

COMP 4905 Honours Project Report

One-click Java debugging tool for Eclipse

 Author: Jiaqi Zhu (100653388)

 Supervisor: Dwight Deugo

School of Computer Science

Carleton University

2009.12.09

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 1

ABSTRACT

Testing plays a significant role in the life cycle of developing software products.

For Java developers, many debugging tools are available since open-source

software become quite common. Built upon the concept of plugin, Eclipse is

the powerful toolbox loads with testing tools. However, there lacks a manager

of the tools which could run all the tests on the software under development

and generates user-friendly test reports in one-click. To introduce such a tool,

we find a solution by using CruiseControl, an automatic integration tool, along

with Eclipse and three in-famous testing/debugging tools: JUnit, Findbugs and

PMD. In this project, an Eclipse plugin in created to act as an interface

between CruiseControl and user of Eclipse. User is able to use the one-click

testing functionality provided by CruiseControl and the debugging tools. This

project also provides easier configuration of CruiseControl.

This report will explain the design and implementation of this solution and

validate the improvement of efficiency when applying this solution to a

programmer’s work.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 2

ACKNOWLEGMENTS

I would like to express my deepest gratitude to all those who helped me during

the working of this honour’s project, especially to my supervisor Professor

Dwight Deugo who gave me considerable help by means of suggestion,

comments and criticism on the project and this writing report.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 3

TABLE OF CONTENTS

1. INTRODUCTION - 6 -

2. BACKGROUND -12-

3. APPROACH -20-

4. VALIDATION -31-

5. CONCLUSION -41-

REFERENCES -45-

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 4

LIST OF FIGURES

1: [2] Architecture of CruiseControl -13-

2: [7] Structure of a basic Ant Script -16-

3: Interface of the Eclipse plug-in running on Windows 7 -26-

4: Screen shot of the provided template -29-

5: Class diagram of the Eclipse plugin in this project -31-

6: Validation: CruiseControl Configuration, part 1 -34-

7: Validation: CruiseControl Configuration, part 2 -34-

8: Validation: Debugging software projects, part 1 -36-

9: Validation: Debugging software projects, part 2 -37-

10: Validation: Typical use of CruiseControl inside Eclipse -38-

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 5

LIST OF TABLES

1: Required information for drop-down list actions - 29 -

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 6

1. INTRODUCTION

1.1 OVERVIEW

Traditionally a software developer has to build his project manually for testing

purpose. The test results are usually outputted to several different places and

therefore they may not be well organized. It is sometimes not a big problem for

individual programmer when the total size of the projects he works on is

relatively small. However, when the projects are large-scaled and the amount

of projects being developed at the same time is great, running all tests

manually could be very time consuming. It is even more problematic if the test

plan for all projects is not well designed or the works are not organized. As a

solution, using project manager software, which also does automatic building

and testing for software projects as well as organizing the works, would have

saved software developers’ time.

CruiseControl is an automatic integration tool for Java developers as a project

manager. It controls how and when the projects should be built and tested. It

also provides support to several testing tools which could be used later, for

example, JUnit, Findbugs, and PMD. With the support of Http and RMI

technology the results could be merged and published to a web server from

where the programmers can see the results in an organized way.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 7

CruiseControl saves Java programmers' time. However, in order to take

advantages of CruiseControl, they must learn to use the software. Sometimes

they may find it difficult because configuring CruiseControl is not an easy task.

A developer has to have knowledge beyond Java in order to adopt the

software. For example, the main configuration file of Cruise is written in XML.

Thus who wants to edit the file has to know the XML language. The developer

also has to know how to use a batch builder, for example, Ant or Maven.

Moreover, in order to set up a web server which collects all the generated

reports, he has to know about how to write servlets and how to use testing

tools which he wishes to run on his projects. Last but not least, in order to

make everything works with each other, he also has to change several files

located in the local file system or on a remote machine.

It is expected that CruiseControl will improve the efficiency of developing

software projects. However, the programmers will hesitate if they have to learn

a lot about using the software before they can actually use it. Therefore, they

would hope that there exists a ready-out-of-box solution which has all the

functionalities and is easy to learn and use.

CruiseControl has the potential to be such an ideal tool as long as there is an

easier way to configure it before application. It will also be helpful if

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 8

CruiseControl’s functionality is integrated in a widely used software developing

environment therefore the works could be done in-place.

For many software developers, Eclipse is the software developing environment

for Java. To reduce the difficulty of configuring CruiseControl, we can provide a

plug-in with functionality to configure CruiseControl. The plug-in will be able to

provide great help to developers because all the works could be done in-place

thereafter.

1.2 GOALS

The goal of this project is to provide a one-click debugging tool for Java

developers who use Eclipse, in order to improve their work efficiency of

developing software projects. This debugging tool should make use of

CruiseControl’s power as a project manager and an automatic integration tool,

so that the tests could be done automatically while the programmers are

working on codes at the same time. The debugging toolbox will contain JUnit,

Findbugs, and PMD. The test results of running the tools should be available

immediately after each test and should be presented to the programmers in an

organized way, therefore they can fix the bugs quickly. A programmer should

be able to configure CruiseControl within Eclipse and it should be designed

easy enough for someone new to the software to start.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 9

1.3 OBJECTIVES

The best way to achieve the goals is to design an Eclipse plug-in that works as

a connection between a programmer and CruiseControl. The programmer is

able to use the functions provided by the interface to manage his projects

under CruiseControl in the following ways:

1. The plug-in should provide shortcuts to configuration files for

CruiseControl to build and test the project automatically.

2. The plug-in should provide shortcuts to a project’s build file for a

programmer to define the rules for testing and building the project, so

that the rules could be used by CruiseControl. Several testing tools

should be available to the programmer.

3. The plug-in should provide shortcuts to the build results and test results.

The results should be published to a web server and the programmers

should be able to analyze them.

4. The plug-in should provide shortcuts to run and shutdown CruiseControl

so the changes made to CruiseControl and projects could be applied.

5. The plug-in should provide shortcuts to the documentation of

CruiseControl.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 10

It is complicated to add new testing tools to CruiseControl for people who are

not familiar with the software. Therefore three popular testing/debugging tools

are selected and they should be pre-configured in CruiseControl. The tools are

JUnit, Findbugs and PMD. They should provide sufficient testing for most of

the projects.

For the similar reason, Jetty is chosen as the servlet container and should be

pre-configured with CruiseControl. The generated reports should be submitted

to a Jetty server and developers should be able to check these reports via

graphic interface provided by servlets.

For this project it is assumed that the Ant builder is used to build the software

projects because it is supported by Eclipse and used by many Java developers.

Therefore CruiseControl should be pre-configured to use Ant.

There will be three stages for developing this project:

1. Integration of the testing and the debugging tools with a binary

distribution of CruiseControl.

2. Development of the Eclipse plug-in as a front-end CruiseControl

configuration program.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 11

3. Deployment of Jetty with the functionality of handling reports generated

by JUnit, Findbugs and PMD.

It is expected that the when all the objectives are met, there will be an Eclipse

plug-in which provides a one-click debugging solution to the Java

programmers.

1.3 REPORT OUTLINE

The remainder of this report is organized as following: Section 2 is the

background knowledge of all the software used to complete this project. In

Section 3 there is an in-detail explanation of the design and the

implementation of this project along with a list of assumptions made. In section

4 there will explain how well this project meets the objectives as stated in

Section 1. There is also a comparison between this project and an existing

configuration tool. Section 5 will be the conclusion with a discussion on

possible future works for development of this project.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 12

2. BACKGROUND

Of the many software projects used to complete this project, the most

important three are CruiseControl, Eclipse, and Apache Ant, which constructed

the framework of this one-click debugging tool. There are several other

software and technologies used in completing this project, they will be

introduced briefly afterward.

CruiseControl

CruiseControl is both a continuous integration tool and a framework for making

a customized continuous build process. It is written in Java and is supported by

many builders such as Ant and Maven. [1]

There are three main components of CruiseControl:

The most important one is the build loop. It is configured in a XML file so all the

projects managed by the software can be built following a schedule. It has a

monitor for events so that the build process can be triggered upon certain

changes.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 13

The second part is the JSP reporting application. By using Http and RMI

technologies, reports generated by the build loop can be published to a server.

Users of CruiseControl can write servlet applications to handle the reports and

the artifacts of projects.

The last part is a graphic user interface that shows all projects’ status under

the build loop. [2]

The following is a diagram showing the architecture of CruiseControl. [2]

Figure 1: [2] Architecture of CruiseControl

A typical build cycle in CruiseControl consists of several parts: The software

first determines whether a build is necessary. If a build needs to be done for a

project, the project’s builder file will be acquired and built by CruiseControl.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 14

Log files will be generated with any custom information with respect to the

project and the status of the build process itself. These logs will be then

merged and reported using the JSP reporting tool. [3]

Eclipse

Eclipse is a software development environment comprising an IDE and a

plug-in system. It has a small run-time core and the functionally is provided by

the plug-ins. The plug-ins are portable and could be deployed as user’s

requirement to provide all kinds of different features such as supporting of

programming languages, graphic interfaces, debugging tool, etc. [4]

Built upon OSGi framework, Eclipse runtime (Equinox) could be extended

dynamically with bundles that are cohesive, self-contained units which

explicitly define its dependencies to other modules / services and explicitly

defines its external API. The bundles are .jar files with additional

meta-information which is used by OSGi runtime to load and to unload the

functions provided within the bundles dynamically. Eclipse extends the concept

of bundles with extension points. The architecture of a smallish core runtime

plus plugins which provide customized functions made Eclipse a powerful yet

flexible IDE [5]

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 15

Apache Ant

Ant is Java-based build tool which works similar to Make. The main concept

Ant is built on is for multi-platform. In order to achieve that, Ant is written in

Java and its scripts are written in XML. [Ant.Apache.org, 2009] Ant is even

more powerful with the extensibility. Developers can extend Ant by writing Java

classes and thus develop custom Ant Tasks. For example, to enable JUnit in

Ant one could define <junit> tag and use it in the content of an Ant script where

a JUnit test is required. [6]

Ant uses a XML file to store the build information of a software project. The

tags form a list of tasks to be done. A project’s build file always starts from a

<project> tag, usually followed by several <target> tags which defines a series

of tasks. An Ant script can also have several <property> tags which contain

name-value pairs that are accessible from the other tags. Custom ant tasks

are defined after <project> and before any <target>. Ant tasks are used in

contents between a fair of <target> </target> tags. [6]

Here is a diagram shows the structure of a basic Ant script:

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 16

Figure 2: [7] Structure of a basic Ant Script

Jetty

Jetty is an open source Java-based Http server and servlet container. It is

developed to focus on providing a simple, efficient web server and could be

embedded in Java programs to provide web services [8].

Unlike Tomcat which runs as a stand-alone application server, Jetty is

designed small and could be easily embedded into an application or a

framework to provide network functionality. [9]

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 17

JUnit

JUnit is an instance of xUnit architecture for unit testing framework. As the

name suggested, JUnit is for Java programming language and it is the

standard testing library for Java. The framework is simple and the tests written

in this framework is repeatable. It is important to test-driven software

development approach. [10]

The major improvement from JUnit 3 to JUnit 4 is the later version takes

advantage of Java 5’s annotation feature. The syntax become clearer and

using of the tool becomes much simpler. [11]

Findbugs

Findbugs is a software project for detecting bugs in Java code. It uses static

analysis to identify potential errors. It operates in Java byte code rather than

the source code. Findbugs is distributed as a stand-alone program and an

Eclipse plug-in. [12]

For this project the stand-alone distribution is used.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 18

PMD

PMD is a static code analyzer based on static rule set. It scans Java source

code to identify problems. Not only pinpoint actual errors in the code, it also

notices programmers for inefficient codes. It is a popular debugging tool and is

integrated in Eclipse and Ant. [12]

CVS

CVS is a version control system. Users of it can keep record of the library of

source files, documents and other files used in a software project. Therefore

several software developers could cooperate in same project. CVS uses a

server /client based architecture. The complete copy of a software project is

stored on a server. A programmer could retrieve the latest copy of the project

using a client application. Changes made on a local copy could be committed

to the server later. [13]

Servlets and JSP

Serlvets are server-side Java code written to dynamically generate contents or

to perform actions. All servlets implements the Servlet Interface which defines

a life cycle of the code. The servlets are used to provide web-based services.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 19

They run on a servlet container, for example Jetty. The servlets overrides the

service() method defined in the interface and the method is called to handle

client requests. [13]

A JSP is a Java server-side page that will dynamically generate contents in

response to client side requests. A JSP page consists of texts written in a

mark-up language, for example Html or XML, and scriptlet tags which make

use of the JSP API. The JSP page is later compiled to servlets and the client

requests are handled. [13]

XSLT

To generate an HTML file from XML, an XSLT style sheet file is created. An

XSLT style sheet contains the instructions for the transformation a programmer

wants to perform on an XML file. XSLT style sheets are built on templates

which specify what to look for in a XML source input and what to output to the

result file. The input files and output files could be written in any tree-based

markup language. Therefore the XSLT technology could also be applied to

convert a XML file to another XML file. [14]

All the software projects listed above are open source software. They are used

in this project. The software could be downloaded freely on internet from their

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 20

developers’ websites.

3. APPROACH

3.1 ASSUMPTIONS

Before starting work on the Eclipse plug-in project, several assumptions are

made. These assumptions are based on the objectives as claimed in the

introduction chapter and are solely for the purpose to assure users that the

plug-in will make it easy to use CruiseControl.

First, the plug-in is not responsible for setting up CVS server. It is assumed

that the CVS server is properly set up and managed. Since CruiseControl

implements functionality of a CVS client, it is not necessary for the plug-in to

provide functionality to configure, start, restart, and shutdown a CVS server.

Second, users of this project application are not encouraged to change

existing functionality of CruiseControl. A user may change the functionality if

he wishes to do so. However, this project is not designed for that purpose thus

no helps will be provided.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 21

Third, if a configuration file is to be edited by a users, the plug-in will not

provide checks for syntactic and semantic correctness, thus if there is an error

resulted by changing the files which would cause a failure of CruiseControl or

the other software, that error is not going to be caught before it occurs. It is

user’s responsibility to make sure the configuration files are correct.

Fourth, the Eclipse plug-in will not do any search for any of the configuration

files. User is required to provide correct information about the paths to the files.

Additionally, whenever user is prompt for a file, the default path is at the root of

the file system. It is obvious that user will find it easier if a file chooser is

opened on directory which contains the file rather than going from the root,

however sometimes the build files are kept in several locations. For this reason,

it is unnecessary to assume one of the files is going to be used and set it to be

default. It is also a potentially dangerous action to assume the location of a key

file because it may crash the software.

Fifth, since having multiple things which do the similar job is confusing,

shortcut to the Dashboard component is not provided. There will be only one

html based user interface provided to users. Users may use Dashboard from

the external if desired. However it will not be extended to support the new

debugging tools.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 22

Last but not the least, this project is developed for Windows platform (Vista

and later). Although it is more useful if it supports multi-platform, more works

have to be done and the final product will be significantly larger because

different software sets are included to support different platforms. At this

moment it is more important to find a solution to the problem than applying the

untested solution to multi-platform. Therefore it is a personal preference to

start developing this project with a platform that I am familiar with.

3.2 DESIGN OF THE PROJECT

The Eclipse plug-in of this project will keep records of all the file locations and

URLs to web based services in a XML based configuration file. A template is

provided to users in creation of such a file so the information is collected and

could be used later by the plug-in. The required information includes: where

CruiseControl is installed, what the address for the server that reports are sent

to is, the ports used, and where the project’s build file is located. When using

the software, the user activates a configuration and the information will be

used to create the shortcuts.

A programmer can create multiple files for the same project under

development for different setting of the software. To switch from one setting to

another the user is only required to activate a different file.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 23

To keep all the works inside Eclipse so that a user does not need to switch

between programs when developing a software project, Eclipse’s internal

editors and web browser are used. When a configuration file is to be edited, it

is opened in an Eclipse editor on the currently working bench. The same editor

is used if the target files are same. Eclipse’s internal web browser is used to

open URL’s to CruiseControl’s User interface and to issue commands to

shutdown or restart CruiseControl. (Requires knowledge about port number of

CruiseControl’s JMX console)

The following defines the typical using of this software and is considered in

designing this plugin project:

1. User activates a configuration file for the plug-in.

2. Run CruiseControl.

3. User can open CruiseControl’s user interface to see the previous build

reports or trigger a new build.

4. User edits the configuration files to change the build/test rules.

5. Restart CruiseControl to apply the changes.

6. Go to the UI and build the project and new reports are generated.

7. Keep developing or shutdown CruiseControl.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 24

To use this plug-in as a one-click debugging tool, a user defines the tests in a

project’s build file. After running CruiseControl, the software will test the project

under its management with pre-defined debugging tools automatically, and the

results will be reported to the server. To improve the coverage of finding bugs,

Findbugs and PMD supports are added to CruiseControl which already has

JUnit 4 in its library. Adding Findbugs and PMD to CruiseControl requires

knowledge beyond Eclipse, Ant and XML, making it a difficult work for people

who are new to CruiseControl. To avoid this situation, it is suggested to include

the debugging tools in the latest distribution of CruiseControl, pre-configure it

and create a ready-to-use toolbox. To include the tests in a project, a user

simply needs to use the pre-defined ant tasks and put the keywords in the

project’s build file.

3.3 DESIGN OF USER INTERFACE

To keep the Eclipse plug-in simple and easy to use, there will be no new view

and no new perspective added to Eclipse. Instead, it shows a drop-down list of

buttons when the user right-click on a Java project from Eclipse’s resource

view. In Eclipses there are two kinds of projects: Project and Java Project.

Since the Eclipse plug-in is designed to help Java developers. It will only show

the drop-down menu on Java projects.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 25

On the drop down list there are buttons that provide access to the configuration

files that are involved in adding, modifying, and removing a project under

CruiseControl’s management: CuriseControl’s config.xml file and the project’s

Ant build file. Upon selection, editors are opened for the file within Eclipse and

the user can freely make changes to the content.

Following on the list there are buttons to CruiseControl’s html-based interface.

The interface is a JSP running on the Jetty server. From the interface a user

may access the reports generated after each build and test of the projects

under CruiseControl’s management. A manual build can also be triggered by

clicking a button on that user interface.

Buttons for start/restart and shutdown CruiseControl are designed to apply

changes on the list. Restart and shutdown buttons make use of

CruiseControl’s JMX Console. When they are clicked, a command is issued to

the console to shutdown the system. The shutdown hook takes 1-3 seconds to

turn CruiseControl off completely. Therefore when a shutdown command is

sent, there will be a 3 seconds waiting before next operation. There could be

multiple instances of CruiseControl running on one system and the shutdown

hook will only work on an instance ran by the Eclipse plug-in. It is suggested

that users only use the provided buttons to start and stop CruiseControl, but

one can always turn the software off by closing the Command shell.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 26

Here is a screen shot of the Eclipse plug-in that shows the UI and

CruiseControl’s interface running in Eclipse’s built-in web browser:

Figure 3: Interface of the Eclipse plug-in running on Windows 7

A configuration file of the Eclipse plug-in must be activated before the user can

click on other items on the drop down menu. Otherwise error messages will

pop up. If there are errors in the configuration file, the user will be warned with

a “parsing error” message. If errors are discovered in the build file,

corresponding error messages will be shown on the command shell running

CruiseControl. The errors will also be outputted in build logs, which are

accessible through CruiseControl’s UI. The user interface will show status of

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 27

the builds in terms of success and failure.

3.4 IMPLEMENTATION

The CruiseControl configuration application in this project extends Eclipse’s

user interface by implementing Eclipse’s “UI plugin” interface. The drop-down

menu uses the popup menu extension of the IDE’s UI. This plugin is integrated

to Eclipse’s UI and it activated when user right-click on a Java project in the

resource explore view part. The activator class defines the life cycle of this

plugin and is used by Eclipse to run the code along with plugin.xml file which

defines extensions for this plugin.

Each button on the menu is linked to a popup menu action the

corresponding .java file where code for that action is programmed. Besides of

CreateConfig action, all other actions depends on the setPath(activate a config

file) action where user is prompted for a file contains all the information this

plugin needs to provide accesses to CruiseControl’s services and

configuration files. User must activate a configuration file for this plugin

before he can execute any other action. After the file is chosen, the path to this

file is stored in the Control class and an instance of XMLparser class is created

in order to parse the required information about CruiseControl contained in the

file. The data are then stored as name/value pairs in the XML Parser and could

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 28

be later used by the Control class.

When user clicks on a menu item, an action is triggered and it requires certain

information about CruiseControl. For example, “run CruiseControl” action

requires the port used by CruiseControl’s control panel service. The Control

object receives the request and gets the name/value pair contains required

piece of information and returns it to the action, and thus that action is

executed.

Executing CreateConfig action creates a configuration file of this plugin. A

template is provided to users in creation of such a file so the information is

collected and could be used later by the plug-in.

Here is a screen shot shows the template which will be provided to user:

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 29

Figure 4: Screen shot of the provided template

To explain the entries and their usages on the template, followed is a table

shows the actions and the information needed to execute the action:

Action Name

Required Information

(Name/Value as stored in XMLParser)

Name Value

Edit CruiseControl’s config.xml CCInstall

Path to the where

CruiseControl is installed

Edit the Project’s build.xml Project

Path to the build.xml file

of the project

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 30

Start/Restart CruiseControl

CCConsole

Port number of where the

JMX console is running

CCInstall

Path to the where

CruiseControl is installed

Stop CruiseControl CCConsole

Port number of where the

JMX console is running

Show CruiseControl’s UI /

Documentation

CCServer

URL to CruiseControl’s

server

CCPort

Port number used by the

UI service

Table 1: Required information for drop-down list actions

CreateConfig and EditConfig action does not require information in this

plugin’s configuration file. However EditConfig action will open an editor on the

file chosen by the setPath action.

Below is a class diagram shows the relationships among all the java classes of

this plugin focusing on the executing order of the actions. Please notice that all

classes in an Eclipse plugin depend on the activator class. This is not showed

on the diagram. To keep the diagram clear, relations between action classes

and Control are also not shown. Readers of this article please keep in mind

that except the CreateConfig and EditConfig action, all the other actions

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 31

require paring from a XML file therefore they are related to the Control object.

Figure 5: Class diagram of the Eclipse plugin in this project

Open CruiseControl’s UI action and show documentation actions are in fact

opening the links to the web services. If CruiseControl is not running they will

still open the links but the pages will not be found. Therefore they depend on

the RunCruiseControl action non-programmatically.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 32

3.5 INTEGRATION OF THE DEBUGGING TOOLS

The CruiseControl distribution used in this project (Version 2.8.2) includes

JUnit 4 library and PMD reports (PMD library is not included). It does not

include support for Findbugs and will not recognize Findbugs reports.

To provide complete support of the two debugging tools: FindBugs, and PMD,

their library files are extracted from the latest software distributions and are put

into the lib directory of CruiseControl. Users can include the tests in their

projects by defining and using the ant tasks.

Changes are made to CruiseControl’s reporting and the user interface JSP for

it to handle Findbugs reports. Similar to the way it handles JUnit 4 and PMD

reports, it uses XSLT technology to convert the XML reports generated by

Findbugs to Html-based report. The converted report is later merged into the

general report which is presented to users by CruiseControl’s JSP page.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 33

4. VALIDATION

4.1 IMPROVEMENTS

By using the Eclipse plug-in, the efficiency of developing Java software

projects are improved in following aspects:

Configuring CruiseControl is easier.

Instead of searching for configuration files in places on the file system each

time the user wishes to add, modify, or remove a project managed under

CruiseControl, the user now only needs to indicate paths to the files once and

the information is saved to files. A configuration file represents a setting of the

software. To apply a specific setting, the user now only needs to activate the

corresponding file.

Configuration is in-place within Eclipse

Now a programmer can configure CruiseControl within Eclipse. The

CruiseControl’s User interface is accessible from a drop down menu provided

by the Eclipse plug-in.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 34

Figure 6: Validation: CruiseControl Configuration, part 1

Figure 7: Validation: CruiseControl Configuration, part 2

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 35

As shown by above diagrams (Diagram 6&7), all works with respect to

configuring CruiseControl could be done in the Eclipse environment using the

buttons provided by this Eclipse plugin project.

The programmer is also able to start, restart, or shutdown CruiseControl within

Eclipse and take the advantages of CruiseControl, which could help

programmers in the following aspects:

Debugging software is more efficient

Traditionally the programmers have to manually run each test against a

software project under development. Now CruiseControl will automatically

build and test the project. Supporting CVS, CruiseControl will get the latest

version from the CVS server and run builds and tests on defined time interval.

The process does not require interactions between the software and a

programmer. Thus, the programmers can now work on their project while

CruiseControl does its works.

Programmers can also make several test plans, each in a different build file.

Different test plans could be run against the software under development for

different situations. Therefore testing is now more flexible.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 36

Build and test reports are more informative and more useful.

CruiseControl collects results of the builds and the tests. The results are then

be organized and published to the web server. These reports will provide

useful information to the programmers for them to fix software bugs more

quickly.

Figure 8: Validation: Debugging software projects, part 1

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 37

Figure 9: Validation: Debugging software projects, part 2

Diagrams above shows that user of this plugin could use it as a one-click

debugging tool which provides in-detail reports of testing the software projects.

Below is a diagram shows the Eclipse plugin project successfully implemented

functionality to fulfill the typical use of CruiseControl which is discussed in

section 3.2:

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 38

Figure 10: Validation: Typical use of CruiseControl inside Eclipse

The numbered buttons refer to the steps in the typical use. From the interface

user must load an existing configuration file of this plugin project (1). If that file

not exists, user can create such a file from the provided template (1a) and edit

the contents of it (1b). User may then run CruiseControl (2). After

CruiseControl is up and running, its UI could be opened (3). User could edit the

configuration file of CruiseControl and build file of the project managed by

CruiseControl anytime as long as locations to the files are provided correctly in

the activated configuration file of this plugin (4.1/4.2). The changes could be

applied then by restarting CruiseControl (5). User may want to rebuild the

project immediately to see the results after the modification, which is

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 39

accessible from CruiseControl’s UI (6). When the works are done user may

leave CruiseControl running or shutdown the software (7).

4.2 COMPARISON WITH CRUISECONTROL CONFIGURATION TOOL

CruiseControl Configuration Tool is a Java webstart application for making

management and configuration of CruiseControl easier and monitors software

project managed by CruiseControl. The author of this project is Allen Wick. [15]

Comparing to CC-Config, this Eclipse plug-in project for easy configuring

CruiseControl has several advantages:

First, it is an Eclipse plug-in. CC-Config is designed to be a stand-alone Java

swing program. For developers who use Eclipse and CruiseControl, it is better

to have the functionality of configuring CruiseControl in Eclipse. The Eclipse

plug-in is also more portable than a program requires installation.

Second, it is easier to use. The user interface of the Eclipse plug-in is straight

forward and does not require learning. A user could easily use it without

looking into any guidelines.

Third, it is more than a configuration tool. The Eclipse plug-in is a part of this

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 40

project, which includes a pre-configured bundle of CruiseControl with supports

of JUnit, FindBugs, and PMD as the debugging tools and the configuration

user interface in Eclipse. It is ready to be used and, again, does not require

extra learning.

On the other hand, CC-Config is a more powerful tool than this project. It

provides graphical based configuration with configuration help in place so that

someone who is not familiar with CruiseControl could use it. It also provides list

of projects under management of CruiseControl with a name filter for

searching names in a project. It enhances usability for CruiseControl users

(Most likely a software company) who have a lot of projects under

development. CC-Config is also a more general purpose tool than the Eclipse

plug-in because it is a stand-alone program and it supports multi-platforms.

It is hard to draw conclusion that which project is better than the other as

CC-Config is open-source and has been developed for a longer time and the

Eclipse plug-in project is only at version 1. However it is obviously a trend that

more and more tools are going to have their Eclipse plug-in version. From the

home webpage we can see that the developers of CC-Config have a long term

project for Eclipse plug-in. [16]

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 41

5. CONCLUSION

Not only for debugging the software but also for determining how well a

software product meets users’ requirement, testing is always a mandatory part

in development of software projects. The concept of automatic integration is

really helping programmers in terms of effectiveness of programming.

CruiseControl as an open source automatic integration software is a great aid

to Java programmers. Given that it is set up properly, CruiseControl will be a

powerful tool for testing software products and projects under development.

This Eclipse plug-in project is dedicated to provide a solution to Java

developers who use Eclipse and want to take advantage of CruiseControl.

Although it may be too early to conclude that such a solution is adequate, it

does provide utility which a programmer needs to use CruiseControl within

Eclipse. By using the functionality of the Eclipse plug-in, time spent on

miscellaneous works beside software development is saved, thus the

productivity of the programmers is improved. For example, before using the

plug-in there was a fair amount of repeated works in searching for specific

configuration files. A programmer must leave the Eclipse environment to

change the files and restart CruiseControl so that the changes could be

applied. Now for the same task a programmer can simply activate a

pre-configured file and all the files he wants to change are accessible in

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 42

Eclipse.

Programming this Eclipse plug-in project is a process of learning Eclipse and a

practice of developing Eclipse plug-ins. It is also a study of human interaction

with computer software in searching of the best way to improve work efficiency.

It is a scheme of choosing the right user interface, the functionality to

implement, and the way of a software product works so that users of the

software could benefit from the achievement without working through the rigid

process of learning. Within the time interval of developing this project and

without make this project to the public for feedbacks, it is hard to draw

conclusion that whether the scheme was well done. However, it is an

experience gain and is helpful for developing software in the future.

Many open source software products are used in completion of this project. In

development of this project they are studied and compared with many other

software programs. A lot of knowledge is leant for a better understanding the

world of open source software.

5.1 FUTURE WORK

The modified distribution of CruiseControl with the testing software is shipped

to the users as a ready-to-use one-click debugging tool. If there is a new

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 43

release of any of the three debugging tools, the user may want to upgrade the

existing ones in the bundle. It could be easy done by replacing the library files

in the lib directory and they should work without a problem. However if users

want to exploit the new features of later versions, they have to modify the

reporting part of CruiseControl. This conflicts with the concept of designing this

project because the work to put new features in the bundle is not easy for new

CruiseControl users. For the future, an installation tool could be invented to

take the parts needed out of the latest distributions of the software and the

tools and integrate them into one. If required, a website could be set up and

the bundle pre-built after each new version of CruiseControl could be

downloaded from the website.

This project works well enough as a one-click debugging tool. However it is a

weak tool for configuring CruiseControl. For version two of the software, one

could study CC-Config mentioned above and try to improve this plug-in project

with a fully functional graphic interface. It could provide sufficient help for a

user who has little knowledge of Ant and CruiseControl syntax to use

CruiseControl. It is also a great help if an editor for CruiseControl which

provides keywords highlighting function could be provided to user.

CruiseControl could be very useful for developers who develop and test

multiple software projects at the same time. Because this project is designed in

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 44

a way that each of the plug-in’s configuration file is associated with a project, it

does not allow user to run CruiseControl with more than one software project

together since originally the plug-in is meant to help individual programmers or

small team of programmers who are likely focusing on less than 3 projects at

the same time. However to make it a better tool, the Eclipse plug-in project

should allow adding multiple projects to CruiseControl.

It would be ideal if user is able to add a new debugging tool to CruiseControl

as well as changing the reporting JSP for it to recognize and report the results

of running the new tool for the future version.

The sole purpose of developing this Eclipse plug-in project is to help Java

programmers and to improve their work efficiency. Developer of the future

version of this project should see reviews of using this plug-in by the

programmers and improve the usability of this software using the feedbacks.

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 45

REFERENCES

[1] CruiseControl.net, “CruiseControl Home”, CruiseControl Home,

http://cruisecontrol.sourceforge.net/index.html, Retrieved 16 Nov. 2009.

[2] CruiseControl.net, “Overview”, CruiseControl Home,

http://cruisecontrol.sourceforge.net/overview.html, Retrieved 16 Nov. 2009.

[3] CruiseControl.net, “The CruiseControl Build Loop”, CruiseControl Home,

http://cruisecontrol.sourceforge.net/main/index.html, Retrieved 16 Nov. 2009.

[4] Eclipse.org, “The Official Eclipse FAQs”, Eclipse Wiki,

http://wiki.eclipse.org/The_Official_Eclipse_FAQs#Java_Development_in_Ecli

pse , Retrieved 17 Nov.2009.

[5] Vogel. L, “OSGi with Eclipse Equinox - Tutorial”, Vogella.de,

http://www.vogella.de/articles/OSGi/article.html”, Published 24 Nov, 2009.

Retrieved 26 Nov, 2009

[6] Ant.Apache.org, “Frequently Asked Questions”, Apache Ant Wiki,

http://ant.apache.org/faq.html#ant-name, Published 16 Sep, 2009, Retrieved

17 Nov. 2009

http://cruisecontrol.sourceforge.net/index.html
http://cruisecontrol.sourceforge.net/overview.html
http://cruisecontrol.sourceforge.net/main/index.html
http://wiki.eclipse.org/The_Official_Eclipse_FAQs#Java_Development_in_Eclipse
http://wiki.eclipse.org/The_Official_Eclipse_FAQs#Java_Development_in_Eclipse
http://www.vogella.de/articles/OSGi/article.html
http://ant.apache.org/faq.html#ant-name

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 46

[7] Chopra. V, Li. S, Genender .J, 2007. “Professional Apache Tomcat 6”. Wiley

Publishing, Inc.

[8] Codehaus Foundation, “Jetty @ Codehaus Wiki”, Jetty Wiki,

http://docs.codehaus.org/display/JETTY/Jetty+Wiki”, Published 6 Oct 2009,

retrieved 17 Nov. 2009.

[9] Wilkins, G. “Jetty vs. Tomcat: A Comparative Analysis”, Webtide,

http://www.webtide.com/choose/jetty.jsp, Published May 2008, Retrieved 17

Nov. 2009.

[10] Simpson, B. “JUnit 4.x How-to”, Axis Data Management Corp,

http://pub.admc.com/howtos/junit4x/, Retrieved 17 Nov. 2009.

[11] Harold, E, R. “An early look at JUnit 4” IBM DeveloperWorks,

http://www.ibm.com/developerworks/java/library/j-junit4.html, Published 13

Sep. 2005. Retrieve 17 Nov. 2009.

[12] Rutar, N. Almazan, C, B. Foster, J, S., 2004, “A Comparison of Bug

Finding Tools for Java”, Proceedings of the 15th International Symposium on

Software Reliability Engineering, Pages: 245 – 256.

http://docs.codehaus.org/display/JETTY/Jetty+Wiki
http://www.webtide.com/choose/jetty.jsp
http://pub.admc.com/howtos/junit4x/
http://www.ibm.com/developerworks/java/library/j-junit4.html

COMP 4905 Honour’s Project Report Jiaqi Zhu 100653388

 47

[13] Vesperman, J. “Introduction to CVS”, O’Reilly Linux Dev Center.com,

http://linuxdevcenter.com/pub/a/linux/2002/01/03/cvs_intro.html, Published 3

Jan 2002. Retrieve 17 Nov. 2009.

[14] Lee. K. A., 2006, “IBM Rational, ClearCase, Ant, and CruiseControl: The

Java Developer's Guide to Accelerating and Automating the Build Process”,

IBM Press.

[15] CC-Config, “CruiseControl Configuration Tool Home”,

CC-Config.SourceForge.net, http://cc-config.sourceforge.net, Retrieved 18

Nov. 2009.

[16] CC-Config, “CruiseControl Configuration Client Changes”,

CC-Config.SourceForge.net, http://cc-config.sourceforge.net/todo.html,

Retrieved 18 Nov. 2009.

http://linuxdevcenter.com/pub/a/linux/2002/01/03/cvs_intro.html
http://cc-config.sourceforge.net/
http://cc-config.sourceforge.net/todo.html

