
Cross Verification-based Detection of the Evil Ring Attack in Wireless Sensor
Networks

Wei Shi
Faculty of Business and
Information Technology

University of Ontario Institute Technology
Oshawa, Canada

Email: wei.shi@uoit.ca

Michel Barbeau
School of Computer Science

Carleton University
Ottawa, Canada

Email: barbeau@scs.carleton.ca

Jean-Pierre Corriveau
School of Computer Science

Carleton University
Ottawa, Canada

Email: jeanpier@scs.carleton.ca

Abstract—In ad hoc networks and wireless sensor networks,
several routing algorithms rely on the knowledge by the
network nodes of their own geographic location and those of
others. For cases where a node doesn’t have its own positioning
device (e.g., GPS), Alfaro et al. propose several algorithms
that a node can run to determine its geographic position using
position reports from neighbors.

In this paper, we first present the evil ring attack, an attack
on the geographic location algorithms of Alfaro et al. that
misleads nodes about the true position of their neighbors.
An attacker sends false reports with a position that sits on
a circle centered at the victim’s location and of a radius equal
to the distance between the victim and attacker. The attack
succeeds because the calculation of the distance between the
victim and attacker is not affected despite this fake position.
We then present and analyze an evil ring attack detection
algorithm in which a position-unaware sensor node crosschecks
the consistency of the information it collects from its neighbors
with the information collected by other trusted neighbors. This
algorithm detects the existence of neighbors running the evil
ring attack.

We propose a general distributed algorithm for a) localizing
sensors in a wireless sensor network in the presence of some
malfunctioning ones, and b) detecting such malfunctioning
sensors.

Keywords-Wireless Sensor Network; Liar Detection; Local-
ization; Algorithms.

I. INTRODUCTION

In ad hoc networks and wireless sensor networks (WSNs),
several routing algorithms rely on the knowledge, by net-
work nodes, of their own geographic location and geographic
locations of others. Such routing algorithms include compass
routing, face routing [1] and geographical routing [2]. Nodes
equipped with GPS devices can determine their geographic
location. There are, however, several instances where a
GPS device may be unavailable or inoperative because,
for instance, of signal obstruction. Alfaro et al. proposed
several algorithms that a node can run to determine its
geographic position using position reports from neighbors
and geographic location techniques such as time of arrival,
time difference of arrival and angle of arrival [3], [4]. In such
work, it is assumed that some nodes may be malfunctioning

or malicious and, consequently, may not report correct
positions. These nodes are called liars. The algorithms are
designed such that every node not equipped with a GPS
device can determine its location using position reports from
neighbors even in the presence of liars. This is possible via
the application of majority rules, as long as the number of
liars is below a certain threshold.

In [5], a mechanism for secure computation and verifi-
cation of positions of wireless devices was presented. This
method is robust and resists against distance modification
attacks from a large number of attacker nodes, but is not
able to detect and filter out the attackers. In [6] the authors
proposed a secure localization mechanism that detects the
existence of attacker nodes, termed phantom nodes, without
relying on any trusted entity. The approach is limited to
stochastic guarantees, its main drawback. A decentralized
method that solves both secure localization (i.e., determining
the location of nodes in the presence of malicious adver-
saries) and location verification (i.e., verifying the location
claimed by a node) was studied in [7]. It requires a small
number of reference points (locators) and it limits the ability
of an adversary to spoof a sensor’s location. This method,
however, cannot detect attackers in WSNs.

In this paper we present an attack on the geographic
location algorithms of Alfaro et al. that misleads nodes about
the true position of their neighbors. A liar can send a false
position. This attack will not be detected as such as long
as the liar sits on a circle centered at the victim’s location
and of a radius corresponding to the distance between the
liar and the victim. Such an attack succeeds because the
calculation of the distance between the liar and victim is
not affected. Thus, victims can still calculate their position
correctly, but are unable to detect the false position reports
received from liars. In turn, this attack enables attacks
against routing protocols requiring knowledge of positions
of neighbors and other nodes in the networks to operate
correctly. We call this stratagem the evil ring attack.

Building on the work of Alfaro et al. [3], [4] and Delaet
et al. [8], we propose here a distributed algorithm for

localizing sensors in WSNs in the presence of liars and for
detecting evil ring attacks. More specifically, in a paper on
the problem entitled Deterministic secure positioning, Delaet
et al. present an algorithm that requires a priori knowledge
of the position of each sensor in the network. That algorithm
requires 2n2 messages but clearly imposes a demanding, if
not problematic, constraint in the form of a priori knowledge.
It is our goal to avoid this hurdle in our proposed solution.
We present an algorithm in which a location-unaware sensor
crosschecks the consistency of the information it collects
from its neighbors with the information collected by other
trusted neighbors. The existence of neighbors running the
evil ring attack can be detected with our proposed algorithm.
Figure 1 shows a group of ten sensors located on a Google
map. Assume sensors 1 and/or 2 and/or 3 are liars. Our
algorithm allows location-unaware sensors A and B to
calculate their location according to the locations that their
neighboring sensors report and to identify the liars among
their neighbors.

Figure 1. A group of ten sensors displayed on a Google map. Location-
unaware sensors A and B calculate their location despite the fact there
are liars among their neighbors. They crosscheck the consistency of the
information they collect from neighbors in order to identify the liars using
Algorithm Cross Check.

The details of the evil ring attack, in the context of
the work of Alfaro et al., are presented in Section II. Our
model and assumptions are formally presented in Section III.
The evil ring attack detection algorithm is described in
Section IV and analyzed in Section V. We conclude with
Section VI.

II. ATTACK MODEL: EVIL RING

Alfaro et al. described algorithms that a node Ui can apply
to determine its own position by obtaining the positions of
its one-hop neighbors [3], [4]. More precisely, in these al-
gorithms, node Ui determines its location from the positions
of neighbors, considered three at a time. Let V 1, V 2 and
V 3 denote three such neighbors of Ui with their calculated
distances d1, d2 and d3 respectively. With respect to these
three neighbors, the position of Ui is determined by the point

at the intersection of the three circles centered at positions
V 1, V 2 and V 3 and of radii d1, d2 and d3 respectively.

Algorithm 1 in Ref. [4], referred to as algorithm Majority-
ThreeNeighborSignals, uses a majority rule. Let us elaborate.
Given the positions of all one-hop neighbors of node Ui

(as reported by these neighbors of Ui), triples of positions
are created for all combinations of these neighbors. An
intersection point is calculated for each such triple. The
number of occurrences of each intersection point resulting
from all triples is then counted. The algorithm succeeds in
localizing Ui if there is a consensus, that is, if more than half
of the total number of triples compute the same intersection
point (which becomes the resulting position of Ui).

The interest of such algorithms resides in the fact that
it is assumed that some neighbors may lie about their true
position, but not about their distance, and still the proposed
algorithms work. Thus, such algorithms are said to be liar
tolerant. Most importantly, Alfaro et al. provide an upper
bound on the number of liars that the algorithm can tolerate
whilst working correctly.

Let us now describe the evil ring attack in this context,
that is, a situation in which liars provide false positions
that cannot be detected by the majority-rule used in this
algorithm. (This attack is an enabler for other attacks, such
as attacks against position-based routing protocols.) The
attack is pictured in Figure 2. Let us assume that node V 1 is
a liar (as opposed to a truth teller) and is used to determine
the position of Ui. Part a of Figure 2 shows that node V 1
can report any position located on a (dashed) circle centered
at the position of Ui and of radius d1. The calculation of the
distance to node V 1 by Ui is not affected and is consistent
with distances calculated using position reports from truth
tellers. However, assume node Ui is misled by V 1, which
reports a wrong position to Ui. This false position disrupts
the expected operation of any position-based algorithm, such
as those used for geographical routing. Parts b and c of
Figure 2 show that the attack can involve two or three
independent liars in a single triple.

We describe, in the following section, a technique with
which such liars can be detected by means of a cross
verification of position reports with trusted neighbors.

III. MODEL AND ASSUMPTIONS

Let V denote the collection of sensors nodes in some area,
with |V | = n. Let M denote a group of malfunctioning
sensor nodes, with |M| = m and M ⊂ V . Each such
malfunctioning sensor is called a liar because it does not
report its position (i.e., coordinates) correctly. In this case,
a liar is said to report a fake position. The intent of a liar
may be malicious, in that case the liar may mislead the node
it reports its position to into a wrong location calculation.
Alternatively, the intent of a liar may be unintentional in the
sense that obstacles or other physical circumstances (e.g.,
multi-path interference) prevent a sensor from reporting its

V1

V3

V2

Ui

b

V1

V3

V2

Ui

c

a

V1

V3

V2

Ui

Figure 2. Evil ring attack involving one (part a) or two (part b) or three
(part c) sensor nodes in a single triple.

correct location [3]. We assume that the liars cannot corrupt
the measurement techniques used to determine the distance
d between two sensor nodes. We define Ui ∈ U (|U| = k)
as a sensor node that does not know its location. We refer
to Ui as a location unaware sensor node. We also assume
that no three sensors are colinear, and that there exists no
sensor Uj positioned on a line that is orthogonal to the line
passing through a node v ∈ M and v’s fake position. We
prove that the execution our algorithm makes Ui become
cognizant of both its location and of nodes carrying out the
evil ring attack.

Before we describe the details of our algorithm, let’s prove
the following theorem:

Theorem 1: Algorithm Majority-ThreeNeighborSignals
presented in [3] is not sufficient to isolate liars that carry
out the evil ring attack.

Proof:
As stated in [3], [8], a Ui ∈ U should be able to calculate a

position, if it is given locations of any three truthful sensors
(i.e., sensors that are not liars and whose positions are
known a priori), and the distances to Ui. As illustrated using
circles whose circumferences are drawn solid (as oposed to
dashed) in Figure 3, if V 1, V 2 and V 3 are not liars and the
distances from V 1, V 2, V 3 to Ui are measured respectively
as d(V 1, Ui), d(V 2, Ui) and d(V 3, Ui), Ui can calculate its
location (Xi, Yi) by resolving the following three equations:

1) (V 1x−Xi)2 + (V 1y − Yi)2 = d(V 1, Ui)
2

2) (V 2x−Xi)2 + (V 2y − Yi)2 = d(V 2, Ui)
2

3) (V 3x−Xi)2 + (V 3y − Yi)2 = d(V 3, Ui)
2

If at least one sensor in the triple V 1, V 2 and V 3 is a
liar, then Ui either calculates a wrong position (see Figure 3)
or fails to calculate a location. Figures 3 and 4 show how
the calculation by Ui of the circle associated with node V 3
is affected when the latter provides a wrong position V 3′.
Node Ui detects liars following two simple rules:

V1

V2

V3
V3’

Ui

Figure 3. Node V 3 reporting a fake position V 3′.

V1

V2

V3

Ui

Ui’

V3’

Figure 4. Node V 3 reporting a fake position V 3′: Node Ui infers a wrong
position U ′

i .

1) Rule 1: If Ui calculates a position (X ′i, Y
′
i) (according

to some triple of sensor nodes) and this position does
not match the real position (Xi, Yi) of Ui, or if Ui

fails to calculate its position, then Ui adds the sensors
in the triple to the list of liars that it keeps.

2) Rule 2: Conversely, if Ui calculates a position (X ′i, Y
′
i)

(according to some triple of sensor nodes) and this
position does match the real position (Xi, Yi) of Ui,
then Ui adds the sensors in the triple to the list of truth
tellers that it keeps.

Now let us consider the following situation (see Figure 2):
As in Figures 3 and 4, V 1, V 2 and V 3 are three neighbor
sensor nodes of Ui, and each of them knows its location.
Assume V 1 is a liar and that its fake position (i.e., a pair
of coordinates that it uses to fool Ui) is on a circle C
represented by a dashed line, which centers on Ui and has
d(V 1, Ui) as its radius. As shown in Figure 2 - a, all the gray
circles intersect at Ui. Thus, Ui is able to calculate a position
(X ′i, Y

′
i), identical to (Xi, Yi), as though V 1 never lied

about its position. According to Rule 2 mentioned earlier,
Ui should conclude that this group of sensor nodes are not
liars. This contradicts our assumption. Hence, in this case,
Algorithm Majority-ThreeNeighborSignals is not sufficient
to detect the liars. It is trivial to prove the equivalent cases
in which V 2 or V 3 is a liar instead of V 1. Similarly, we can
generalize the proof to when two out of these three sensor
nodes are liars (see Figure 2 - b) or when the three of them
are all liars (see Figure 2 - c). Thus, we can conclude that,
indeed, Algorithm Majority-ThreeNeighborSignals cannot
be used to detect liars that perpetrate the attack model that
we call evil ring.

In the following section, we describe an algorithm that can
detect the evil ring attack. A sensor node Ui uses another
trusted sensor node Uj ∈ U to cross check its information.
We then prove the correctness of this algorithm and analyze
its communication cost.

IV. EVIL RING ATTACK DETECTION ALGORITHM

There are two major steps in our evil ring attack detection
algorithm: a) Location Request and b) Cross Checking:
• Step 1 - Location Request: In the location request

step, k sensors that do not know their coordinates (i.e.,
location-unaware sensors) initially send requests to all
the other sensors in the area. Then the sensors (both
liars and truth tellers) that are aware of their location
send back their coordinates. Each of these k location-
unaware sensors calculates it coordinates (using every
possible combination of three of its reporting neighbor
sensors) and the distances between itself and each of
these three sensors. Each of these k location-unaware
sensors decides its own position based on majority
voting as described in [3]. A group of three sensors,
denoted as triple t, is immediately listed as liars if,
from it, i) a location-unaware sensor cannot calculate
a position or ii) the position obtained from this triple
does not match the real position of this sensor (as
established through majority voting). Otherwise this
location-unaware sensor keeps this triple t in a Cross-
Check list. This list is verified in the next step.

• Step 2 - Cross Checking: The k location-unaware
sensors broadcast their CrossCheck list (that consists of
triples). Each triple of the CrossCheck list of a location-
unaware sensor s has its sensors identified as Truth
Tellers if they all belong to and are consistent with at

least one other trusted CrossCheck list that s receives.
Otherwise this triple is put into the liar list of s.

The following is the pseudocode for Algorithm Cross
Check.

Algorithm 1 CROSS CHECK

1: Node Ui requests the location of its neighbors.
2: ∀ v ∈ V sends its location to Ui

3: For each triple t of neighbors Vi, Vj , Vk in V , Ui computes
(X ′

i, Y
′

i) // (X ′
i, Y

′
i) is the point of intersection of the three

circles centered at Vi, Vj , Vk and with distances: d(Ui, Vi),
d(Ui, Vj) and d(Ui, Vk).

4: if there is a consensus on (X ′
i, Y

′
i) by the majority of triples

then
5: Ui accepts the majority’s position as its location: (Xi, Yi).
6: if no (X ′

i, Y
′

i) can be calculated or the (X ′
i, Y

′
i) calculated

according to a triple t is not the same as Ui’s correct (majority)
location (Xi, Yi) then

7: Ui adds the sensors of this triple t to its Liars list
8: else
9: Ui adds the sensors of this triple t to its CrossCheck

list
10: end if
11: else
12: Ui re-executes the algorithm once more from the beginning.
13: end if
14: Ui sends all its neighbors its location and its CrossCheck list.
15: As soon as a Ui receives a CrossCheck list from another Uj ∈

U , this Ui checks the consistency between the two CrossCheck
lists.

16: if A triple t is in both CrossCheck lists then
17: Ui puts the sensors of this triple t in its TruthTellers list.
18: else
19: Ui puts the sensors of this triple t in its Liars list.
20: end if

V. CORRECTNESS AND COMPLEXITY ANALYSIS

Lemma 2: Let n be the number of neighbor nodes of a
location-unaware sensor Ui, l be the number of liars among
n. The CrossCheck list is correctly constructed by each Ui,
if n3−3(2l+1)n2 +2(3l2 +6l+1)n− (2l3 +6l2 +4l) > 0.

Proof: Theorem 1 in paper [4] stated: Let n be the
number of distance one neighbor nodes of a location-
unaware sensor A. The execution of the majority rule
in Algorithm Majority-ThreeNeighborSignals by A always
gives a correct position in the presence of l liars if inequality
n3 − 3(2l + 1)n2 + 2(3l2 + 6l + 1)n− (2l3 + 6l2 + 4l) > 0
is satisfied. According to this theorem, each Ui should be
able to calculate its position correctly, despite the presence
of liars.

When Ui gets its correct position, according to Line 7
in Algorithm 1, Ui compares its position to the coordinates
obtained from a triple of sensors t. As stated in our assump-
tion, Ui is able to distinguish two sets of coordinates. So,
when these two sets of coordinates match, Ui puts this triple
t into its CrossCheck list.

Lemma 3: Let Ui and Uj be two location-unaware
sensors and Vi be a liar, and Vi’s fake position be V ′i .

d(Uj , Vi) is the distance between Uj and Vi. d(Uj , V
′
i)

is the distance between Uj and V ′i . A second location-
unaware sensor Ui can identify the liar Vi, when
d(Ui, Vj) 6= d(Ui, Vk).

Proof: Let V 3 be one instantiation of Vi, V 3′ be one
instantiation of V ′i , d(Ui, V 3) be the distance between Ui

and V 3, and d(Ui, V 3′) be the distance between Ui to V 3′.
As illustrated in Figure 2 and theorem 1, Ui is not able

to tell if one of the triple t , node V 3 is faking its position
at V 3′, if V 3′ is on the circle centered at Ui with a radius
d(Ui, V 3). This is because, d(Ui, V 3) = d(Ui, V 3′). See
Figure 51.

V1

V2

V3
V3’

Ui

Uj

Figure 5. Uj is used in crosschecking with Ui in order to detect liar V 3.

Let (Xj , Yj) be the coordinates of Uj . Uj can calculate
its location (the value of (Xj , Yj)) using the following three
equations if V 1, V 2, V 3 all tell their true position:

1) (V 1x−Xj)2 + (V 1y − Yj)2 = d(V 1, Uj)
2

2) (V 2x−Xj)2 + (V 2y − Yj)2 = d(V 2, Uj)
2

3) (V 3x−Xj)2 + (V 3y − Yj)2 = d(V 3, Uj)
2

Now we consider the case when V 3 sends Uj its fake
location V 3′: (V 3′x, V 3′y). The equations Uj uses to cal-
culate the location (X ′j , Y

′
j) are changed into:

1) (V 1x−Xj)2 + (V 1y − Yj)2 = d(V 1, Uj)
2

1In Figures 5 and 6, V 3 is one instantiation of Vi and V 3′ is one
instantiation of V ′

i .

V1

V2

V3
V3’

Ui

Uj

Figure 6. Case where Uj is located on the line that is orthogonal to
the line passing through the real position and the fake position of a node
(respectively V 3 and V 3′).

2) (V 2x−Xj)2 + (V 2y − Yj)2 = d(V 2, Uj)
2

3) (V 3′x−Xj)2 + (V 3′y − Yj)2 = d(V 3′, Uj)
2

If d(Ui, Vj) = d(Ui, Vk) (see Figure 6), that is, Uj is
positioned on the line that is orthogonal to the line passing
through node V 3 and its fake position V 3′, after calculation,
Uj gets coordinates (X ′j , Y

′
j) and (X ′j , Y

′
j) = (Xj , Yj).

Because we assumed that d(Ui, Vj) 6= d(Ui, Vk), it is clear
that (X ′j , Y

′
j) 6= (Xj , Yj). This result is also illustrated in

Figure 5.

Theorem 4: Algorithm Cross Check detects the triple t
that contains liars correctly.

Proof: According to Lemma 2, both Ui and Uj can
construct their CrossCheck list correctly. After they have
finished constructing their CrossCheck list, they send their
CrossCheck lists to all the other sensor nodes (see Line
15 in Algorithm 1). We assumed that there exists at least
one other location-unaware sensor Uj . Uj is not positioned
on a line L that is orthogonal to the line passing through
node Vi and its fake position V ′i . As proved in Lemma 3,
one or more liar(s) in a triple t leads to either an incorrect
position of Ui or failure for Ui to calculate its position. Also,
because we assumed that each sensor is able to distinguish
two coordinates, then it is clear that a triple t with liar(s) is
noticed by either Ui or Uj . As described from Lines 16 to 20
in Algorithm 1, each location-unaware sensor node puts the
sensors of triple t into its liar list when this triple t belongs

to only its own CrossCheck list. We observe that a triple t
either belongs to only one CrossCheck list, or it belongs to
other CrossCheck lists. In the first case, it contains at least
one liar, and in the second case, it contains only truth tellers.
It is important to notice that each Ui ∈ U can conclude that
a triple t does not contain any liar as soon as this Ui sees
this triple t in its own CrossCheck list and one CrossCheck
list it receives.

Theorem 5: Using Algorithm Cross Check, O(n2)
messages suffice to correctly detect that the triple t contains
liars.

Proof: Initially, k location unaware sensor nodes send
position requests to all the other n− 1 nodes in the area (or
neighborhood). This leads to maximum kn messages. Then
n − k sensors that are aware of their position, broadcast
their position message. This step generates n2 messages
in the worst case. After a location unaware sensor node
Ui constructs a CrossCheck list, it is going to broadcast
its CrossCheck list so that another location unaware sensor
node Uj can use this information to detect more liar triples.
This step generates kn messages. The total messages adds
up to 2kn+n2. Hence, using Algorithm Cross Check, O(n2)
messages suffice to locate all the location-unaware sensors
and correctly detect all the triples t that contain liars.

VI. CONCLUSION

We have presented an attack on the localization algorithms
of Alfaro et al. [3], [4] called the evil ring attack. This attack
enables other attacks on routing protocols requiring node
position information. We have formally demonstrated how
to run the attack. We have also proposed an algorithm that
detects the evil ring attack. The correctness of the algorithm
has been demonstrated. Its complexity has been analyzed.

ACKNOWLEDGMENT

Financial support from the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) is graciously
acknowledged.

REFERENCES

[1] M. Barbeau and E. Kranakis, Principles of Ad Hoc Networking,
Wiley and Sons Ltd. 2007.

[2] B. Karp and H.T. Kung, GPSR: greedy perimeter stateless
routing for wireless networks, Proceedings of the 6th annual
international conference on Mobile computing and networking
(MobiCom 2000), Boston, Massachusetts, United States, 2000,
pp. 243-254.

[3] J. G. Alfaro, M. Barbeau, and E. Kranakis, Secure Localization
of Nodes inWireless Sensor Networks with Limited Number of
Truth Tellers, The 7th Annual Communication Networks and
Services Research (CNSR) Conference, IEEE Communications
Society, Moncton, New Brunswick, Canada, pp. 86-93, 2009.

[4] J. G. Alfaro, M. Barbeau, and E. Kranakis, Positioning of Wire-
less Sensor Nodes in the Presence of Liars, Technical Report
TR-10-04, School of Computer Science, Carleton University,
March 2010.

[5] S. Capkun and J. P. Hubaux. Secure positioning in wireless
networks, IEEE Journal on Selected Areas in Communications:
Special Issue on Security in Wireless Ad Hoc Networks,
24(2):221-232, 2006.

[6] J. Hwang, T. He, and Y. Kim. Secure localization with
phantom node detection, Ad Hoc Networks, 6(7):1031-1050,
Elsevier, 2008.

[7] L. Lazos, R. Poovendran, S. Capkun. ROPE: Robust
position estimation in wireless sensor networks, The 4th Intl
symposium on Information processing in sensor networks,
2005, p. 43.

[8] S. Delaet, P. Mandal, M. Rokicki and S. Tixeuil, Determin-
istic secure positioning in wireless sensor networks, IEEE
International Conference on Distributed Computing in Sensor
Networks (DCOSS’08), Lecture Notes in Computer Science,
Springer Berlin/Heidelberg, Volume 5067, 2008, pp. 469-477.

