
Incremental Construction of k-Dominating Sets
in Wireless Sensor Networks

Mathieu Couture, Michel Barbeau,
Prosenjit Bose and Evangelos Kranakis

School of Computer Science, Carleton University, Herzberg Building
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

{mathieu,jit}@cg.scs.carleton.ca

{barbeau,kranakis}@scs.carleton.ca

http://www.scs.carleton.ca

Fax: 1-613-520-4334

Abstract. Given a graph G, a k-dominating set of G is a subset S of
its vertices with the property that every vertex of G is either in S or
has at least k neighbors in S. We present a new incremental distributed
algorithm to construct a k-dominating set. The algorithm constructs a
monotone family of dominating sets D1 ⊆ D2 . . . ⊆ Di . . . ⊆ Dk such
that each Di is an i-dominating set. For unit disk graphs, the size of
each of the resulting i-dominating sets is at most six times the optimal.

Key words: unit disk graph, dominating set, maximal independent set,
approximation algorithms, distributed algorithms, fault-tolerance

1 Introduction

An ad hoc network is a special type of wireless network where no node has
a priori knowledge about the other nodes. Constructing and maintaining
a structure allowing nodes to communicate with each other is one of the
main challenges of ad hoc networks. Sensor networks are a specific type of
ad hoc networks dedicated to a specific task: sensing (light, temperature,
humidity, etc.). The dominating set structure helps ad hoc and sensor
networks to perform routing. In sensor networks, dominating sets also
help the sensing task itself. Since nodes located close to each other sense
similar values, only a dominating set of the nodes is needed to monitor
an area. This helps prolonging the network’s lifetime by turning off the
nodes that are not in the dominating set, thereby extending the battery
life of these nodes.

Sensor networks typically contain more nodes and each node has less
memory than in general ad hoc networks. Therefore, it is important to de-
sign algorithms with low memory complexity. An algorithm is distributed

if the information needed by a node to perform its computation only con-
cerns its direct neighbors. The amount of memory needed by each node
to execute a distributed algorithm only depends on the number of its
neighbors and not on the network size.

Sensor nodes are more error-prone than nodes in general ad hoc net-
works. They have limited energy resources and need to be periodically
redeployed by adding new nodes to the network. The fact that they are
error-prone calls for fault-tolerance in the design of algorithms for such
networks.

We address the problem of distributively constructing k-dominating
sets on unit disk graphs. Unit disk graphs are the standard structure used
to model ad hoc and sensor networks. A k-dominating set is a dominating
set where each node is either in the dominating set or has at least k
neighbors in the dominating set.

We generalize dominating set algorithms based on the idea of maximal
independent sets [1, 9, 13] to obtain k-dominating sets. A subset S of the
nodes of a graph G is said to be independent if it does not contain two
adjacent nodes. It is maximal if it does not have a proper independent
superset. It is straightforward to show that a maximal independent set
is also a dominating set. Our algorithm is distributed and, on unit-disk
graphs, has a deterministic performance ratio of six. The performance
ratio of a k-dominating set algorithm is defined as the ratio of the size of
the k-dominating set it produces over the size of an optimal (minimum)
k-dominating set. It is not position-aware, which means that nodes do
not need to know their coordinate in the plane. It also constructs the
k-dominating set incrementally. More specifically, it constructs a mono-
tone family of dominating sets D1 ⊆ D2 . . . ⊆ Di . . . ⊆ Dk such that each
Di is an i-dominating set. Incremental construction of k-dominating sets
is helpful when redeploying sensor networks. When senor nodes in the
k-dominating set run out of batteries or experiment failure for diverse
reasons, the k-dominating set has to be reconstructed. With an incre-
mental algorithm, reconstruction of a k-dominating set can be done by
keeping the current dominators.

The k-dominating set problem has been addressed by Dai and Wu [3]
and Kuhn et al. [8]. However, our algorithm is the only one which has a
constant deterministic performance ratio. It is also the only one to provide
an explicit incremental construction. The rest of this paper is organized
as follows: in Section 2, we present our algorithm. In Section 3, we analyze
its performance ratio. In Section 4, we present some simulation results.
We draw conclusions in Section 5.

2 Algorithm

Alzoubi et al. [1] and Wan et al. [13] addressed construction of a con-
nected dominating set. Their algorithm consists of two phases. The first
phase constructs a maximal independent set. A maximal independent set
is also a dominating set. In this section, we generalize that first phase
of the algorithm presented in [1, 13] to obtain a k-dominating set. Our
generalization augments a (k − 1)-dominating set in order to obtain a
k-dominating set. More specifically, we want to construct a monotone
k-dominating family.

Definition 1. A k-dominating family is a sequence D1, D2, . . . , Dk of
subsets of vertices of the unit disk graph such that for all i = 1, 2, . . . , k,
Di is an i-dominating set. A monotone k-dominating family is a k-
dominating family with the additional property that the sequence of dom-
inating sets is monotonically increasing under inclusion, i.e. D1 ⊆ D2 ⊆
· · · ⊆ Dk.

The key idea of our algorithm is that we first construct a 1-dominating
set by constructing a maximal independent set. Then, we construct a
maximal independent set of the nodes that are not 2-dominated, which
gives a 2-dominating set. We repeat the procedure until we have a k-
dominating set. The construction of each dominating set is similar to the
approach in [1, 13].

We now present an overview of our algorithm. Every node has a unique
identifier. In initialization phase, each node sends its identifier to its im-
mediate neighbors. After initialization, two types of messages are used:
join(id, i) and give-up(id, i), where id is the identifier of the sending
node and i = 1 . . . k identifies a round. These messages are only sent to
immediate neighbors. The join(id, i) message means that the sender joins
the j-dominating sets for j = i . . . k. Such a node is said to be marked in
round i. The give-up(id, i) message means that the sender is excluded
of the i-dominating set. After transmitting a join message, the sender
remains silent. A node is said to be a candidate for round i if it is not
part of the (i−1)-dominating set and it has never sent the give-up(id, i)
message. Following the completion of the initialization phase, every node
that has an identifier lower than the ones of all its immediate neighbors
sends the join(id, 1) message. The rest of the algorithm is message driven.
Algorithm 1 specifies how each node should behave. Note that different
nodes may execute simultaneously different rounds.

Figure 1, illustrates the marking process for k = 1, 2 and 3. Nodes in
black are dominators. Nodes in grey are k-dominated. Nodes in white are

Algorithm 1 Dominating Set(id, N, k)
Input: id, the node identifier

N , the list of the neighbors identifiers
k, the required number of dominators for a non-dominating node

Output: dominator, a boolean indicating whether the node is a dominator
Local Variables: round, the current round

candidate, a lookup table indicating whether or not a node n is a candidate to be
a dominator in round r (all initial values are true)

1: dominator ← false
2: round← 1
3: if id < min(N) then
4: dominator ← true
5: send join(id, 1)
6: exit
7: end if
8: while round ≤ k do
9: receive message

10: if message is join(n, r) then
11: send give-up(id, round)
12: round← round + 1
13: for i = r to k do
14: candidate[n, i]← false
15: end for
16: end if
17: if message is give-up(n, r) then
18: candidate[n, r]← false
19: end if
20: if id < min{n ∈ N |candidate[n, round]} then
21: dominator ← true
22: round← k + 1
23: send join(id, round)
24: exit
25: end if
26: end while

1

2

3

4

5

6

7

8

9

10

11

121314

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

121314

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

11

121314

15

16

17

18

19

20

10

1

2

3

4

5

6

7

8

9

10

11

121314

15

16

17

18

19

20

Fig. 1. Marking Process Example for k = 1 (above) and k = 2 and 3 (below).

not k-dominated. For k = 1, nodes 1, 2, 3 and 5 have the smallest iden-
tifier among their (0-dominated) neighbors and thus declare themselves
dominators. Initially, node 10 can not declare itself a dominator because
of nodes 7, 8 and 9. However, after node 2 has declared itself a dominator,
nodes 7, 8 and 9 become 1-dominated. Node 10 is then allowed to declare
itself a dominator. The same reasoning applies to nodes 1 and 14. The
1-dominating set is then {1, 2, 3, 5, 10, 14}. For k = 2, there is only one
new dominator, node 15. For k = 3, the new dominators are nodes 4, 7,
11 and 18.

3 Theoretical Properties

In this section, we give an overview of the theoretical properties of our al-
gorithm. We first show that our algorithm computes a valid k-dominating
set and a monotone k-dominating family. Then, we analyze the worst case
performance ratio of our algorithm. In the latter part, we follow the gen-
eral idea of Kuhn et al. [8]. More precisely, we first show that no unit disk
can contain more than a given number of dominators (i.e. 5k). Then, we

use properties of k-dominating sets to show that this leads to a constant
performance ratio.

Proposition 1. Let Si be the set of nodes that are marked in rounds
j = 0 . . . i of Algorithm 1. Then Si is an i-dominating set.

Proof: We proceed by induction on i. To make the things simpler,
we say that i ranges from 0 to k. The round zero chooses the empty
set as a 0-dominating set. The base case is trivial, since all nodes of the
graph have at least zero neighbors in the empty set. For the induction
case, we have to show that if Si is a valid i-dominating set, then Si+1

is also valid (i + 1)-dominating set. In order to do this, we proceed by
contradiction. Let n1 be a node that is not (i + 1)-dominated by Si+1.
This means that it has not sent a join(id, i + 1) message. Consequently,
it must have a neighbor n2 with a lower identifier that is still a candidate
for round i + 1 (line 20), meaning that it is not (i + 1)-dominated either
(line 11 in n2, and 17 in n1). Since n2 is not (i+1)-dominated, by the same
reasoning, there must have a node n3 that is not (i + 1)-dominated and
has a lower identifier than the one of n2. This process allows to construct
a path n1, n2, . . . , nj , . . . , nk such that none of the nj is (i+1)-dominated,
id(n1) > id(n2) > . . . > id(nj) > . . . > id(nk), and nk does not have any
neighbor with a lower identifier that is not (i + 1)-dominated. Then, nk

should have elected himself as a dominator, contradicting the fact that
it is not (i + 1)-dominated. Therefore, every node is (i + 1)-dominated,
which completes the inductive case. �

Proposition 2. For i = 1 . . . k, let Si be defined as above. Then for all
i = 0 . . . k − 1, Si ⊆ Si+1.

Proof: The monotonicity property claimed in the statement of the
proposition is true by construction. That is, let n ∈ Si. Then, it has been
marked in some round j ≤ i < i + 1 and by definition of Si+1, we have
n ∈ Si+1. �

Proposition 3. In any given round, the nodes marked by Algorithm 1
form an independent set.

Proof: Suppose that in the same round, two adjacent nodes n1 and
n2 declare themselves dominators. Without loss of generality, suppose n1

has a lower identifier than n2. This means that as long as n1 did not send
a give-up message, n2 can not elect itself a dominator. But since n1 never
sends such a message (no node sends both a give-up and a join message),

n2 can never declare itself a dominator. This means that no two adjacent
nodes can declare themselves dominators. �

Proposition 4. Let G = (V,E) be a unit disk graph, C be a unit disk
and S ⊆ V be the set of nodes marked by Algorithm 1. Then |S∩C| ≤ 5k.

Proof: By proposition 3, S is the union of k independent sets. Since
no unit disk can contain more than 5 independent nodes [9], S ∩ C can
not contain more than 5k nodes. �

Proposition 5. Let G = (V,E) be a graph, S a subset of V , t an integer
and OPTk = {v1, . . . , v|OPTk|} an optimal k-dominating set of G. If |S| >
t|OPTk|, then there is at least one node v ∈ OPTk such that |N(v)∩S| >
k(t− 1), where N(v) is the set formed by v and its neighbors.

Proof: Let S′ be S \ OPTk. Since |S′| ≥ |S| − |OPTk| > t|OPTk| −
|OPTk|, we have |S′| > (t − 1)|OPTk|. For each vi ∈ OPTk, define Si as
N(vi)∩S′. Since each node in S′ is adjacent to at least k nodes in OPTk,
we have that

optk∑
i=1

|Si| ≥ k|S′| > k(t− 1)|OPTk|

Therefore, by the pigeonhole principle, one of the Si contains more than
k(t− 1) nodes. The result follows from the fact that Si ⊆ N(vi) ∩ S. �

Theorem 1. Let G = (V,E) be a unit disk graph, S ⊆ V the set of
nodes marked by Algorithm 1 and OPTk an optimal k-dominating set.
Then |S| ≤ 6|OPTk|. In other words, the performance ratio is not greater
than six.

Proof: Suppose |S| > 6|OPTk|. By proposition 5, there is at least one
node v ∈ V such that |N(v)∩S| > 5k. But this contradicts proposition 4,
and therefore |S| ≤ 6|OPTk|. �

We now show that for any k, there exists graphs for which our algo-
rithm has a performance ratio of five. It is an open question whether or
not it is possible to close the gap between five and six. First, we need the
following lemma:

Lemma 1. Let 4ABC be an isosceles triangle such that ∠BAC = ∠ACB =
φ, p be a point located on the line AB such that A is between p and B,
and q be a point located on the line CB such that C is between q and B.
Then |pq| > |AC|.

φ φ

A

B

Cp

q
q′

Fig. 2. Lemma 1.

Proof: If |pB| = |qB|, then 4pBq is similar to 4ABC, and |pB| >
|AB| implies |pq| > |AC|. Suppose now that |pB| < |qB|, and let q′

be the point located on the line CB such that C is between q′ and B
and |q′B| = |pB|. By the first case, |pq′| > |AC|. Now, since 4ABC is
isosceles, φ < π

2 , and since ∠pq′q = π − φ, we have that ∠pq′q > π
2 .

Therefore, ∠pq′q is the largest angle of 4pq′q, meaning that its opposite
side, pq, is the largest side. In particular, we have |pq| > |pq′| > |AC|.
The case where |pB| > |qB| is identical, which completes the proof of the
lemma. �

Fig. 3. Lower bound of five for Algorithm 1.

Proposition 6. The worst case performance ratio of Algorithm 1 is at
least five.

Proof: For k = 1 and n = 6, place five nodes equally spaced on the
boundary of a circle of radius 1, and place one other node in the center
of that circle. Since the circle has radius 1, the center node shares an
edge with all the other nodes. Also, since the distance between every pair

of nodes on the circle is at least 2 sin π
5 > 1, there is no other edge in

the unit disk graph. In the remainder of the proof, this basic structure
will be referred to as a star, the node placed in the center of the circle
will be referred to as the center of the star and the five nodes on the
boundary of the circle will be referred to as the branches of the star. The
center of a star forms a dominating set of the whole star. However, if the
center happens to be given a higher identifier than one of the branches,
all branches would be marked as dominators, leading to a performance
ratio of five.

Figure 3 depicts how to connect several stars to build cases with n as
large as desired. More precisely, we show how to construct examples of
size 14 + 8m, for any given m (in Figure 3, m = 1). The construction goes
as follows: place m + 2 stars on a horizontal line such that their centers
are placed at x-coordinates 0, 3, 6, . . . , 3(m+1) and no branch lies on the
horizontal line. Since the circles in which the stars are inscribed are at
distance at least 1 from each other, the only edges of the graph so far are
the ones linking the branches of the stars to their centers. All that remains
is to connect the graph. In order to do so, add nodes on the intersection
of the inscribing circles with the horizontal line. These nodes will be
referred to as bridging nodes. Since the centers of two consecutive stars
are at distance 3 from each other, the two bridging nodes between them
are at distance 1 from each other. Therefore, there is an edge between two
bridging nodes which are between the centers of two consecutive stars,
making the whole network connected. To see how the performance ratio
of five can be reached, notice that the star centers form a dominating set
of size m + 2. However, since the set of all branches form an independent
set, it could be that those nodes would be marked as dominators, leading
to a dominating set of size 5(m + 2), which gives a performance ratio of
at least five.

For k > 1, Figure 4 shows how to generalize the star structure. The
goal is to map to each node of the star a set of k nodes such that:

1. nodes mapped to the center share an edge with every other node and
2. nodes mapped to the branches only share edges with nodes mapped

to the center and nodes mapped to the same branch.

In order to achieve this, draw a regular pentagon having side length of 1.
Let C be the inscribing circle of that pentagon and r = 1

2 sin(π
5
) be the

radius of C. Now, let C1 and C2 respectively be the circles having the
same center as C and radii r1 = 1−r

2 and r2 = r + r1. For each vertex vi

of the pentagon (i from 1 to 5), let si be the half-line from the center of

2π
5

1

p

p1

p2

C

C1

C2

s1

s2

s3
s4

s5

v1

v2

v3
v4

v5

Fig. 4. Widget for k > 1.

C through vi. Now, let p be a point located inside C1, and p1 and p2 be
two points located on some si and sj (i 6= j), between C2 and C. Then,
Lemma 1 tells us that

|p1, p2| > |v1, v2| ≥ 1

and from the triangle inequality, we have

|p, p1| ≤ r1 + r2 = 2(
1− r

2
) + r = 1.

Similarly, |p, p2| ≤ 1. The construction we need is then the following: place
k points inside C1 and k points on each of the si between C and C2. We
call the result of that construction a generalized star. The points located
inside C1 form a k-dominating set, but the algorithm may mark all nodes
located on the si. Since there are 5k such points, the performance ratio
is five in that case. To construct a lower bound example with k > 1 for
large n, we link the generalized stars in a similar fashion as for the case
k = 1. �

4 Simulation Results

We have generalized an existing independent set-based algorithm [1, 9, 13]
in order to incrementally construct a k-dominating set. We have chosen

to generalize this specific algorithm because it is distributed and has
constant performance ratio. By simulation, we compare our algorithm
with k-generalized versions of other available algorithms. Stojmenovic
et al. [12] suggested the following heuristic to improve the independent
set algorithm of [1, 9, 13]: instead of ordering the nodes according to
their identifier, order them according to their degree first and then their
identifier. Higher priority is granted to nodes having higher degree. The
performance ratio is still at most five, but it has not been proven it is
actually better than that. For the k-dominating set problem, it is not
desirable to favor higher degree nodes. The reason is that nodes having
degree less than k cannot have k dominating neighbors, so they must
necessarily be in the k-dominating set.

Selecting nodes of higher degree is the same idea that is behind the
greedy set-cover algorithm [4]. The greedy set-cover algorithm first favors
nodes that dominate the largest number of nodes not yet dominated. Al-
though this is a global selection criterion, it still has to be examined. At
first sight, since it does not have constant performance ratio (its perfor-
mance ratio is H(∆), where ∆ is the maximum degree of a node in the
network and H is the harmonic function), one would believe that it would
not perform as well as our algorithm. However, it turns out that in order
to have H(∆) > 5, we need ∆ to be at least 83, and to reach six, we need
∆ to be at least 226. Since it is not likely to have nodes having that many
neighbors in real situations, this algorithm still deserves attention.

In this section, we discuss simulation results comparing Algorithm 1
with k-generalized versions of both the algorithm presented in [12] and
the greedy algorithm. We also compare it with the greedy construction
of a maximal independent set. The k-generalized versions of those al-
gorithms work the same way we generalized the maximal independent
set algorithm: for k = 1, we run the standard algorithm on all nodes.
For k ≥ 2, we run the standard algorithm on nodes that are not yet k-
dominated. We ran our simulations 200 times for networks of 200 nodes.
We have chosen a communication range such that with high probability,
the network is connected. According to Penrose [10, 11], for any integer
k ≥ 0 and real constant c, if the nodes have identical radius r given by
the formula:

r =

√
lnn + k ln lnn + ln(k!) + c

nπ

then the network is (k +1)-connected with probability e−e−c
as n goes to

infinity. For n = 200, choosing k = 1 and c = 5, we then obtain that for
a radius of r ≈ 0.138, the network is 2-connected with probability 0.99.

1 2 3 4 5 6 7 8 9 10
20

40

60

80

100

120

140

160

180

200

k

av
er

ag
e

do
m

in
at

in
g

se
t

si
ze

Greedy

Independent
Greedy-Independent

Degree-Independent

Fig. 5. Average dominating set size for 200 nodes.

Figure 5 shows the simulation results we have obtained. The algorithm
which performed the best is the one in which we greedily constructed an
independent set. Not far behind is the greedy algorithm. It is worth noting
that even if those algorithms perform slightly better, neither of the two
are distributed. This is because the greedy choice of the next node to be
marked is based on global criteria. For the two distributed algorithms, it
is interesting to note that the one using the ordered pair degree-id only
performs better for small values of k (5 and less). After that, it is the one
simply based on identifiers which performs better. With a 95% certainty,
the expected values of the size of the dominating sets was at most ±0.67
node.

Unfortunately, Figure 5 does not show the optimal solution. Since
the dominating set problem is NP-complete, only exponential time algo-
rithms are known to solve the problem. This is why only small instances
of the problem can be addressed by simulation. Figure 6 compares the
same algorithms with the optimal solution for a network of 35 nodes.
We ran over 200 simulation cases. In that case, with a 95% certainty,
the actual expected values of the dominating sets size was at most ±0.28
nodes. Figure 7 shows the average performance ratio we obtained for
each algorithm. For small values of k, the two global greedy algorithms
are the best, followed by the distributed algorithm granting priority to

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

k

av
er

ag
e

do
m

in
at

in
g

se
t

si
ze

Greedy

Independent

Greedy-Independent
Degree-Independent

Optimal

Fig. 6. Average dominating set size for 35 nodes.

high degree nodes. The algorithm simply based on identifiers performs
the worst. However, as k grows, the results change completely. The algo-
rithm simply based on identifiers becomes the best, and the basic greedy
algorithm becomes the worst. The algorithm constructing independent
sets by granting priority to high degree nodes performs slightly better
than the greedy construction of an independent set.

Exact simulation values can be found in the technical report version
of this paper [2].

5 Conclusion

In this paper, we have introduced a new algorithm to address the k-
dominating set problem. Our algorithm has a deterministic performance
ratio of six. The previously best algorithm had an expected performance
ratio of O(k) for an unspecified constant [8]. We have shown that the size
of the k-dominating set our algorithm produces may be five times bigger
than the optimal one. However, it is an open issue whether or not the
gap between five and six can be closed. The expected performance ratio
is also unknown.

Simulation results have shown that in some cases, the k-generalized
version of the greedy dominating set algorithm performs better than ours.

1 2 3 4 5 6 7 8 9 10
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

k

av
er

ag
e

pe
rf

or
m

an
ce

 r
at

io

Greedy

Independent
Greedy-Independent

Degree-Independent

Fig. 7. Average performance ratio for 35 nodes.

Besides their worst-case performance ratio, an other important difference
between the greedy dominating set algorithm and ours is that one is global
while the other is distributed. We believe that differences between the
performance of global, distributed and local algorithms is an interesting
research avenue. Important work in that field has been done by Kuhn
et al. [6, 7] and Kuhn [5].

Acknowledgment

The authors graciously acknowledge the financial support received from
the following organizations: Natural Sciences and Engineering Research
Council of Canada (NSERC) and Mathematics of Information Technology
and Complex Systems (MITACS).

References

[1] K. M. Alzoubi, P.-J. Wan, and O. Frieder, Message-optimal
connected dominating sets in mobile ad hoc networks. In MobiHoc
’02: Proceedings of the 3rd ACM international symposium on Mobile
ad hoc networking & computing, pp. 157–164, ACM Press, New York,
NY, USA, 2002.

[2] M. Couture, M. Barbeau, P. Bose, and E. Kranakis, Incre-
mental construction of k-dominating sets in wireless sensor networks.
Tech. Rep. TR-06-11, School of Computer Science, Carleton Univer-
sity, Ottawa, Ontario, Canada, 2006.

[3] F. Dai and J. Wu, On constructing k-connected k-dominating set
in wireless networks. In IPDPS, IEEE Computer Society, 2005.

[4] D. S. Johnson, Approximation algorithms for combinatorial prob-
lems. In STOC ’73: Proceedings of the fifth annual ACM symposium
on Theory of computing, pp. 38–49, ACM Press, New York, NY,
USA, 1973.

[5] F. Kuhn, The Price of Locality: Exploring the Complexity of Dis-
tributed Coordination Primitives. In PhD Thesis, ETH Zurich, Diss.
ETH No. 16213, 2005.

[6] F. Kuhn, T. Moscibroda, and R. Wattenhofer, What cannot
be computed locally! In PODC ’04: Proceedings of the twenty-third
annual ACM symposium on Principles of distributed computing, pp.
300–309, ACM Press, New York, NY, USA, 2004.

[7] F. Kuhn, T. Moscibroda, and R. Wattenhofer, On the lo-
cality of bounded growth. In PODC ’05: Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed comput-
ing, pp. 60–68, ACM Press, New York, NY, USA, 2005.

[8] F. Kuhn, T. Moscibroda, and R. Wattenhofer, Fault-Tolerant
Clustering in Ad Hoc and Sensor Networks. In 26th International
Conference on Distributed Computing Systems (ICDCS), Lisboa,
Portugal, 2006.

[9] M. Marathe, H. Breu, S. Ravi, and D. Rosenkrantz, Simple
heuristics for unit disk graphs. Networks, 25:59–68, 1995.

[10] M. D. Penrose, The longest edge of the random minimal spanning
tree. The Annals of Applied Probability, 7(2):340–361, 1997.

[11] M. D. Penrose, On k-connectivity for a geometric random graph.
Random Struct. Algorithms, 15(2):145–164, 1999.

[12] I. Stojmenovic, M. Seddigh, and J. Zunic, Dominating sets
and neighbor elimination-based broadcasting algorithms in wireless
networks. IEEE Trans. Parallel Distrib. Syst., 13(1):14–25, 2002.

[13] P.-J. Wan, K. M. Alzoubi, and O. Frieder, Distributed con-
struction of connected dominating set in wireless ad hoc networks.
Mob. Netw. Appl., 9(2):141–149, 2004.

