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Abstract—A malicious insider in a wireless network may carry
out a number of devastating attacks without fear of retribution
by authenticating its messages with untraceable credentials.
Hyperbolic position bounding (HPB) provides a mechanism to
probabilistically estimate the candidate location of an attack
message’s originator using received signal strength (RSS) reports,
without knowledge of the transmitting power. We specialize
the applicability of HPB into the realm of vehicular networks
and provide alternate HPB algorithms to improve localization
precision and computational efficiency. We extend HPB for
tracking the consecutive locations of a mobile attacker. We
evaluate the localization and tracking performance of HPB in
a vehicular scenario featuring a variable number of receivers
and a known navigational layout. We find that HPB can position
a transmitting device within stipulated guidelines for emergency
services localization accuracy.

Index Terms—Insider Attacks, Location Estimation, Vehicular
Networks, Mobile Networks, Wireless Security, Wireless Net-
works

I. INTRODUCTION

Insider attacks pose an often neglected threat scenario when
devising security mechanisms for emerging wireless tech-
nologies. For example, traffic safety applications in vehicular
networks aim to prevent fatal collisions and preemptively warn
drivers of hazards along their path, thus preserving numer-
ous lives. Unmitigated attacks upon these networks stand to
severely jeopardize their adoption and limit the scope of their
deployment.

The advent of public key cryptography, where a node is
authenticated through the possession of a public/private key
pair certified by a trust anchor, has addressed the primary
threat posed by an outsider without valid credentials. But a
vehicular network safeguarded through a Public Key Infras-
tructure (PKI) is only as secure as the means implemented to
protect its member nodes’ private keys. An IEEE standard has
been proposed for securing vehicular communications in the
Dedicated Short Range Communications Wireless Access in
Vehicular Environments (DSRC/WAVE) [12]. This standard
advocates the use of digital signatures to secure vehicle safety
broadcast messages, with tamper proof devices storing secret
keys and cryptographic algorithms in each vehicle. Yet a con-
vincing body of existing literature questions the resistance of
such devices to a motivated attacker, especially in technologies

that are relatively inexpensive and readily available [2], [3].
In the absence of strict distribution regulations, for example
if tamper proof devices for vehicular nodes are available off
the shelf from a neighborhood mechanic, a supply chain exists
for experimentation with these devices for the express purpose
of extracting private keys. The National Institute of Standards
and Technology (NIST) has established a certification process
to evaluate the physical resistance of cryptographic processors
to tampering, according to four security levels [20]. However,
tamper resistance comes at a price. High end cryptographic
processors certified at the highest level of tamper resistance
are very expensive, for example an IBM 4764 coprocessor
costs in excess of 8000 USD [11]. Conversely, lower end
tamper evident cryptographic modules, such as smartcards,
feature limited mechanisms to prevent cryptographic mate-
rial disclosure or modification and only provide evidence
of tampering after the fact [25]. The European consortium
researching solutions in vehicular communications security,
SeVeCom, has highlighted the existence of a gap in tamper
resistant technology for use in vehicular networks [23]. While
low end devices lack physical security measures and suffer
from computational performance issues, the cost of high end
modules is prohibitive. The gap between the two extremes
implies that a custom hardware and software solution is
required, otherwise low end devices may be adopted and prove
to be a boon for malicious insiders.

Vehicle safety applications necessitate that each network
device periodically broadcast position reports, or beacons.
A malicious insider generating false beacons whose digital
signature is verifiable can cause serious accidents and possibly
loss of life. Given the need to locate the transmitter of false
beacons, we have put forth a mechanism for attributing a
wireless network insider attack to its perpetrator, assuming that
a malicious insider is unlikely to use a digital certificate linked
to its true identity. Our hyperbolic position bounding (HPB)
algorithm probabilistically delimits the candidate location of
an attack message’s originating device, assuming neither the
cooperation of the attacker nor any knowledge of the effective
isotropic radiated power (EIRP) [14]. The received signal
strength (RSS) of an attack message at a number of trusted
receivers is employed to compute multiple hyperbolic areas
whose intersection contains the source of the signal, with a



degree of confidence.
We demonstrate herein that the HPB mechanism is re-

sistant to varying power attacks, which are a known pit-
fall of RSS-based location estimation schemes. We present
three variations of HPB, each with a different algorithm for
computing hyperbolic areas. We extend HPB to include a
mobile attacker tracking capability. We simulate a vehicular
scenario with a variable number of receiving devices, and
we evaluate the performance of HPB in both localizing and
tracking a transmitting attacker, as a function of the number of
receivers. We compare the HPB performance against existing
location accuracy standards in related technologies, including
the Federal Communications Commission (FCC) guidelines
for localizing a wireless handset in an emergency situation.

Section II reviews existing work in vehicular node location
determination and tracking. Section III outlines the HPB
mechanism in its generic incarnation. Section IV presents three
flavours of the HPB algorithm for localizing and tracking a
mobile attacker. Section V evaluates the performance of the
extended HPB algorithms. Section VI discusses the simulation
results obtained. Section VII concludes the paper.

II. RELATED WORK

A majority of wireless device location estimation schemes
presume a number of constraints that are not suitable for
security scenarios. We outline these assumptions and compare
them against those inherent in our HPB threat model in [13].
For example, a number of publications related to the location
determination of vehicular devices focus on self-localization,
where a node seeks to learn its own position [4], [21].
Although the measurements and information provided to these
schemes are presumed to be trustworthy, this assumption does
not hold for finding an attacker invested in avoiding detection
and eviction from the network.

Some mechanisms for the localization of a vehicular de-
vice by other nodes are based on the principle of location
verification, where a candidate position is proposed, and some
measured radio signal characteristic, such as time of flight or
RSS, is used to confirm the vehicle’s location. For example
in [10] and [6], Hubaux, Capkun and Luo adapt Brands and
Chaum’s distance bounding scheme [5] for this purpose. Yet
a degree of cooperation is expected on the part of an attacker
for supplying a position. Additionally, specialized hardware
is necessary to measure time of flight, including nanosecond-
precision synchronized clocks and accelerated processors to
factor out relatively significant processing delays at the sender
and receiver. Xiao et al. [26] employ RSS values for location
verification, but they assume that all devices, including ma-
licious ones, use the same EIRP. An attacker with access to
a variety of radio equipment is unlikely to be constrained in
such a manner.

Location verification schemes for detecting false position
reports may be beacon-based or sensor-based. Leinmüller
et al. [16] filter beacon information through a number of
plausibility rules. Because each beacon’s claimed position
is corroborated by multiple nodes, consistent information is
assumed to be correct, based on the assumption of an honest

majority of network devices. This presumption leaves the
scheme vulnerable to Sybil attacks [8]. If a rogue insider can
generate a number of Sybil identities greater than the honest
majority, then the attacker can dictate the information corrob-
orated by a dishonest majority of virtual nodes. In ensuring
a unique geographical location for a signal source, our HPB-
based algorithms can detect a disproportionate number of co-
located nodes.

Tang et al. [24] put forth a sensor-based location verification
mechanism where video sensors, such as cameras and RFID
readers, can identify license plates. However, cameras perform
sub-optimally when visibility is reduced, for example at night
or in poor weather conditions. This scheme is supported by
PKI-based beacon verification and correlation by an honest
majority, which is also vulnerable to insider and Sybil attacks.
Another sensor-based mechanism is suggested by Yan et
al. [27], using radar technology for local security and the
propagation of radar readings through beacons on a global
scale. Again, an honest majority is assumed to be trustworthy
for corroborating the beacons, both locally and globally.

Some existing literature deals explicitly with mobile device
tracking, including the RSS-based mechanisms put forth by
Mirmotahhary et al. [19] and by Zaidi and Mark [28]. These
presume a known EIRP and require a large number of trans-
mitted messages so that the signal strength variations can be
filtered out.

III. HYPERBOLIC POSITION BOUNDING

The log-normal shadowing model predicts a radio signal’s
large scale propagation attenuation, or path loss, as it travels
over a known transmitter-receiver (T-R) distance [22]. The
variations in signal strength experienced in a particular prop-
agation environment, also known as the signal shadowing,
behave as a log-normal random variable with mean zero and a
standard deviation obtained from experimental measurements.
In this model, the path loss over T-R distance d is computed
as:

L(d) =L(d0) + 10η log(
d

d0
) + Xσ (1)

where d0 is a pre-defined reference distance close to the
transmitter, L(d0) is the average path loss at the reference
distance, and η is a path loss exponent dependent upon the
propagation environment. The signal shadowing is represented
by a random variable Xσ with zero mean and standard
deviation σ.

In [14], we adapt the log-normal shadowing model to
estimate a range of T-R distance differences, assuming that
the EIRP is unknown. The minimum and maximum bounds
of the distance difference range between a transmitter and a
receiver pair Ri and Rj , with confidence level C, are computed
as:

∆d−ij =
(
d0 × 10(P−−RSSi−L(d0)−zσ)/10η

)

− (
d0 × 10(P−−RSSj−L(d0)+zσ)/10η

)
(2)

∆d+
ij =

(
d0 × 10(P+−RSSi−L(d0)+zσ)/10η

)

− (
d0 × 10(P+−RSSj−L(d0)−zσ)/10η

)
(3)



where RSSk is the RSS measured at receiver Rk, [P−,P+]
represents a dynamically estimated EIRP interval, z =
Φ−1( 1+C

2 ) represents the normal distribution constant asso-
ciated with a selected confidence level C, and [−zσ, +zσ] is
the signal shadowing interval associated with this confidence
level. The amount of signal shadowing taken into account in
the T-R distance difference range is commensurate with the
degree of confidence C. For example, a confidence level of
C = 0.95, where z = 1.96, encompasses a larger proportion
of signal shadowing around the mean path loss than C = 0.90,
where z = 1.65. A higher confidence level, and thus a larger
signal shadowing interval, translates into a wider range of T-R
distance differences.

Hyperbolas are computed at the minimum and maximum
bounds, ∆d−ij and ∆d+

ij respectively, of the distance difference
range. The resulting candidate hyperbolic area for the location
of a transmitter is situated between the minimum and maxi-
mum hyperbolas and contains the transmitter with probability
C. The intersection of hyperbolic areas computed for multiple
receiver pairs bounds the position of a transmitting attacker
with an aggregated degree of confidence, as demonstrated
in [15].

IV. LOCALIZATION AND TRACKING
OF MOBILE ATTACKERS

We demonstrate that by dynamically computing an EIRP
range, we render the HPB mechanism impervious to varying
power attacks. We propose three variations of HPB for com-
puting sets of hyperbolic areas and the resulting candidate
areas for the location of a transmitting attacker. We also
describe our HPB-based approach for estimating the mobility
path of a transmitter in terms of location and direction of
travel.

A. Mitigating Varying Power Attacks

The use of RSS reports has been criticized as a sub-optimal
tool for estimating T-R distances due to their vulnerability to
varying power attacks [7]. An attacker that transmits at an
EIRP other than the one expected by a receiver can appear
to be closer or farther simply by transmitting a stronger or
weaker signal. Our HPB-based algorithms are immune to such
an exploit, since no fixed EIRP value is expected. Instead,
measured RSS values are leveraged to compute a likely EIRP
range, as demonstrated in Heuristic 1.

In order for HPB to compute a set of hyperbolic areas
between pairs of receivers, a possible EIRP range [P−,P+]
is dynamically estimated for a given attack message. We use
the log-normal shadowing model captured in Equation (1) for
this purpose. The path loss L(d) is replaced with its equivalent,
the difference between the EIRP and the RSSk measured at
a given receiver Rk.

Heuristic 1. EIRP Range Computation. Let R be the set of
all receivers within range of an attack message. Let R̃m be
the maximal RSS receiver and thus be estimated as the closest
receiver to the message transmitter, such that R̃m ∈ R and
RSSm ≥ RSSj for all Rj ∈ R. Given that EIRP = L(d0)+

10η log(d/d0) + RSS + Xσ from the log-normal shadowing
model, let the EIRP range [P−k ,P+

k ] at any receiver Rk be
determined, with confidence C, as:

P−k = L(d0) + 10η log(dmk/d0) + RSSk − zσ (4)

P+
k = L(d0) + 10η log(dmk/d0) + RSSk + zσ (5)

where dmk is the Euclidian distance between Rk and R̃m, for
any Rk ∈ R \ {R̃m}. The estimated EIRP range [P−,P+]
employed by a transmitter is the smallest probable interval
with which every receiver Rk ∈ R \ {R̃m} can reach R̃m.
Since P− must be smaller than P+, we iterate through the
ordered sets {P−k } and {P+

k }, for all Rk ∈ R\{R̃m}, to find
a supremum of EIRP values with minimal shadowing that is
lower than an infimum of maximal shadowing EIRP values.
Assuming the size of R is n, and thus the size of R \ {R̃m}
is n − 1, we compute the estimated EIRP range [P−,P+] as
follows:

i ← n− 1
j ← 1
while i > 0 and j < n

do





if P−i < P+
j

then




P− ← P−i
P+ ← P+

j

exit
if i > 1

then





if P−i−1 < P+
j

then




P− ← P−i−1

P+ ← P+
j

exit
i ← i− 1
j ← j + 1

The only case where the pseudo-code above can fail is if every
P−i is greater than every P+

j for all 1 ≤ i, j ≤ n− 1. This is
impossible, since Equations (4) and (5) together indicate that
for any k, P−k must be smaller than P+

k .

The log-normal shadowing model indicates that, for a fixed
T-R distance, the expected path loss is constant, albeit subject
to signal shadowing, regardless of the EIRP used by a trans-
mitter. Any EIRP variation induced by an attacker translates
into a corresponding change in the RSS values measured by
all receivers within radio range. As a result, an EIRP range
computed with Heuristic 1 incorporates an attacker’s power
variation and is commensurate with the actual EIRP used, as
are the measured RSS reports. The values cancel each other out
when computing an HPB distance difference range, yielding
constant values for the minimum and maximum bounds of this
range, independently of EIRP variations.

Lemma 1. Varying Power Effect. Let R be the set of all
receivers within range of an attack message. Let a proba-
ble EIRP range [P−,P+] for this message be computed as
set forth in Heuristic 1. Let the distance difference range
[∆d−ij , ∆d+

ij ] between a transmitter and receiver pair Ri, Rj

be calculated according to Equations (2) and (3). Then any
increase (or decrease) in the EIRP of a subsequent message
influences a corresponding proportional increase (or decrease)



in RSS reports, effecting no measurable change in the range of
distance differences [∆d−ij ,∆d+

ij ] estimated with a dynamically
computed EIRP range.

Proof: Let an original EIRP range [P−k ,P+
k ] computed

for all receivers Rk ∈ R yield an estimated global EIRP
range [P−,P+]. Let a new varying power attack message be
transmitted such that the EIRP includes a power increase (or
decrease) of ∆P . Then for every Rk ∈ R, the corresponding
R̂SSk for the new attack message reflects the same change
in value from the original RSSk, for R̂SSk = RSSk + ∆P .
Given new R̂SSk values for all Rk ∈ R, the resulting EIRP
range [P̂−, P̂+] computed with Heuristic 1 include the same
change ∆P over the original range of values [P−,P+]:

P̂− = sup{P̂−k }
= sup{L(d0) + 10η log(dmk/d0) + R̂SSk − zσ}
= sup{L(d0) + 10η log(dmk/d0) + RSSk + ∆P − zσ}
= sup{P−k + ∆P}
= P− + ∆P

Conversely, we see that P̂+ = P+ + ∆P .
As a result, the distance difference range [∆d̂−ij ,∆d̂+

ij ] for the
new message is equal to the original range [∆d−ij , ∆d+

ij ]:

∆d̂−ij =
(
d0 × 10(P̂−−R̂SSi−L(d0)−zσ)/10η

)

− (
d0 × 10(P̂−−R̂SSj−L(d0)+zσ)/10η

)

=
(
d0 × 10(P−+∆P−RSSi−∆P−L(d0)−zσ)/10η

)

− (
d0 × 10(P−+∆P−RSSj−∆P−L(d0)+zσ)/10η

)

=
(
d0 × 10(P−−RSSi−L(d0)−zσ)/10η

)

− (
d0 × 10(P−−RSSj−L(d0)+zσ)/10η

)

= ∆d−ij

The same logic can be used to demonstrate that ∆d̂+
ij = ∆d+

ij .

A varying power attack is thus ineffective against HPB, as
the placement of hyperbolic areas remains unchanged.

B. HPB Algorithm Variations

The HPB mechanism estimates the originating location of
a single attack message from a static snapshot of a wireless
network topology. Given sufficient computational efficiency,
the algorithm executes in near real-time to bound a malicious
insider’s position at the time of its transmission.

Hyperbolic areas constructed from Equations (2) and (3) are
used by HPB to compute a candidate area for the location of
a malicious transmitter.

Definition 1. Hyperbolic Area. Let G be the set of all (x, y)
coordinates in the Euclidian space within radio range of a
malicious transmitter. Let H−ij be the hyperbola computed from
the minimum bound of the distance difference range between
receivers Ri and Rj with confidence level C, as defined by
Equation (2). Let H+

ij be the hyperbola computed from the
maximum bound of the distance difference range between Ri

and Rj with the same confidence, as defined by Equation (3).
Then we define the hyperbolic area Aij as situated between
the hyperbolas H−ij and H+

ij with confidence level C. More
formally, if δ(a, b) represents the Euclidian distance between
any two points a and b, then:

Aij =
{

pk : ∆d−ij ≤ δ(pk, Ri)− δ(pk, Rj) ≤ ∆d+
ij

for all pk ∈ G
}

where ∆d−ij and ∆d+
ij are defined in Equations (2) and (3).

A set of hyperbolic areas may be computed according to
three different algorithms, depending on the set of receiver
pairs considered.

Definition 2. Receiver Pair Set. Let Ω be any set of unique
receivers Rk. Then SΩ is defined as the exhaustive set of
unique, ordered receiver pairs in Ω:

SΩ = {{Ri, Rj} : Ri, Rj ∈ Ω and i < j}
where sh 6= sk for all sh, sk ∈ SΩ where h 6= k, and |SΩ| =(
n
2

)
where n = |Ω|.

Our original HPB algorithm employs all possible receiver
pairs to compute a candidate area.

Algorithm 1. Aα: All-pairs Algorithm. The all-pairs algo-
rithm Aα computes hyperbolic areas between every possible
pair of receivers. Let R be the set of all receivers within range
of an attack message. Let SR represent the set of all unique,
ordered receiver pairs in R, as put forth in Definition 2. Then
the set of hyperbolic areas Hα between all receiver pairs is
stated as follows:

Hα =
{Aij ,Aji : Aij ,Aji are computed as in Def. 1

for every {Ri, Rj} ∈ SR
}

The Aα algorithm generates hyperbolic areas for every
possible receiver pair, for a total of

(
n
2

)
pairs given n receivers,

as put forth in Algorithm 1. While this approach works
adequately for four receivers, additional receiving devices have
the effect of dramatically increasing computation time, as
well as reducing the success rate due to the accumulated
amount of signal shadowing excluded. The HPB execution
time is based on the number of hyperbolic areas computed,
which in turn is contingent upon the number of receivers.
For Aα, n receivers locate a transmitter with a complexity
of

(
n
2

)
= n×(n−1)

2 ≈ O(n2).
An alternate algorithm Aβ groups receivers in sets of size

r, with one intermediate candidate area computed for each set,
given all possible receiver pairs in that set. The final candidate
area for a transmitter consists of the intersection of all set
candidate areas.

Algorithm 2. Aβ: r-pair Set Algorithm. The r-pair set
algorithm Aβ groups receivers in sets of size r and computes
the intersection of all receiver pairs candidate areas for each
set. Let R be the set of all receivers within range of an attack
message. Let Ψ represent the disjoint partition of (m − 1)
sets of r receivers, with the mth element of Ψ containing the



remaining receivers:

Ψ =
{

ψk : ψk ⊆ R for 1 ≤ k ≤ m

and |ψk| = r if k < m

and 2 ≤ |ψk| ≤ r if k = m
}

where ψh ∩ ψk = ∅ for all ψh, ψk ∈ Ψ with h 6= k. Let
Sψk represent the set of all unique, ordered receiver pairs in
a given set of receivers ψk ∈ Ψ , as put forth in Definition 2.
Then the set of hyperbolic areas Hβ computed for sets of r
receivers is stated as follows:

Hβ =
{Aij ,Aji : Aij ,Aji are computed as in Def. 1

for every {Ri, Rj} ∈ Sψk for all ψk ∈ Ψ
}

For the Aβ algorithm, the number of hyperbolic areas
depends on the set size r, as well as the number of re-
ceivers n. Thus Aβ locates a transmitter with a complexity
of (n

r +1)× (
r
2

) ≈ O(n). For a small value of r, for example
r = 4, the execution time is proportional to at most ( 3n

2 + 6).
A third HPB algorithm, the perimeter-pairs variation Aγ ,

establishes a rudimentary perimeter around a transmitter’s
radio range. The logical center of the transmission range is
computed as the centroid of all receiver coordinates. This
range is partitioned into four quadrants from the center,
along two perpendicular axes. Four perimeter receivers are
identified as the farthest in each quadrant from the center.
Hyperbolic areas are computed between the perimeter receiver
pairs and between every remaining non-perimeter receiver and
the perimeter receivers in the other three quadrants.

Algorithm 3. Aγ: Perimeter-pairs Algorithm. The perimeter-
pairs algorithm Aγ partitions a transmitter’s radio range
into four quadrants. Four perimeter receivers are determined.
Hyperbolic areas are computed between all pairs of perimeter
receivers, as well as between every perimeter receiver and
the non-perimeter receivers of other quadrants. Let R be the
set of all receivers within range of an attack message. Let
Rχ = (xc, yc) be the centroid of all Ri ∈ R. Let Q be
the disjoint set of all receivers Ri ∈ R partitioned into four
quadrants from the centroid Rχ:

Q =
{
Qk : Qk = {Ri : Ri ∈ R and Ri = (xi, yi) and

xi ≥ xc and yi ≥ yc for k = 1
xi < xc and yi ≥ yc for k = 2
xi < xc and yi < yc for k = 3
xi ≥ xc and yi < yc for k = 4}}

Let the set N of perimeter receivers contain one receiver ρk

for each of the four quadrants, such that ρk is the farthest
receiver from the centroid Rχ in quadrant k:

N = {ρk : ρk = qi such that qi ∈ Qk and

δ(qi, Rχ) ≥ δ(qj , Rχ) for all qj ∈ Qk

for all Qk ∈ Q}
where δ(a, b) represents the Euclidian distance between any
two points a and b. Also let the set of non-perimeter receivers

in a given quadrant be determined as all receivers in that
quadrant other than the perimeter receiver:

N = {ρk : ρk = {Qk \ {ρk}} for every Qk ∈ Q}
Let SN represent the set of all unique, ordered perimeter
receiver pairs, as put forth in Definition 2. Then the set of
hyperbolic areas Hγ is stated as follows:

Hγ =
{Aij ,Aji : Aij ,Aji are computed as in Def. 1

for every {Ri, Rj} ∈
{SN ∪ {{Ri, Rj} :

Ri = ρk for every ρk ∈ N and Rj ∈ ρm

for every ρm ∈ N where m 6= k}} }

For example, Figure 1 illustrates a transmitter T and a
set of receivers. The grid is partitioned into four quadrants
from the computed receiver centroid. The set of perimeter
receivers, as the farthest receivers from the centroid in each
quadrant (I to IV), form a rudimentary bounding area for
the location of the transmitter. The Aγ algorithm computes
hyperbolic areas between all pairs of perimeter receivers, in
this case between all possible pairs in N = {R3, R4, R7, R5}.
Additional receiver pairs are formed between the remaining
non-perimeter receivers {R1, R2, R6, R8} and the perimeter
receivers of other quadrants. Receiver R6, for instance, is
situated in quadrant II, so it is included in a receiver pair
with each perimeter receiver in {R3, R7, R5}.
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Fig. 1. Example of Perimeter Receivers

In terms of complexity, the Aγ algorithm is equivalent to
Aβ . Given n receivers and four perimeter receivers such that
|N | = 4, Aγ executes in time

(
4
2

)
+3(n−4) = 3n−6 ≈ O(n).

The candidate area for the location of a malicious transmit-
ter is computed as the intersection of a set of hyperbolic areas,
Hα, Hβ , or Hγ , determined according to Algorithm 1, 2 or 3.

Definition 3. Candidate Area. Let G be the set of all (x, y)
coordinates in our sample Euclidian space. Let V ⊆ G be
the subset of all coordinates situated on the road layout of a
vehicular scenario. Then the grid candidate area GA`, where
` ∈ {α, β, γ}, is defined as the subset of grid points in G



situated in the intersection of every hyperbolic area computed
according to Algorithm Aα, Aβ or Aγ .

GA` =
{

pk : pk ∈ G and pk ∈
h≤m⋂

h=1

Ah ∈ H`

where ` ∈ {α, β, γ} and m = |H`| }

Similarly, the vehicular candidate area V A`, where ` ∈
{α, β, γ}, is defined as the subset of vehicular layout points
in V situated in the intersection of every hyperbolic area
computed according to Algorithm Aα, Aβ or Aγ .

V A` =
{

pk : pk ∈ V and pk ∈
h≤m⋂

h=1

Ah ∈ H`

where ` ∈ {α, β, γ} and m = |H`| }

While a candidate area contains a malicious transmitter with
probability C, the tracking of a mobile device requires that
a unique point in Euclidian space be deemed the likeliest
position for the attacker. In free space, we can use the centroid
of a candidate area, which is calculated as the average of all
the (x, y) coordinates in this area. In a vehicular scenario, we
use the road location closest to the candidate area centroid.

Definition 4. Centroids. The grid centroid of a given GA,
denoted as Gχ, consists of the average (x, y) coordinates of
all points within the GA.

Gχ = (xG, yG), such that xG =

|GA|∑

i=1

xi

|GA| and yG =

|GA|∑

i=1

yi

|GA| ,

for all pi = (xi, yi) ∈ GA

The vehicular centroid of a given V A, represented as V χ, is
the closest vehicular point to the average coordinates of all
points within the V A.

V χ = vk, such that vk ∈ V and ph = (xV , yV ), where

xV =

|V A|∑

i=1

xi

|V A| and yV =

|V A|∑

i=1

yi

|V A| ,

for all pi = (xi, yi) ∈ V A,

and δ(ph, vk) ≤ δ(ph, vj), for all vj ∈ V

C. Tracking a Mobile Attacker

We extend HPB to approximate the path followed by a
mobile attacker, as it continues transmitting. By computing
a new candidate area for each attack message received, a
malicious node can be tracked using a set of consecutive
candidate positions and the direction of travel inferred between
these points. We establish a mobility path in our vehicular
scenario as a sequence of vehicular layout (x, y) coordinates
over time, along with a mobile transmitter’s direction of travel
at every point.

Definition 5. A mobility path P is defined as a set of
consecutive coordinates pi = (xi, yi) and angles of travel θi

over a time interval T .

P =
{ {pi, θi} : pi = (xi, yi) is the transmitter location

at ti ∈ T and θi = atan2 (yi − yi−1, xi − xi−1)
}

where atan2 is an inverse tangent function returning values
over the range [−π, +π] to take direction into account. 1

We estimate the mobility path P taken by an attacker by
executing an HPB algorithm for every attack message received
over a time period T . The vehicular centroids of the resulting
candidate areas constitute the estimated attacker positions, and
the angle from one estimated point to the next determines the
approximated direction of travel.

Algorithm 4. Mobile Attacker Tracking. Let M be the set
of consecutive attack messages received over a time interval.
Then the estimated mobility path P̂ of a transmitter over the
message base M is computed as follows:

P̂ =
{

(p̂i, θ̂i) : p̂i = (x̂i, ŷi) = V χi for mi ∈M
and θ̂i = atan2 (ŷi − ŷi−1, x̂i − x̂i−1)

}

For every attack message mi ∈M, an estimated transmitter
location p̂i must be determined. An execution of HPB using
the RSS values corresponding to mi yields a vehicular candi-
date area V Ai, as put forth in Definition 3. The road centroid
of V Ai is computed as V χi, according to Definition 4. It is
by definition the closest point in the vehicular layout to the
averaged center of the V Ai, and thus the natural choice for
an estimated value p̂i of the true transmitter location pi. The
direction of travel of a transmitter is stated in Definition 5 as
the angle between consecutive positions in Euclidian space.
We follow the same logic to compute the estimated direction
of travel θ̂i between transmitted messages mi−1 and mi as
the angle between the corresponding estimated positions p̂i−1

and p̂i.
Example. Figure 2 depicts an example mobility path of

a malicious insider, with consecutive traveled points labeled
from 1 to 20. The transmitter broadcasts an attack message at
every fourth location, labeled as points 4, 8, 12, 16 and 20.

For each attack message, we execute the Aγ HPB variation,
for confidence level C = 0.95, using eight randomly positioned
receivers, and a vehicular candidate area V Aγ is computed.
The estimated locations and directions of travel are depicted
in Figure 3. The initial point’s direction of travel cannot be
estimated, as there is no previous point from which to ascertain
a traveled path. In this example, point 4 is localized at 100
meters from its true position, points 8, 16 and 20 at 25 meters,
while point 12 is found in its exact location.

V. PERFORMANCE EVALUATION

We describe a simulated vehicular scenario to evaluate
the localization and tracking performance of the extended
HPB mechanisms described in Section IV-B. We compare the
success rates of the Aα, Aβ and Aγ algorithms at estimating

1As first defined for the Fortran 77 programming language [1]
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a malicious transmitter’s location within a candidate area, as
well as the relative sizes of the grid and vehicular candidate
areas. We model a mobile transmitter’s path through a vehicu-
lar scenario and assess the success in tracking it by measuring
the distance between the actual and estimated positions, in
addition to the difference between the approximated direction
of travel and the real one.

A. Hyperbolic Position Bounding of Vehicular Devices

Our simulation uses a one square kilometer urban grid, as
depicted in Figure 4. We evaluate the all-pairs Aα, 4-pair
set Aβ and perimeter-pairs Aγ HPB algorithms with four,
eight, 16 and 32 receivers. In each HPB execution, four of
the receivers are fixed road-side units (RSUs) stationed at
intersections. The remaining receivers are randomly positioned
on-board units (OBUs), distributed uniformly on the grid
streets. Every HPB execution also sees a transmitter placed
at a random road position within the inner square of the
simulation grid. We assume that in a sufficiently dense urban
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Fig. 4. Urban Scenario – Richmond, Ontario

setting, RSUs are positioned at most intersections. As a result,
any transmitter location is geographically surrounded by four
RSUs within radio range. For each defined number of receivers
and two separate confidence levels C ∈ {0.95, 0.90}, the HPB
algorithms, Aα, Aβ and Aγ , are executed 1000 times. For
every execution, RSS values are generated for each receiver
from the log-normal shadowing model. We adopt existing
experimental path loss parameter values from large scale
measurements gathered at 2.4 GHz by Liechty et al. [17], [18].
From η = 2.76 and a signal shadowing standard deviation
σ = 5.62, we augment the simulated RSS values with an
independently generated amount of random shadowing to
every receiver in a given HPB execution. Since the EIRP used
by a malicious transmitter is unknown, a probable range is
computed according to Heuristic 1.

For every HPB execution, whether the Aα, Aβ or Aγ

algorithm is used, we gather three metrics: the success rate
in localizing the transmitter within a computed candidate area
GA; the size of the unconstrained candidate area GA as a
percentage of the one square kilometer grid; and the size of
the candidate area restricted to the vehicular layout V A as a
percentage of the grid. The success rate and candidate area
size results we obtain are deemed 90% accurate within a 2%
and 0.8% confidence interval respectively.

The comparative success rates of the Aα, Aβ and Aγ

approaches are illustrated in Figure 5, for confidence level
C = 0.95. While Aγ exhibits the best localization success
rate, every algorithm sees its performance degrade as more
receivers are included. With four receivers for example, all
three variations successfully localize a transmitter 94-95% of
the time. However with 32 receivers, Aγ succeeds in 79%
of the cases, while Aβ and Aα do so in 71% and 50% of
executions. Given that each receiver pair takes into account
an amount of signal shadowing based on the confidence level
C, it also probabilistically ignores a portion (1 − C) of the
shadowing. As more receivers and thus more receiver pairs
are added, the error due to excluded shadowing accumulates.
The results obtained for confidence level C = 0.90 follow the



same trend, although the success rates are slightly lower.
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Figures 6 and 7 show the grid and vehicular candidate area
sizes associated with our simulation scenario, as computed
with algorithms Aα, Aβ and Aγ , for confidence level C =
0.95. The size of the grid candidate area GA corresponds to
21% of the simulation grid, with four receivers, for both Aβ

and Aα, while Aγ narrows the area to only 7%. In fact, the Aγ

approach exhibits a GA size that is independent of the number
of receivers. Yet for Aβ and Aα, the GA size is noticeably
lower with additional receivers. This finding reflects the use of
perimeter receivers with Aγ . These specialized receivers serve
to restrict the GA to a particular portion of the simulation grid,
even with few receivers. However, this variation does not fully
exploit the presence of additional receiving devices, as these
only support the GA determined by the perimeter receivers.
The size of the vehicular candidate area V A follows the same
trend, with a near constant size of 0.64% to 1% of the grid for
Aγ , corresponding to a localization granularity within an area
less than 100 m × 100 m, assuming the transmitter is aboard
a vehicle traveling on a road. The Aβ and Aα algorithms
compute vehicular candidate area sizes that decrease as more
receivers are taken into account, with Aα yielding the best
localization granularity. But even with four receivers, Aβ and
Aα localize a transmitter within a vehicular layout area of
1.6% of the grid, or 125 m× 125 m.

Generally, both the GA and V A sizes decrease as the
number of receivers increase, since additional hyperbolic areas
pose a higher number of constraints on a candidate area, thus
decreasing its extent. We see in Figures 6 and 7 that Aβ

consistently yields larger candidate areas than Aα for the
same reason, as Aα generates a significantly greater number of
hyperbolic areas. For example, while Aα computes an average
GAα of 10% and 3% of the simulation grid with eight and
16 receivers, Aβ yields areas of 15% and 9% respectively. By
contrast, Aγ yields a GA size of 5-6%, but its reliability is
greater, as demonstrated by the higher success rates achieved.
The nearly constant 5% GA size computed with Aγ has an
average success rate of 81% for 16 receivers, while the 9%
GA generated by Aβ is 79% reliable and the 3% GA obtained

with Aα features a dismal 68% success rate. Indeed, Figures 5
and 6 taken together indicate that smaller candidate areas
provide increased granularity at the cost of lower success rates,
and thus decreased reliability. This phenomenon is consistent
with the intuitive expectation that a smaller area is less likely
to contain the transmitter.
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B. Tracking a Vehicular Device

We generate 1000 attacker mobility paths P, as stipulated
in Definition 5, of 20 consecutive points evenly spaced at
every 25 meters. Each path begins at a random start location
along the central square of the simulation grid depicted in
Figure 4. We keep the simulated transmitter location within
the area covered by four fixed RSUs, presuming that an
infinite grid features at least four RSUs within radio range
of a transmitter. The direction of travel for the start location
is determined randomly. Each subsequent point in the mobile
path is contiguous to the previous point, along the direction
of travel. Upon reaching an intersection in the simulation



grid, a direction of travel is chosen randomly among the
ones available from the current position, excluding the reverse
direction.

The Aα, Aβ and Aγ algorithms are executed at every
fourth point pi of each mobility path P, corresponding to a
transmitted attack signal at every 100 meters. The algorithms
are executed for confidence levels C ∈ {0.95, 0.90}, with
each of four, eight, 16 and 32 receivers. In every case, the
receivers consist of four static RSUs, and the remainder are
OBUs randomly placed at any point on the simulated roads.

For each execution of Aα, Aβ and Aγ , a vehicular can-
didate area V A is computed, and its centroid V χ is taken
as the probable location of the transmitter, as described in
Algorithm 4. Two metrics are aggregated over the executions:
the root mean square location error, as the distance in meters
between the actual transmitter location pi and its estimated
position p̂i = V χi; and the root mean square angle error
between the angle of travel θi for each consecutive actual
transmitter location and the angle θ̂i computed for the ap-
proximated locations.
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The location error for the Aα, Aβ and Aγ algorithms,
given confidence level C = 0.95, is illustrated in Figure 8.
As expected, the smaller V A sizes achieved with a greater
number of receivers for Aα and Aβ correspond to a more
precise transmitter localization. The location error associated
with the Aα algorithm is smaller, compared to Aβ , for the
same reason. Correspondingly, the nearly constant V A size
obtained with Aγ yields a similar result for the location
error. For instance with confidence level C = 0.95, eight and
16 receivers produce a location error of 114 and 79 meters
respectively with Aα, but of 121 and 102 meters with Aβ .
The location error with Aγ is once more nearly constant, at
96 and 91 meters. The use of all receiver pairs to compute
a V A with Aα allows for localization that is up to 40-50%
more precise than grouping the receivers in sets of four or
relying on perimeter receivers when 16 or 32 receiving devices
are present. Despite its granular localization performance, the
Aα approach works best with large numbers of receivers,

which may not consistently be realistic in a practical setting.
Another important disadvantage of the Aα approach lies in
its large complexity of O(n2) for n receivers, when compared
to Aβ and Aγ with a complexity of O(n), as discussed in
Section IV-B.
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Figure 9 plots the root mean square location error in terms
of V A size for the three algorithms. While Aα and Aβ

yield smaller V As for a large number of receivers, the V As
computed with Aγ offer more precise localization with respect
to their size. For example, a 0.7% V A size obtained with Aγ

features a 96 meter location error, while a similar size V A
computed with Aβ and Aα generate a 102 and 114 meter
location error, respectively.
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Fig. 10. Direction of Travel Angle Error for C = 0.95

The error in estimating the direction of travel exhibits little
variation in terms of number of receivers and choice of HPB
algorithm, as shown in Figure 10. With eight and 16 receivers,
for confidence level C = 0.95, Aβ approximates the angle
of travel between two consecutive points within 77◦ and 71◦



respectively, whereas Aα estimates it within 76◦ and 63◦. Aγ

exhibits a slightly higher direction error at 76◦ and 77◦. It
should be noted that for all three algorithms, for all numbers
of receivers, the range of angle errors only spans 14◦. So
while the granularity of localization is contingent upon the
HPB methodology used and the number of receivers, the three
variations perform similarly in estimating the general direction
of travel.

VI. DISCUSSION

The location error results of Figure 8 shed an interesting
light on the HPB success rates discussed in Section V-A. For
example in the presence of 32 receivers, for confidence level
C = 0.95, only 50% of Aα executions yield a candidate area
containing a malicious transmitter, as shown in Figure 5. Yet
the same scenario localizes a transmitter with a root mean
square location error of 45 meters of its true location, whether
it lies within the corresponding candidate area or not. This
indicates that while a candidate area may be computed in
the wrong position, it is in fact rarely far from the correct
transmitter location. This may be a result of our strict defi-
nition of a successful execution, where only a candidate area
in the intersection of all hyperbolic areas is considered. We
have observed in our simulations that a candidate area may
be erroneous solely because of a single misplaced hyperbolic
area, which results in either a wrong location or an empty
candidate area. In our simulations tracking a mobile attacker,
we notice that while Aγ and Aβ generate an empty V A
for 10% and 14% of executions, Aα does so in 31% of the
cases. This phenomenon is likely due to the greater number
of hyperbolic areas generated with the Aα approach and the
subsequent greater likelihood of erroneously situated hyper-
bolic areas. While the success rates depicted in Figure 5 omit
the executions yielding empty candidate areas as inconclusive,
future work includes devising a heuristic to re-compute a set of
hyperbolic areas in the case where their common intersection
is empty.

In comparing the location accuracy of HPB with related
technologies, we find that, for example, differential GPS
devices can achieve less than 10 meter accuracy. However, this
technology is better suited to self-localization efforts relying
on a device’s assistance, and cannot be depended upon for the
position estimation of a non-cooperative adversary. The FCC
has set forth regulations for the network-based localization of
wireless handsets in emergency 911 call situations. Service
providers are expected to locate a calling device within 100
meters 67% of the time and within 300 meters in 95% of
cases [9]. In the minimalist case involving four receivers,
the HPB perimeter-pairs variation Aγ localizes a transmitting
device with a root mean square location error of 107 meters.
This translates into a location accuracy of 210 meters in 95%
of cases and of 104 meters in 67% of executions. While the
former case is fully within FCC guidelines, the latter is very
close. With a larger number of receivers, for example eight
receiving devices, Aγ yields an accuracy of 188 meters 95%
of the time and of 93 meters in 67% of cases. Although HPB
is designed for the location estimation of a malicious insider,

its use may be extended to additional applications such as
911 call origin localization, given that its performance closely
matches the FCC requirements for emergency services.

VII. CONCLUSION

We extend a hyperbolic position bounding (HPB) mecha-
nism to localize the originator of an attack signal within a
vehicular network. We devise two additional approaches to
compute hyperbolic areas between pairs of trusted receivers
by grouping them in sets and establishing perimeter receivers.
We demonstrate that due to the dynamic computation of
a probable EIRP range utilized by an attacker, our HPB
algorithms are impervious to varying power attacks. We extend
the HPB algorithms to track the location of a mobile attacker
transmitting along a traveled path.

The performance of all three HPB variations is evaluated
in a vehicular scenario. We find that the grouped receivers
method yields a localization success rate up to 11% higher
for a 6% increase in candidate area size over the all-pairs
approach. We also observe that the perimeter-pairs algorithm
provides a more constant candidate area size, independently of
the number of receivers, for a success rate up to 13% higher
for a 2% increase in candidate area size over the all-pairs
variation. We conclude that the original HPB mechanism using
all pairs of receivers produces a smaller localization error than
the other two approaches, when a large number of receiving
devices are available. We observe that for a confidence level of
95%, the former approach localizes a mobile transmitter with a
granularity as low as 45 meters, up to 40-50% more precisely
than the grouped receivers and perimeter-pairs methods. How-
ever, the computational complexity of the all-pairs variation is
significantly greater, and its performance with fewer receivers
is less granular than the perimeter-pairs method. Of the two
approaches with complexity O(n), the perimeter-pairs method
yields a success rate up to 8% higher for consistently smaller
candidate area sizes, location and direction errors.

In a vehicular scenario, we achieve a root mean square
location error of 107 meters with four receivers and of
96 meters with eight receiving devices. This granularity is
sufficient to satisfy the FCC-mandated location accuracy reg-
ulations for emergency 911 services. Our HPB mechanism
may therefore be adaptable to a wide range of applications
involving network-based device localization assuming neither
target node cooperation nor knowledge of the EIRP.

We have demonstrated the suitability of the hyperbolic
position bounding mechanism for estimating the candidate
location of a vehicular network malicious insider and for
tracking such a device as it moves throughout the network.
Future research is required to assess the applicability of the
HPB localization and tracking mechanisms in additional types
of wireless and mobile technologies, including wireless access
networks such as WiMAX/802.16.
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