
0

Carleton University

COMP 4905 - Honours Project

Using Bezier Curves to Create an Intuitive

Track Editor for Racing Games

Author: Nathan Bell, 100734700

Supervisor: Dr. Doron Nussbaum, School of Computer Science

Date: April 16th 2012

1

Abstract

 This project was done with three goals in mind. The first and foremost was to create a system

which used Bezier curve methods to create smooth 3D track meshes for racing games. The second goal

was to create an editing program which used this track mesh generation system to offer a simple and

intuitive way of creating full race tracks with smooth, complex curves. The final goal of this project was

to then provide a simple racing game which used the tracks created with the previous systems to

determine the quality of the tracks in a hands on way.

2

Acknowledgments

 I would also like to acknowledge Paul de Casteljau, creator of De Casteljau's Algorithm, which

lies at the heart of my system.

3

Table of Contents

1 : Background... 5

 1.1 : Motivation.. 5

 1.2 : Choice of Language and Environment.. 5

 1.2 : Bezier Curves.. 6

 1.3 : Existing Systems for Track Editors.. 7

2 : Implementation.. 9

 2.1 : Overview of System.. 9

 2.2 : Track Editor Classes... 11

 2.3 : Racing Game Classes... 12

 2.4 : Other Classes... 14

3 : Description of Important Algorithms.. 16

 3.1 : Modified De Casteljau's Algorithm... 16

 3.2 : Track Generation Algorithm.. 18

 3.3 : Track Mesh 'Chunking' Algorithm... 22

 3.4 : Sphere-Track Chunk Collision Detection.. 23

4 : Conclusions.. 26

 4.1 : Appraisal of Final Product.. 26

 4.2 : Possible Improvements.. 28

 4.3 : Final Conclusions.. 29

5 : References.. 30

Appendix A : Class Diagrams... 31

Appendix B : User Manual... 35

Appendix C : Running Instructions.. 37

4

List of Figures

FIGURE 1 : A two dimensional Bezier Curve with four control points... 6

FIGURE 2 : Illustration of the Puzzle System.. 7

FIGURE 3 : Stunts, 1990... 8

FIGURE 4 : TrackMania, 2003.. 8

FIGURE 5 : Curves A and B sharing common point C. The two curves do not transition smoothly............. 9

FIGURE 6 : Points A2, C and B1 are made to be co-linear, resulting in a smooth transition...................... 10

FIGURE 7 : A Bezier curve with shaded lines indicating position

 and orientation of the segments cross sections.. 18

FIGURE 8 : An Illustration of the Mesh Generation Process.. 20

FIGURE 9 : Illustration of Method to Determine Whether or not a Point Lies Within the Polygon........... 24

FIGURE 10 : A Simple Track Segment... 26

FIGURE 11 : Two Connected Segments Creating a Slightly more Complex Shape..................................... 27

FIGURE 12 : A Classic Loop Created With Two Segments.. 27

FIGURE 13 : A Full Track... 27

5

1 : Background

1.1 : Motivation

 There exist level editors for many game engines, and editors for many genres. However, editors

for racing games have always been quite limited. It is rare in the first place for a racing game to have an

editor, and when they do they're usually quite inflexible, using a number of pre-created blocks that you

piece together or some other similar system. This is likely due to the fact that it is extremely difficult for

the average user to sculpt a smooth track mesh, a tedious and slow process. A single polygon out of

place on a track surface can cause serious problems. What a good track editor needs is some way of

allowing simple manipulation without limiting flexibility.

 Bezier curves offer a simple way of creating complex lines and are widely used in graphical

design software. With this project I hope to use Bezier curves to generate smooth 3D track meshes,

allowing for a flexible, yet simple track editor.

1.2 : Choice of Language and Environment

 For this project I chose to develop using the C# language and the Microsoft XNA Game

Development environment.

 The Microsoft XNA Environment provides a framework for game development, a wrapper for

direct x and many useful tools and libraries. I chose to use XNA as I had experience working with it from

my game development courses and it allowed me to focus more on developing the important game

aspects, rather than being bogged down with building my own engine from the bottom up.

6

1.3 : Bezier Curves

 Bezier curves are parametric curves which define a smooth path using a number of "control

points". These control points can be vectors representing anything, but typically represent a point in

space. A point on a Bezier curve is defined by a function of a value t between 0 and 1 with 0

representing the start of the curve and 1 representing the end. This function interpolates between n

control points according to the following equation:

 𝐵 𝑡 =
𝑛
𝑖
 (1 − 𝑡)𝑛−𝑖𝑡𝑖𝑃𝑖

𝑛
𝑖=0

 Where 𝑃𝑖 is control point i.

FIGURE 1 : A two dimensional Bezier Curve with four control points

 Bezier curves are widely used in graphic design programs and for animation, due to the intuitive

and visual nature of the control points.

7

1.4 : Existing Systems for Track Editors

 Most track editing programs fall under the same style, which I will refer to as the "Puzzle" style

of editor. In this style of editor, the user is given a library of pre-modeled track pieces which the user

then lays down like puzzle pieces, connecting them together to create a track. These systems nearly

always feature a grid of some sort which restricts the users placement choices further to simplify the

placement of track pieces.

FIGURE 2 : Illustration of the Puzzle System

 Systems like these can be found as early as 1990, with the game Stuntz for PC and Amiga and

are still being used today by games such as the TrackMania franchise.

8

FIGURE 3 : Stunts, 1990

FIGURE 4 : TrackMania, 2003

 Despite the advancement of the power and graphical ability of computers, the underlying

system has not evolved much over the years. Apart from extending the system to be able to build in 3D

and adding a wider variety of pieces, the tracks are still locked into the grid system and the flexibility of

the editor can only go as far as the choice of pieces.

9

2 : Implementation

2.1 : Overview of System

 In this system a track is a list of track points, which are used in the same was as control points

are used in Bezier curves. If the whole track was to be treated as a single curve with many points, the

result would be undesirable. This is because Bezier curves interpolate between points, and are only

guaranteed to pass through the beginning and end points on their curve. Instead of this, the track points

are divided up between a series of track segments. Each track segment is treated as a separate curve. If

two track segments are connected and continuous, it must be ensured that the previous track segment

ends with the same orientation as the next track segment. This is done by ensuring that the two points

before and after the connecting point, and the connecting point itself are always collinear. The fact that

the two continuous segments share a common connecting track point ensures that the roll and width

will be continuous.

FIGURE 5 : Curves A and B sharing common point C. The two curves do not transition smoothly

10

FIGURE 6 : Points A2, C and B1 are made to be co-linear, resulting in a smooth transition

 The project is divided into two main sections, the track editor and the racing game. The track

editor portion contains most of the original algorithms and ideas, as it is where all the track generation

takes place.

 Because of the flexibility of the Bezier curve system, I decided not to limit the tracks by making a

realistic style of racing game. In the racing game, the player's vehicle "sticks" to the track surface,

ignoring gravity unless it falls off the track. This allows the vehicle to traverse the track even with

extremely complex inversions and curves. Collision detection for the vehicle is done using Sphere -

Polygon collision techniques. The player vehicle has three collision spheres, one which is used to keep

the car from flying off the track over hills, one to keep the car from passing through the track, and one

used to detect collisions with the walls of the track. This collision detection is explained in greater detail

in the Description of Important Algorithms section. The style of racing is time trial, after the first lap, the

time at each checkpoint, and the relative time compared to the previous lap are displayed.

 The following is a brief description of all the notable classes in this project.

11

2.2 : Track Editor Classes:

TrackEditor:

 The TrackEditor class is a singleton pattern class holding a track object and all functions which

modify the track in any way. This includes the algorithm which ensures that track segment

connections remain collinear.

Track:

 This class holds a list of Track Segments and Track Points, as well as a list of Editor Checkpoints.

This class contains nothing else important but the draw call for the track in editor mode.

Track Point:

 Track points contain the essential information used by the track generation algorithms. A point

contains a position in 3D space, a roll and a width. The Track Point also contains pointers to the next

and previous Track Point in the track

TrackSegment:

 The TrackSegment class holds a list of Track Points and a mesh. This class contains the track

mesh generation algorithm, the track mesh chunking algorithm and the modified Casteljau algorithm.

These algorithms are discussed in detail in the Description of Important Algorithms section.

12

Track Cross Section:

 A Track cross section represents a cross section, or slice, of the track mesh. This class contains

two separate lists of vertices. The first is a list of vertices representing the portion of the cross section

which will be stretched according to width. The second represents the walls and edge of the track

segment. Instead of being stretched, the wall points are moved according to the width, to avoid the

wall becoming warped.

PresentationPoint:

 Presentation points are used to graphically represent track points in the editor view. Colours

change depending on if the associated point is an endpoint, selected by the user, or neither of these.

2.3 : Racing Game Classes:

RacingGame:

 The Racing Game class is a singleton pattern class holding all information and functions needed

to run the automated portion of the game logic. Rather than directly use the Track Segment classes,

the Racing Game instead holds a list of Track Chunks generated from the Track Segment classes. At

each update, collisions are processed and the player's vehicle is updated. To deal with the fact that

the collision detection is not predictive, collision processing and car updating occurs three times per

update.

RaceView:

 The Race View class extends Game View and handles all user interaction with the Racing Game

class. The handleInput method allows control of the player car using the keyboard and the draw

function displays a basic heads up display with information about the cars speed and lap times.

13

TrackChunk:

 Generated by the Track Segment chunking algorithm, this class holds a 'chunk' of track mesh

and a bounding sphere which contains all the vertices in the mesh. These objects are used rather

than Track Segments to allow faster collision detection.

Car:

 This class represents a vehicle. The update function moves the car automatically based on its

velocity, heading, acceleration, and a number of other factors. The player's car is controlled via the

Race View class by setting various flags for the update. The car class does not handle any of its own

collision detection or resolution.

RaceCheckpoint:

 This class simply represents a checkpoint along the track. This class stores a pointer to the next

checkpoint and the current lap time when the car passes it. This time is used to judge roughly how

well you are doing compared to previous laps.

14

2.4 : Other Classes:

GraphicsManager:

 The graphics manager class is a singleton pattern class which stores and manages the

information needed to draw to the screen. Content such as textures, models and other outside files

are loaded using XNA's content system and stored in several dictionary data structures. In total, there

are dictionaries storing Effect, RasterizerState, Texture, Model and Font objects. This system offers a

centralized approach to storing this information, rather than all draw able classes containing direct

references and requiring content loads themselves. This also allows for some small optimizations, as

the centralized graphics manager knows what is currently loaded on the device, and can avoid

redundant calls.

View:

 The view class holds everything needed to calculate the projection and view matrices needed

for displaying the 3D world to the user. Views hold a Camera, a Viewport and a string representing a

rasterizer state. Viewports are an XNA class representing the dimensions of an output window or

screen. View objects also contain a method which translates a mouse click on screen into a ray in the

game world using XNA's Viewport unproject function, which is essential for mouse based input.

Camera:

 The camera class and its subclasses represent various types of cameras. Cameras of all types

store a view matrix which represents the cameras orientation in space and what it 'sees'. Different

subclasses of the camera class vary in how their position and rotation are determined, making

different camera types better for different situations.

15

FileManager:

 This class holds all methods used for saving and loading tracks from file. The file format used to

store tracks on file is fairly simple. First, a start of file line is written, followed by the number of track

points, segments and checkpoints in the track. Next, a line stating the beginning of the track point

section is written, followed by writing each point to file. Each point is written to file in the following

way. First the X, Y and Z values of the points position are written, then the roll and width values.

"true" or "false" is then written depending on if the point has a pointer to a previous point and then

finally the same is done for a pointer to the next point. After this, a line stating the beginning of the

track segment section is written. For each track segment, "true" or "false" is written depending on if

the segment has a previous connecting segment. This is followed by the order of the segment. Finally

a "true" of "false" is written depending on if the segment has a next connecting segment. A line

stating the beginning of the checkpoint section is written. For each checkpoint, the index of the

checkpoints associated track point is written to file. Finally, the end of file line is written and the file

is closed.

 Tracks are loaded from file by reading all this information in and recreating the track

from it.

16

3 : Description of Important Algorithms

3.1 : Modified De Casteljau's Algorithm

 De Casteljau's Algorithm is a recursive algorithm for calculating Bezier curves of arbitrary order.

Given n control points and a value t (between 0 and 1), De Casteljau's Algorithm will return the point

along the Bezier curve corresponding to the value t.

 Point CasteljauPoint(int r, int i, float t)

 if(r == 0) return points[i]

 Point a = CasteljauPoint (r - 1, i, t)

 Point b = CasteljauPoint (r - 1, i + 1, t)

 return ((1 - t) * a) + (t * b)

 Extending this algorithm to 3D space is just a matter of using three dimensional vectors rather

than two dimensional points. For the purposes of track generation, getting the position along the

curve is not enough. Not only did I require a 3D point, I needed slope, roll and track width.

Fortunately, De Casteljau's Algorithm is quite flexible, and having it interpolate these values as well

was easy. Roll and width could simply be calculated by adding them as additional dimensions to the

vector, and calculating slope required only minor additional calculations. Due to XNA's built in Vector

classes not supporting arbitrary dimensions, I decided it would be easier to handle an array of three

3D vectors, each holding part of the information.

17

 Vector3[] CasteljauPoint(int r , int i , float t)

 Vector3[] result = new Vector3[3]

 if (r == 0)

 result[0] = points[i].Position

 result[2].X = points[i].Roll

 result[2].Y = points[i].Width

 return result

 Vector3[] a = CasteljauPoint(r - 1 , i , t)

 Vector3[] b = CasteljauPoint(r - 1 , i + 1 , t)

 result[0] = ((1 - t) * a[0]) + (t * b[0])

 result[1] = Normalize(b[0] - a[0])

 result[2] = ((1 - t) * a[2]) + (t * b[2])

 return result

 Where result[0] is the position in 3D space, result[1] is the slope as a unit vector and result[2]

holds roll and width information.

 This algorithm runs 𝑂(𝑛2) where n is the number of control points.

18

3.2 : Track Generation Algorithm

 Using information from the modified De Casteljau's Algorithm, this algorithm constructs the full

mesh of the track segment.

Using a list of track points, a Bezier curve is defined. Using the modified Casteljau algorithm, position,

orientation, roll and width information is calculated for a number of points along the line. The

number of points desired is pre-calculated and is determined by a rough approximation of the curve

length and a general desired resolution. For each of these points of information, a track cross section

object is copied and transformed. The cross section is rotated according to its orientation and roll

values and transformed according to its position and width values. Vertices are then generated from

this cross section, added to the track segment mesh and indices generated to add the desired

polygons.

FIGURE 7 : A Bezier curve with shaded lines indicating position and orientation of the segments cross sections

19

 Originally I planned on directly calculating transformation and rotation matrices for each point

along the curve, but ran into some serious issues with that method. First and foremost was the issue

of gimbal lock. This was a serious issue, as the track must bend as smoothly and fluidly as possible.

Generating track which passed through a point with a vertical slope would cause the track to

instantly flip orientations, breaking the track surface entirely. To address this I decided to switch to

using Quaternions for rotation. Quaternions are not prone to gimbal lock, solving the issue with

vertical slopes.

 However, the quaternion system raised a severe problem of its own. Quaternions represent an

axis and a rotation about said axis. The rotation, however, cannot exceed 180 degrees. This caused a

big issue when the track segment curved more than 180 degrees, which is a very common

occurrence. At this point, rotations were being calculated by spherically interpolating between a

beginning and ending rotation quaternion. The spherical interpolation algorithm would calculate an

intermediate quaternion and would always take the "shortest path" from the beginning to end

quaternion. This meant that if the ending quaternion was over 180 degrees different than the

starting quaternion, the spherical interpolation function would cause the track to bend the wrong

way, resulting in a track which folded in on itself.

 It was clear at this point that dramatic changes had to be made in the way I calculated the

rotation along the curve. My solution was to adopt a method of "nudging" the quaternion as I

calculated information for each point along the line. In order to do this, at each point I would

calculate a delta rotation using the slope of the current point and slope of the previous point. A

temporary Quaternion representing this change in rotation would be created. The axis of rotation

would be obtained from the cross product of each slope vector, and the rotation value itself would

be obtained using the dot product of these two vectors.

 At the beginning of the segment, a rotation quaternion would be created, representing the

starting rotation of the curve. For each point along the curve, the temporary delta rotation

quaternion would be applied to the current rotation quaternion, "nudging" it to the correct

orientation. The difference between two consecutive points on the curve will never be greater than

180 degrees unless desired, so this method successfully calculates the proper orientations at each

point to create a smooth curve.

20

FIGURE 8 : An Illustration of the Mesh Generation Process

 The final result of this algorithm is a fully generated mesh object for this track segment. Because

these control points can be in any orientation, the lengths of different segments can vary to

extremes. To prevent long curves having too few points, or short curves having too many, the length

of the curve is roughly estimated beforehand, determining the number of points calculated.

21

 Quaternion tempRotationQuaternion

 Quaternion tempDeltaQuaternion

 Quaternion tempRollQuaternion

 Vector3 tempRotationAxis

 Vector3[] point

 Vector3[] lastPoint

 List<VertexPositionNormalTexture> tempVert

 CrossSection crossSection

 float t

 float rotation

 For(index = 0; index <= resolution; ++index)

 t = index / resolution

 if(index > 0)

 lastPoint = point

 point = CasteljauPoint (Order - 1, 0, t)

 else

 point = CasteljauPoint (Order - 1, 0, t)

 lastPoint = new Vector3[3]

 lastPoint[0] = position of point

 lastPoint[1] = Vector3.Backward

 lastPoint[2] = roll and width vector of point

 tempRotationAxis = Normalize(CrossProduct(lastPoint[1], point[1]))

 rotation = ArcCos (DotProduct (lastPoint[1], point[1]))

 tempDeltaQuaternion =

 Quaternion.CreateFromAxisAngle (tempRotationAxis, rotation)

 tempRotationQuaternion = tempDeltaQuaternion * tempRotationQuaternion

 tempRollQuaternion =

 Quaternion.CreateFromAxisAngle (point[1], point[2].X)

 * tempRotationQuaternion

 crossSection = new CrossSection (point[0], tempRollQuaternion)

 tempVert.Add (crossSection.Vertices)

 Calculate indices and normals for the mesh

 This algorithm runs in 𝑂(𝑚 ∗ 𝑛2 + 𝑚 ∗ 𝑠) where 𝑚 is the number of points along the segment

to be evaluated, 𝑛 is the number of control points of the segment and 𝑠 is the number of vertices in

the track cross section being used.

22

3.3 : Track Mesh 'Chunking' Algorithm

 This algorithm is used when converting a track in the editor to a final, race-able track mesh.

Because of the wildly varying lengths of the track segments, it would be impractical to use those meshes

for the racing game aspect. Instead we want to chop the track up into more manageable, and more

uniformly sized, chunks. This algorithm does just that. It works by dividing the mesh generated by the

calculate vertices algorithm into sections which fit well into bounding spheres. The fact that they fit well

into bounding spheres is important for collision detection when racing.

 List<TrackChunk> chunks

 VertexPositionNormalTexture[] vertices

 int[] indices

 numVPerSlice = number of vertices in cross section

 int resolution = number of cross sections used in the track mesh

 int numberOfSlices

 int vertIndex = 0

 int sInd

 float dist

 int i = 0

 While (i < resolution - 1)

 dist = 0

 numberOfSlices = 0

 While (i + numberOfSlices < resolution && dist < widths[i])

 dist += distance between point i and point i + 1

 ++numberOfSlices

 if (i + numberOfSlices == resolution - 1)

 ++numberOfSlices

 sInd = 0

 vertices = new VertexPositionNormalTexture[(numberOfSlices + 1) *

 numVPerSlice]

23

 While (sInd <= numberOfSlices)

 For (int j = 0 ; j < numVPerSlice ; ++j)

 vertices[(sInd * numVPerSlice) + j] =

 MeshVertices[vertIndex]

 ++vertIndex

 if (sInd < numberOfSlices)

 Set up indices of new mesh

 ++sInd

 vertIndex -= numVPerSlice

 chucks.Add(new TrackChunk (vertices, indices, TextureOfSegment))

 i += numberOfSlices

3.4 : Sphere-Track Chunk Collision Detection

 When racing on a track of any reasonable size it would be infeasible to do hit detection on every

single polygon at every frame. To address this we need some way of quickly narrowing the search to a

manageable number of polygons. When racing, the track is stored in a list of Track Chunk objects. Track

Chunk objects have a pre-calculated bounding sphere which surrounds all vertices in the chunk. Before

running any collision detection on individual polygons, we first check collisions with these bounding

spheres. If there is no collision with the sphere, it is impossible that there is a collision with any polygon

in that chunk, so we can ignore it. After running this preliminary collision detection we can narrow down

the search to, on average, a single track chunk. This means that collisions can be processed for very long

tracks without impacting performance.

 Polygons to be tested for collision are loaded into three arrays, each array representing a corner

of the polygon. Each polygon is then tested iteratively against a single collision sphere. This iterative

approach is more efficient than calling a function for each individual polygon.

24

 For each polygon, a 3D plane is defined. A ray is then defined using the negated plane normal

and the position of the collision sphere. Ray - Plane intersection is performed to find the point on the

plane closest to the position of sphere. If the distance between the sphere and this point is greater than

the radius of the sphere, there is no collision and we move on to the next polygon. If the distance is less

than the radius of the sphere, we must test whether or not the point on the plane is within the polygon.

 To test whether or not the with the plane lies within the polygon I calculate a number of angles

using dot products and compare four angles to determine whether or not there is a collision.

FIGURE 9 : Illustration of Method to Determine Whether or not a Point Lies Within the Polygon

 First, angles BAI and IAC are compared to angle BAC. If the angles BAI and IAC are both less than

BAC a collision is possible. We must then determine on what side of BC the point of intersection lies. I do

this by comparing angle ICA to angle BCA. If ICA is less than BCA, the point of intersection lies within the

polygon and a collision has occurred.

 If a collision is detected then the point of intersection is added to a list, which is returned after

all polygons have been tested.

25

 Vector3[] a = list of 'a' points of the polygons to be tested

 Vector3[] b = list of 'b' points of the polygons to be tested

 Vector3[] c = list of 'c' points of the polygons to be tested

 Vector3[] normal = list of normals of the polygons to be tested

 List<Vector3> collisions

 Plane p

 Ray r

 Vector3 pointOfIntersection

 Vector3 ab

 Vector3 ac

 Vector3 ai

 Vector3 bc

 Vector3 bi

 double thetaA

 double thetaB

 For (int i = 0 ; i < number of polygons ; ++i)

 p = plane defined by a[i], b[i] and c[i]

 r = ray defined by the position of the collision sphere and the inverse of normal[i]

 len = distance from the position of the collision sphere to the point of intersection

 with the plane p

 if (len > 0 && len < radius of collision sphere)

 pointOfIntersection = point of intersection on plane p

 ab = Normalize (b[i] - a[i])

 ac = Normalize (c[i] - a[i])

 ai = Normalize (pointOfIntersection - a[i])

 bc = Normalize (c[i] - b[i])

 bi = Normalize (pointOfIntersection - b[i])

 thetaA = Arccos (Dot product of (ab, ac))

 thetaB = Arccos (Dot product of (-ab, bc))

 if (Arccos (Dot product of (ab, ai)) < thetaA

 AND Arccos (Dot product of (ai, ac)) < thetaA

 AND Arccos (Dot product of (bi, bc)) < thetaB

 AND Arccos (Dot product of (-ab, bi)) < thetaB)

 add pointOfIntersection to collisions

 return collisions

26

4 : Conclusions

4.1 : Appraisal of Final Product

 All three goals of this project have been achieved. The track editor is quite easy to use, and the

Bezier curve system turned out to be as intuitive as I hypothesized. It is clear how moving the control

points affects the curves, so the process of creating a track is quite visual and makes sense without

needing knowledge of the underlying process.

 Track mesh is generated pretty much perfectly from the Bezier curves, the surface is smooth

and consistent throughout the track. Below are some screenshots of the generated meshes in editor

mode.

FIGURE 10 : A Simple Track Segment

27

FIGURE 11 : Two Connected Segments Creating a Slightly more Complex Shape

FIGURE 12 : A Classic Loop Created With Two Segments

FIGURE 13 : A Full Track

28

 The racing game aspect ended up working as well as I expected. By running collision detection

multiple times per frame I was able to work around the limitation of frame dependant detection without

limiting the speed. It is still possible however to clip through the track at extreme speeds. Aside from

this and a few minor glitches, the car travels smoothly along the track as you would expect.

 There are a couple errors in the implementation of the algorithm that were unresolved before

evaluating the algorithm. In some cases, when generating the mesh, a small error in the roll of the track

would crop up. To solve this, I have the error propagate to the next segment to compensate. Because of

this, in these cases it may appear as though the track becomes discontinuous when this error changes.

Moving a point in the next segment to manually cause an update on that segment will fix the issue. I

decided not to have this happen automatically, as it could end up causing a drastic decrease in

performance, as in some cases all segments would have to be recalculated.

 Currently, the track must be a single continuous path, but cannot be a full cycle. This is the first

thing I would address, had I more time. This issue stems from some unexpected behaviour when tracks

have multiple, independent cycles. I believe this problem stems from the roll error discussed above.

 As mentioned above, the player's vehicle is capable of clipping through the track when traveling

at extreme speeds. Additionally, a similar issue occurs when the vehicle travels over a hill at high speeds

and fails to "stick" to the track.

4.2 : Possible Improvements

 There are many extensions to this project which I would like to have done. The Bezier

interpolation could be easily extended to interpolate many more things, such as track textures and cross

sections. This would allow fluid transitions between different kinds of track surfaces, adding even more

flexibility to the editor. For this interpolation to work properly, track cross sections would need a

consistent number of vertices. Positions of corresponding vertices would be interpolated to create the

intermediary cross sections. Providing a way for the user to create custom cross sections would also

work nicely with this.

29

 The collision detection during racing could also be improved by doing predictive detection using

the vehicles velocity vector, rather than moving and checking every step. This would resolve some issues

with the vehicle falling through the track at very high speeds. I did not implement it this way as this was

the first time I've done any sort of 3D collision detection, so I wanted to keep it simple.

 From a software engineering standpoint as well, there are a number of things I would change if

starting over. I would use an event based system and totally rewrite the way the track is modified inside

the TrackEditor class to make it more modular. I would do this by creating custom event handlers and

command classes, rather than having functions in the TrackEditor class doing operations.

4.3 : Final Conclusions

 Overall, the project was a success. After a couple rewrites and different approaches to

implementing the track generation algorithm, track generation worked great. It's quite easy to create

interesting tracks in under five minutes, which is the feeling I was going for with this system.

 I believe that if polished and perfected, this sort of system could do a lot for reinvigorating

racing games as a genre. If implemented in commercial game, this system could provide nearly limitless

user generated content and would be a step forward from the puzzle systems of most track editors.

30

5 : References

T. Sederberg, Bézier Curves,

Internet: http://www.tsplines.com/resources/class_notes/Bezier_curves.pdf

Moby Games, "Stunts", Internet: www.mobygames.com/game/dos/stunts, 1990

Nadeo, "TrackMania", Internet: http://official.trackmania.com/indexUk.php, 2005

31

Appendix A : Class Diagrams

32

33

34

35

Appendix B : User Manual

Editor Mode:

F2: Race with Current track

Moving The Camera:

 - To move the camera, click and drag on open space

 - To rotate the camera, click and drag with the right mouse button

 - To move the camera up and down, hold shift while dragging

Moving Control Points:

 - Click and Drag a control point to move it along the XZ plane

 - Hold shift to move the control point up and down along the Y axis

Changing the Roll of a Control Point:

 - Click on a control point to select it

 - Press A and D to change the roll of the point

 - Hold Control to increase the rate at which the roll changes

Changing the Width of a Control Point:

 - Click on a control point to select it

 - Press W and S to change the width of the point

 - Hold Control to increase the rate at which the width changes

Adding a control point to an existing segment:

 - Hold down E

 - Click on the control point you wish to insert the new point after, and then drag the

 new point out.

36

Adding a track segment:

 - Follow the directions for adding a control point, but select the end point of a segment

 at the end of the current track and a new segment will be made with the new point.

 - You cannot create two order two segments in a row, in this case a segment will not be

 created.

Deleting a Control Point:

 - Select a control point by clicking on it.

 - Press Delete to remove the point

 - If a point is deleted from an order two segment, the segment will also be removed

Save a track to file:

 - Press the F5 key while in editor mode

 - Navigate to the desired save location

 - Enter a name for the track

 - Save the file

Load a track from file:

 - Press the F6 key while in editor mode

 - Navigate to the desired .trk file with the file explorer

 - Open the .trk file

Racing Mode:

Accelerate:

 - W

Decelerate:

 - S

Turn Left:

 - A

Turn Right:

 - D

37

Boost:

 - Shift

Reset car to last checkpoint:

 - R

Appendix C : Running Instructions

 I have included both the source code, and compiled program. In order to compile this project,

Microsoft XNA must be installed. After installing XNA, open the solution file with Visual Studio 2010 and

compile the project.

 If you would rather just run the compiled program I have included, simply run the executable on

any Windows machine with Microsoft .Net framework version 4.0 or later.

 I have also included a short sample video of me creating a simple race track and then racing on

it.

