Instructor
John Oommen

Address
Herzberg 5372 (oommen@scs.carleton.ca; www.scs.carleton.ca/~oommen)

Phone
520-2600 (Ext. 4358)

Lecture Room
Tory 208

Teaching/Office Hours
Teaching: Tuesday/Thursday 14:35 to 15:55 Hours
Office: Monday/Wednesday 14:00 to 15:00 Hours

Teaching Assistants
1. TA1
 Office Hours: TBD

2. TA2
 Office Hours: TBD

3. TA3
 Office Hours: TBD

Marking Scheme:
1. There will be 3 assignments, equally weighted, and totaling 50% of the final credit.
2. Since the assignments are mostly programming assignments, the students will demo them on the due date on the lab machines in the TA lab or their own laptops. You may program the assignment in any language you like.
3. There will be 1 final project carrying 30% of the final credit.
 • After a few weeks, students are expected to propose or ask for a suitable project.
 • The project will be due during the second-half of the examination period.
 • At a later date, which will be announced, all students will hand in a brief 1-to-2 page description/proposal of their chosen project.
4. There will be a final in-class quiz worth 20% of the final credit.
Assignment Regulations:
1. No **LATE** assignments will be accepted. But I believe that I am very reasonable!
2. Retain all your assignments for a proof of your mark.
3. In case your mark is erroneously entered, we will discuss this on a case-by-case basis.

Text Book and Material

Text Book

Notes
The notes of the course will be posted *before* each lecture.

Details regarding the Course Contents

Goal
This course will introduce the students to the elementary concepts of Artificial Intelligence (AI).

Background:
The prerequisites of the course are as specified in the Calendar, or equivalent.

Material:
2. Different types of Agents
3. Graph search as used in AI
4. Heuristic graph search solutions for problem solving and games
5. Foundations of Classification Theory and Bayesian inference
6. Introduction to Decision Tree induction
7. Introduction to *Dependence* Tree models and Bayesian Networks
8. Introduction to Reinforcement Learning
9. Introduction to Neural Networks (NN): We will study at least three families of NNs

Since the area is so vast, this is a tentative list of topics that I will cover.