server’s

processes. Further, if these anomalies were in the server’s master process, pH could

prevent other legitimate users from accessing web content.

This problem can be mitigated through a technique borrowed from the soft-

ware rejuvenation field [20, 111]: a “watchdog” daemon could automatically kill and

restart the web server whenever pH attempted to delay it. Such a daemon would

only be a partial solution, because some connections could be refused while the server

was restarting.

If a system is under vigorous attack (or is merely experiencing an unusually high

load), it is possible for pH’s responses to make a bad situation worse. To restore

service, an administrator might have to tolerize the affected programs or disable

pH’s responses. Such actions would then leave the system open to attack.

One particularly effective attack would be for an attacker to use random but

benign messages to trigger numerous false alarms. An administrator might then

decide to turn off pH; once it was out of the way, the attacker could then exploit a

real vulnerability and gain access without interference.

One of the strengths of pH, however, is its ability to adapt to new circumstances.

Thus, if the administrator manually incorporated the benign behaviors into the at-

tacked service’s normal profile by tolerizing and normalizing it, pH could still defend

the system against the real attack.

To summarize, pH’s responses can cause denials of services that could be exploited

by an attacker. A vigilant administrator, however, can use pH’s adaptability to

minimize these disruptions in service and still prevent surreptitious penetrations.

165

Chapter 8. Discussion

8.2.3 Portability

pH is implemented as an extension to the Linux 2.2 kernel running on x86-compatible

processors. With a few changes, pH should also be able to run on other processors

supported by the Linux kernel. Because most UNIX variants use monolithic kernels

and support similar system call interfaces, it should be straightforward to port pH’s

core analysis routines to such systems. Because the data structures and functions

that pH modifies differ significantly between Linux and other UNIX kernels, the

interface portions of pH would be a bit more difficult; however, given source code

access, it would be straightforward to port pH to FreeBSD, Solaris, HP-UX, or other

UNIX systems.

pH captures the essence of a program’s interactions with the outside world by

observing its system calls. On systems that do not support a traditional system-

call interface, pH would have to use other techniques to observe program behavior.

Systems such as Exokernel [57] and L4 [66] have very small kernel interfaces and

instead use inter-process communication to implement I/O operations such as file and

network access, while systems like SPIN [11, 10] allow the creation of application-

specific system calls. In both of these situations, multiple specialized interfaces

replace UNIX system calls. To monitor similar kinds of program behavior, then, pH

would have to monitor each of these interfaces. Because of the extreme performance

constraints of the kernels in these systems, and because much of a UNIX kernel’s

functionality is often implemented in userspace processes, pH’s behavior monitoring

might appropriately be done in the userspace processes themselves. Thus, where on

a UNIX system there is one component — the kernel — that must be modified to

implement pH, these systems may require the modification of several components.

Most of the time, the modularity of these operating systems is thought to make it

easier to implement novel operating system mechanisms; this modularity, however,

makes pH’s type of global monitoring more difficult to implement.

166

Chapter 8. Discussion

Microsoft Windows 2000 and Windows XP [28] support kernel interfaces that are

similar to UNIX system calls in size and functionality. It would be possible to port

pH to Windows by having it monitor this interface; this ported pH, though, may

not be as effective on Windows as it is on UNIX systems. Applications on UNIX

are typically composed of multiple processes each running different executables; in

contrast, Windows applications are usually composed of a single multi-threaded pro-

cess running a large executable linked against many dynamic libraries. Because they

have many normally used code paths, it is often difficult for pH to build a complete

normal profile of large programs.

Instead of capturing the behavior of entire applications, a better approach may

be to monitor the execution of application components. Stillerman et al. [107] have

shown that sequences of CORBA method invocations can be used to detect security

violations; in a similar manner, it should be possible to use DCOM method invoca-

tions to detect security violations in Windows applications. Because both DCOM and

CORBA offer interposition mechanisms, a pH-like system for these object systems

need not modify each component, although such modifications might be necessary

for performance reasons.

For portability and security reasons, many newer applications target virtual ma-

chine environments such as the Java Virtual Machine [67] and Microsoft’s .NET

runtime environment. Inoue [51] has shown that method invocations can be effi-

ciently monitored within a Java virtual machine environment; similar techniques

should also be applicable to .NET. The increasing deployment of these technologies

offers an opportunity to efficiently implement pH-like monitoring and response for

large, distributed component-based applications.

pH can be most easily ported to systems that are similar to Linux. The more

different the OS and application architectures are from UNIX processes, the more

likely that an effective port will have to monitor and respond to program behavior in

167

Chapter 8. Discussion

different ways. As long as these ported systems follow the basic homeostatic pattern

outlined in Chapter 3, however, they will be closely related to pH.

8.3 Computer Homeostasis

Although there are many ways pH could be extended and enhanced, it is important

to understand that pH is perhaps best viewed as a low-level reflex mechanism, rather

than as a full-fledged intrusion detection and response system. Just as our brain is

not consulted when a hand gets too close to a hot stove, pH automatically acts to

try and prevent damage to a system. Sometimes we may need to hold on to a hot

handle to avoid dropping dinner on the floor; similarly, there are occasions when

programs should behave unusually, such as when upgrading software or adding new

peripherals. To complete the vision of pH, we need more connections between it and

other parts of the system so that pH’s responses may be better regulated.

As described in Chapter 3, living systems contain numerous, interconnected feed-

back loops that help maintain a stable internal state. These homeostatic mechanisms

do not operate in isolation to fix problems; each does its part, but at the same time

is regulated by other sensors and effectors. For example, humans shiver when it is

cold and they have insufficient insulation. Humans also shiver when the immune

system detects an infection and decides that a fever will help it defend the body.

In a similar fashion, a truly homeostatic operating system would integrate sig-

nals from log analyzers, network monitors, usage statistics, system call monitors, and

other sources to detect and respond to unusual changes in system behavior. Further,

the homeostatic organization described in Chapter 3 could be used to design novel

mechanisms that would maintain other system properties such as system responsive-

ness and data integrity. To maintain those properties, it might make sense to look

at other data streams such as keyboard events, window movements, or filesystem

168

Chapter 8. Discussion

operations. A sliding window approach can be used for internal interfaces such as

library APIs or object methods; other data streams, though, may need other types

of detectors.

The analysis of such mechanisms would preferably be distributed and loosely

coupled, much as is done in the human immune system and in robotic subsumption

architecture. For example, when a log analyzer detects unusual activity, it might

start normal monitoring on certain programs and increase pH’s delay factor. A

monitoring daemon, then, might note that the log analyzer’s anomalies are actually

normal at this time of the month, and so would reduce delay factor.

This type of interplay between positive and negative reinforcement allows the

immune system to make subtle decisions without depending on a vulnerable central

controller. By carefully connecting systems that are individually robust and at least

sometimes useful, it should be possible to create an artificial system that is globally

robust, accurate, redundant, and hard to subvert. Such a system may be developed

incrementally, by demonstrating the utility of each component independently, and

then testing the integrated system under realistic conditions. The resulting system

may not be easy to understand and may sometimes have unexpected, and even patho-

logical behavior; the reward for this effort will be systems that degrade gracefully in

response to error and attack and that are capable of responding to situations beyond

the scope of their original design.

The true purpose and result of this work, then, has been to show that reflex-like

behavior-based mechanisms can improve the stability and security of a conventional

operating system. The promise of a complete homeostatic operating system, though,

requires that pH be integrated with other behavior-based and knowledge-based mon-

itoring and responses systems. Building this larger system will be challenging and

will take many years. I believe the rewards will be worth the effort.

169

References

[1] David H. Ackley. ccr: A network of worlds for research. In C.G. Langton and
K. Shimohara, editors, Artificial Life V, pages 116–123. MIT Press, 1997.

[2] Thayne Allen. LIDS — deploying enhanced kernel security in linux.
http://rr.sans.org/linux/lids.php, February 12, 2001.

[3] James P. Anderson. Computer security threat monitoring and surveillance.
Technical report, James P. Anderson Co., Fort Washington, PA, 1980.

[4] antirez. Fetchmail security advisory. BUGTRAQ Mailing list (bug-
traq@securityfocus.com), August 10, 2001. Message-ID: <20010810000341.
C1176@blu>.

[5] Ivan Arce. SSH-1.2.27 & RSAREF2 exploit. BUGTRAQ Mail-
ing list (bugtraq@securityfocus.com), December 14, 1999. Message-ID:
<3856C3EF.230F0AE@core-sdi.com>.

[6] Trustix AS. Trustix secure linux. http://www.trustix.net, January 2002.

[7] Stefan Axelsson. Intrusion detection systems: A taxomomy and survey. Tech-
nical Report 99-15, Dept. of Computer Engineering, Chalmers University of
Technology, March 2000.

[8] Rebecca Gurley Bace. Intrusion Detection. Macmillan Technical Publishing,
1999.

[9] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a trans-
parent dynamic optimization system. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 1–12, 2000.

170

References

[10] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda D. McNamee, P. Pardyak,
S. Savage, and E.G. Sirer. Spin — an extensible microkernel for application-
specific operating system services. Operating Systems Review, 29(1):74–77,
January 1995.

[11] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, David
Becker, Marc Fiuczynski, Craig Chambers, and Susan Eggers. Extensibility,
safety and performance in the SPIN operating system. In Proceedings of the
15th ACM Symposium on Operating System Principles (SOSP-15), pages 267–
284, Copper Mountain, CO, 1995.

[12] T. Bowen, D. Chee, M. Segal, R. Sekar, T. Shanbhag, and P. Uppuluri. Building
survivable systems: An integrated approach based on intrusion detection and
damage containment. In Proceedings of the DARPA Information Survivability
Conference & Exposition (DISCEX 2000), volume 2, January 25–27, 2000.

[13] Rodney A. Brooks. A robust layered control system for a mobile robot. A.I.
Memo 864, Massachusetts Institute of Technology, September 1985.

[14] Rodney A. Brooks and Anita M. Flynn. Fast, cheap, and out of control:
a robot invasion of the solar system. Journal of The British Interplanetary
Society, 42:478–485, 1989.

[15] A. Brown and M. Seltzer. Operating system benchmarking in the wake of lm-
bench: A case study of the performance of netbsd on the intel x86 architecture.
In Proceedings of the 1997 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, Seattle, WA, June 1997.

[16] Mark Burgess. cfengine home page. http://www.cfengine.org.

[17] Mark Burgess. Automated system administration with feedback regulation.
Software — Practice and Experience, 28(14):1519–1530, December 1998.

[18] Mark Burgess. Computer immunology. In Proceedings of the 12th system
administration conference (LISA 1998), October 28, 1998.

[19] Michael G. Burke, Jong-Deok Choi, Stephen J. Fink, David Grove, Michael
Hind, Vivek Sarkar, Mauricio J. Serrano, Vugranam C. Sreedhar, Harini Srini-
vasan, and John Whaley. The jalapeño dynamic optimizing compiler for java.
In Java Grande, pages 129–141, 1999.

[20] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert. Proactive management of software aging.
IBM Journal of Research & Development, 45(2), March 2001.

171

References

[21] Jr. Charles A. Janeway and Paul Travers. Immunobiology: the Immune System
in Health and Disease. Garland Publishing Inc., New York, second edition
edition, 1996.

[22] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet Security.
Addison-Wesley Pub Co., 1994.

[23] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
An empirical study of operating systems errors. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP), 2001.

[24] Cisco Systems, Inc. Cisco secure intrusion detection system.
http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/, 2000.

[25] Fred Cohen. The deception toolkit. http://www.all.net/dtk/, January 2002.

[26] Internet Software Consortium. Berkeley internet name daemon.
http://www.isc.org, 2002.

[27] Sendmail Consortium. sendmail.org. http://www.sendmail.org/, 2000.

[28] Microsoft Corporation. Microsoft home page. http://www.microsoft.com.

[29] Microsoft Corporation. Repairing office installations. http://www.microsoft.
com/office/ork/xp/two/adma01.htm, April 4, 2001.

[30] Transmeta Corporation. Crusoe processor: Longrun technology.
http://www.transmeta.com /crusoe/lowpower/longrun.html, January 2000.

[31] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle,
and Virgil Gligor. SubDomain: Parsimonious server security. In 14th USENIX
Systems Administration Conference (LISA 2000), New Orleans, LA, December
2000.

[32] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In Proceedings of
the 7th USENIX Security Conference, January 1998.

[33] Helena Curtis and N. Sue Barnes. Biology. Worth Publishers, Inc., New York,
5th edition, 1989.

[34] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of
intrusion-detection systems. Computer Networks, 31(8):805–822, April 23,
1999.

172

References

[35] Dorothy E. Denning. An intrusion-detection model. IEEE Transactions on
Software Engineering, SE-13(2):222–232, February 1987.

[36] Renaud Deraison et al. The nessus project. http://www.nessus.org, March
2002.

[37] Solar Designer. Linux kernel patch from the openwall project.
http://www.openwall.com/linux/, 2001.

[38] Sebastian Elbaum and John C. Muson. Intrusion detection through dynamic
software measurement. In Proceedings of the 1st Workshop on Intrusion Detec-
tion and Network Monitoring, Santa Clara, CA, April 9–12, 1999. The USENIX
Association.

[39] D. Endler. Intrusion detection: Applying machine learning to solaris audit
data. In Proceedings of the 1998 Annual Computer Security Applications Con-
ference (ACSAC’98), pages 268–279, Scottsdale, AZ, December 1998. IEEE
Computer Society Press.

[40] Yasuhiro Endo, James Gwertzman, Margo Seltzer, Christopher Small, Keith A.
Smith, and Diane Tang. VINO: The 1994 fall harvest. Technical Report TR-
34-94, Harvard Computer Center for Research in Computing Technology, 1994.

[41] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. Bugs as deviant behavior: A general approach to inferring errors in sys-
tems code. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), 2001.

[42] Dan Farmer and Wietse Venema. Satan home page. http://www.fish.com/
satan/, 1995.

[43] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for Unix
processes. In Proceedings of the 1996 IEEE Symposium on Computer Security
and Privacy. IEEE Press, 1996.

[44] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. Computer immunol-
ogy. Communications of the ACM, 40(10):88–96, October 1997.

[45] Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning program
behavior profiles for intrusion detection. In Proceedings of the 1st Workshop
on Intrusion Detection and Network Monitoring, Santa Clara, CA, April 9–12,
1999. The USENIX Association.

173

References

[46] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure
environment for untrusted helper applications: Confining the wily hacker. In
Proceedings of the 1996 USENIX Security Symposium, 1996.

[47] L.T. Heberlein, G.V. Dias, K.N. Levitt, and B. Mukherjee. A network security
monitor. In Proceedings of the 1990 IEEE Symposium on Research in Security
and Privacy, pages 296–304, 1990.

[48] G.J. Henry. The fair share scheduler. Bell Systems Technical Journal,
63(8):1845–1857, October 1984.

[49] S. Hofmeyr, A. Somayaji, and S. Forrest. Intrusion detection using sequences
of system calls. Journal of Computer Security, 6:151–180, 1998.

[50] Steven A. Hofmeyr. An Immunological Model of Distributed Detection and
its Application to Computer Security. PhD thesis, University of New Mexico,
1999.

[51] Hajime Inoue and Stephanie Forrest. Generic application intrusion detection.
Technical Report TR-CS-2002-07, University of New Mexico, 2002.

[52] Internet Security Systems, Inc. RealSecure. http://www.iss.net/securing e-
business/security products/intrusion detection/index.php, 2001.

[53] Internet Security Systems, Inc. RealSecure OS Sensor. http://www.iss.net/
securing e-business/security products/intrusion detection/realsecure
ossensor/, 2001.

[54] M. Szychowiak J. Brzeziński. Self-stabilization in distributed systems — a
short survey. Foundations of Computing and Decision Sciences, 25(1), 2000.

[55] Anita Jones and Song Li. Temporal signatures for intrusion detection. In
Proceedings of the 17th Annual Computer Security Applications Conference,
New Orleans, Louisiana, December 10–14, 2001.

[56] Anita Jones and Yu Lin. Application intrusion detection using language li-
brary calls. In Proceedings of the 17th Annual Computer Security Applications
Conference, New Orleans, Louisiana, December 10–14, 2001.

[57] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceño,
Russell Hunt, David Mazières, Thomas Pinckney, Robert Grimm, John Jan-
notti, and Kenneth Mackenzie. Application performance and flexibility on
exokernel systems. In Proceedings of the 16th ACM Symposium on Operat-
ing Systems Principles (SOSP ’97), pages 52–65, Saint-Malô, France, October
1997.

174

References

[58] J. Kay and P. Lauder. A fair share scheduler. Communications of the ACM,
31(1):44–55, January 1988.

[59] Gene H. Kim and Eugene H. Spafford. Experiences with tripwire: Using in-
tegrity checkers for intrusion detection. Technical Report CSD-TR-94-012,
Department of Computer Sciences, Purdue University, February 21, 1994.

[60] C. Ko, T. Fraser, L. Badger, and D. Kilpatrick. Detecting and countering
system intrusions using software wrappers. In Proceedings of the 9th USENIX
Security Symposium, Denver, CO, August 14–17, 2000.

[61] Calvin Ko, George Fink, and Karl Levitt. Automated detection of vulner-
abilities in priviledged programs by execution monitoring. In Proceedings of
the 10th Annual Computer Security Applications Conference, pages 134–144,
December 5–9, 1994.

[62] David Kortenkamp, R. Peter Bonasso, and Robin Murphy, editors. Artifi-
cial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems.
AAAI Press/The MIT Press, 1998.

[63] Andrew P. Kosoresow and Steven A. Hofmeyr. Intrusion detection via system
call traces. IEEE Software, 14(5):35–42, September-October 1997.

[64] Benjamin A. Kuperman and Eugene Spafford. Generation of application level
audit data via library interposition. Technical Report CERIAS TR 99-11,
COAST Laboratory, Purdue University, West Lafayette, IN, October 1999.

[65] Wenke Lee, Salvatore Stolfo, and Patrick Chan. Learning patterns from unix
process execution traces for intrusion detection. In Proceedings of the AAAI97
workshop on AI methods in Fraud and risk management, 1997.

[66] Jochen Liedtke. Toward real microkernels. Communications of the ACM,
39(9):70–77, September 1996.

[67] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison Wesley Longman, Inc., 2nd edition, April 1999.

[68] Ulf Lindqvist and Phillip A. Porras. eXpert-BSM: A host-based intrusion
detection solution for Sun Solaris. In Proceedings of the 17th Annual Computer
Security Applications Conference, New Orleans, Louisiana, December 10–14,
2001.

[69] Tom Liston. Welcome to my tarpit: The tactical and strategic use of LaBrea.
http://www.hackbusters.net/LaBrea/LaBrea.txt, January 2002.

175

References

[70] Peng Liu. DAIS: A real-time data attack isolation system for commercial
database applications. In Proceedings of the 17th Annual Computer Security
Applications Conference, New Orleans, Louisiana, December 10–14, 2001.

[71] T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P.G. Neumann, H.S.
Javitz, A. Valdes, and T.D. Garvey. A real-time intrusion detection expert
system (IDES) — final technical report. Computer Science Laboratory, SRI
International, Menlo Park, California, February 1992.

[72] Michael R. Lyu, editor. Software Fault Tolerance, volume 3 of Trends in Soft-
ware. John Wiley & Sons, New York, 1995.

[73] Dahlia Malkhi and Michael K. Reiter. Secure and scalable replication in Pha-
lanx. In 17th IEEE Symposium on Reliable Distributed Systems, pages 51–58,
1998.

[74] Carla Marceau. Characterizing the behavior of a program using multiple-length
n-grams. In Proceedings of the New Security Paradigms Workshop 2000, Cork,
Ireland, Sept. 19–21, 2000. Association for Computing Machinery.

[75] Henry Massalin and Calton Pu. Fine-grain adaptive scheduling using feedback.
Computing Systems, 3(1):139–173, 1989. Revised March 1990.

[76] Roy A. Maxion and Kymie M. C. Tan. Benchmarking anomaly-based detection
systems. In International Conference on Dependable Systems and Networks,
pages 623–30, New York, NY, June 25–28, 2000. IEEE Computer Society Press.

[77] Roy A. Maxion and Kymie M. C. Tan. Anomaly detection in embedded sys-
tems. IEEE Transactions on Computers, 51(2):108–120, February 2002.

[78] C.C. Michael and Anup Ghosh. Two state-based approaches to program-based
anomaly detection. In Proceedings of the 16th Annual Computer Security Ap-
plications Conference (ACSAC’00), New Orleans, LA, December 11–15, 2000.

[79] Sun Microsystems. The java hotspottm virtual ma-
chine. http://java.sun.com/products/hotspot/docs/whitepaper/
Java HotSpot WP Final 4 30 01.html, 2001. White Paper.

[80] John C. Munson and Scott Wimer. Watcher: The missing piece of the security
puzzle. In Proceedings of the 17th Annual Computer Security Applications
Conference, New Orleans, Louisiana, December 10–14, 2001.

[81] National Computer Security Center. Trusted product evaluation pro-
gram (TPEP) evaluated products by rating. http://www.radium.ncsc.mil/
tpep/epl/epl-by-class.html, January 2001.

176

References

[82] National Security Agency. Security-enhanced linux. http://www.nsa.gov/
selinux/, January 2002.

[83] Ruth Nelson. Unhelpfulness as a security policy or it’s about time. In Pro-
ceedings of the 1995 New Security Paradigms Workshop, La Jolla, CA, August
22–25, 1995. IEEE Press.

[84] Department of Defense. Department of Defense Trusted Computer System
Evaluation Criteria, volume DOD 5200.28-STD (The Orange Book). Depart-
ment of Defense, 1985.

[85] Paolo Perego and Aldo Scaccabarozzi. AngeL — the power to protect.
http://www.sikurezza.org/angel/, January 2002.

[86] P. Porras and P. G. Neumann. EMERALD: Event monitoring enabling re-
sponses to anomalous live disturbances. In Proceedings of the National Infor-
mation Systems Security Conference, 1997.

[87] J. Postel. Request for comment (RFC) 864: Character generator protocol, May
1983.

[88] J. Postel. Request for comment (RFC) 867: Daytime protocol, May 1983.

[89] Psionic Software. Logcheck version 1.1.1. http://www.psionic.com/abacus/
logcheck, January 2001.

[90] Inc. Psionic Technologies. Psionic portsentry.
http://www.psionic.com/products/portsentry.html, March 2002.

[91] Wojciech Purczynski. Sendmail & procmail local root exploits on Linux kernel
up to 2.2.16pre5. BUGTRAQ Mailing list (bugtraq@securityfocus.com),
June 9, 2000. Message-ID: <Pine.LNX.4.21.0006090852340.3475-
300000@alfa.elzabsoft.pl>.

[92] Wojciech Purczynski. ptrace/execve race condition exploit (non
brute-force). BUGTRAQ Mailing list (bugtraq@securityfocus.com),
March 27, 2001. Message-ID: <Pine.LNX.4.30.0103271358190.31983-
200000@alfa.elzabsoft.pl>.

[93] D. J. Ragsdale, C. A. Carver, J. W. Humphries, and U. W. Pooch. Adaptation
techniques for intrusion detection and intrusion response systems. In Proceed-
ings of the IEEE International Conference on Systems, Man, and Cybernetics,
pages 2344–2349, Nashville, Tennessee, October 8–11, 2000.

177

References

[94] Dickon Reed, Ian Pratt, Paul Menage, Stephen Early, and Neil Stratford.
Xenoservers: Accounted execution of untrusted code. In IEEE Hot Topics
in Operating Systems (HotOS) VII, March 1999.

[95] Sean Rhea, Chris Wells, Patrick Eaton, Dennis Geels, Ben Zhao, Hakim Weath-
erspoon, and John Kubiatowicz. Maintenance-free global data storage. IEEE
Internet Computing, 5(5):40–49, September/October 2001.

[96] riders of the short bus (ROTShB). named warez. BUGTRAQ
Mailing list (bugtraq@securityfocus.com), May 31, 1998. Message-ID:
<199805310638.CAA18523@netspace.org>.

[97] SSH Communications Security. SSH secure shell.
http://www.ssh.com/products/ssh/, 2000.

[98] LEE A. SEGEL and IRUN R. COHEN, editors. Design Principles for the
Immune System and Other Distributed Autonomous Systems, chapter Intro-
duction to the Immune System, pages 3–28. Oxford University Press, 2001. by
Steven A. Hofmeyr.

[99] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast automaton-
based method for detecting anomalous program behaviors. In IEEE Symposium
on Security and Privacy, 2001.

[100] R. Sekar, T. Bowen, and M. Segal. On preventing intrusions by process be-
havior monitoring. In Proceedings of the Workshop on Intrusion Detection and
Network Monitoring. The USENIX Association, April 1999.

[101] R. Sekar, Y. Cai, and M. Segal. A specification-based approach for build-
ing survivable systems. In Proceedings of the National Information Systems
Security Conference, 1998.

[102] Margo Seltzer and Christopher Small. Self-monitoring and self-adapting sys-
tems. In Proceedings of the 1997 Workshop on Hot Topics on Operating Sys-
tems, Chatham, MA, May 1997.

[103] Michael D. Smith. Extending SUIF for machine-dependent optimizations. In
Proceedings of the First SUIF Compiler Workshop, pages 14–25, Stanford, CA,
January 1996.

[104] Michael D. Smith. Overcoming the challenges to feedback-directed optimiza-
tion. In Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adap-
tive Compilation and Optimization (Dynamo’00), Boston, MA, January 18,
2000. Invited Lecture.

178

References

[105] Software Systems International. Cylant division home page.
http://www.cylant.com, January 2001.

[106] Anil Somayaji and Stephanie Forrest. Automated response using system-call
delays. In Proceedings of the 9th USENIX Security Symposium, Denver, CO,
August 14–17, 2000.

[107] Matthew Stillerman, Carla Marceau, and Maureen Stillman. Intrusion detec-
tion for distributed applications. Communications of the ACM, 42(7):62–69,
July 1999.

[108] Symantec. Norton antivirus 2002. http://www.symantec.com/nav/nav 9xnt/,
2001.

[109] The Honeynet Project. The honeynet project home page. http://project.
honeynet.org/, January 2002.

[110] timecop. Root kit SSH 5.0. http://www.ne.jp /asahi/linux/timecop/, January
2000.

[111] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi. Analysis and
implementation of software rejuvenation in cluster systems. ACM SIGMET-
RICS Performance Evaluation Review, 29(1):62–71, June 2001.

[112] Arthur J. Vander, James H. Sherman, and Dorothy S. Luciano. Human Phys-
iology: the Mechanisms of Body Function. McGraw-Hill Publishing Co., New
York, 1990.

[113] Wietse Venema. TCP WRAPPER: network monitoring, access control, and
booby traps. In Proceedings of the 3rd UNIX Security Symposium, 1992.

[114] David Wagner and Drew Dean. Intrusion detection via static analysis. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy, 2001.

[115] X. Wang, D. Reeves, S.F. Wu, and J. Yuill. Sleepy watermark tracing: an
active network-based intrusion response framework. In Proceedings of the IFIP
Conference on Security, Paris, 2001.

[116] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using sys-
tem calls: Alternative data models. In Proceedings of the 1999 IEEE Sympo-
sium on Security and Privacy, pages 133–145, Los Alamitos, CA, 1999. IEEE
Computer Society.

179

References

[117] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In Proceedings of the
1999 IEEE Symposium on Security and Privacy, 1999.

[118] Stephen Young. Dr. Stephen Young’s home page. http://rheumb.bham.ac.uk/
youngsp.html, February 1995.

[119] Diego Zamboni. Using Internal Sensors for Computer Intrusion Detection.
PhD thesis, Purdue University, August 2001.

[120] Marek Zelem, Milan Pikula, and Martin Ockajak. Medusa DS9 security system.
http://medusa.fornax.sk, January 21, 2001.

[121] Xiaolan Zhang, Zheng Wang, Nicholas Gloy, J. Bradley Chen, and Michael D.
Smith. System support for automatic profiling and optimization. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles, pages 15–26,
October 1997.

[122] D. Zimmerman. Request for comment (RFC) 1288: The finger user information
protocol, December 1991.

180

