
Appendix to Simulation of Mobile Underwater
Communications

Michel Barbeau∗, Stéphane Blouin†, Gimer Cervera‡, Joaquin Garcia-Alfaro§ and Evangelos Kranakis∗

∗ School of Computer Science, Carleton University, K1S 5B6, Ottawa, Ontario, Canada
Email: {barbeau,kranakis}@scs.carleton.ca

† Defence R&D Canada - Atlantic, Dartmouth, NS, Canada B2Y 3Z7
Email: stephane.blouin@drdc-rddc.gc.ca

‡ Universidad Tecnológica Metropolitana, 97279, Merida, Yuc., Mexico
Email: gimer.cervera@utmetropolitana.edu.mx

§ Telecom SudParis, CNRS Samovar UMR 5157, Evry, France
Email: joaquin.garcia-alfaro@acm.org

I. OMNET++/MATLAB INTEGRATION

We show an example of two external applications inter-
faced from an OMNeT++ simulation. More specifically, we
show how an OMNeT++ simulation receives messages from an
external C++ application. In turn, the messages are processed
by a Matlab function, that returns the computed results to the
OMNeT++ simulation.

The purpose of the example is to complement the details
provided in Section ??, about the integration of OMNeT++
simulations with Matlab functionality — via shared libraries
— to implement the physical layer reported in Section ??.
The example should not be confused with the final integration
of our proposal. The code listings we show are simplified
versions, based on the real code.

The general idea is the following. An OMNeT++ module,
called UWModem, is programmed to receive messages from an
external C++ application called uw_traffic.cc. The OMNeT++
module calls, in turn, a Matlab function called PSK.m. This
Matlab function modulates the input message using PSK.
Then, the OMNeT++ module acknowledges the reception to
the external application.

The communication between the OMNeT++ module and
the external application is conducted via an additional compo-
nent class (not reported in this Section) denoted as SocketGate.
The use of sockets-based gates (e.g., via socket-like interfaces,
such as Berkeley sockets [?]) allows to create OMNET++
instances that act as proxies to the external world within
OMNET++. It can be complemented to integrate wired and
wireless networking protocols, via other libraries, such as
MiXiM and INET [?], [?].

The SocketGate is assumed to maintain an active socket,
listening and waiting for external connections, and delivering
those incoming messages to other simulation components, and
the outcoming messages to the external world. More informa-
tion about the use of this type of components is reported in
[?].

Let us now describe how to prepare the Matlab function in
order to generate libraries shared with OMNeT++. We assume

the following function encoded in the Matlab language, and
stored under file PSK.m. It modulates the input message x
received as an input parameter:

function y = PSK(x)
y = pskmod(x);

We can now transform the previous Matlab function as
a shared ANSI C library, via the Matlab Compiler Runtime
Toolbox, using the following commands:

mcc -B csharedlib:libuwpsk -v PSK.m

Under a Linux-based operating system, the previous com-
mand creates the shared library file libuwpsk.so, as well as the
specification and implementation files libuwpsk.h and libuw-
psk.c. These three files contain all the necessary functions,
headers and linkable objects to be used by any other standalone
ANSI C or C++ application. For instance, we can invoke them
from an OMNeT++ module as follows:

#include "libuwpsk.h"

int main(int argc, char *argv[]) {
//Matlab initialization function
mclInitializeApplication();

//Shared library initialization function
libuwpskInitialize();

//OMNeT++ interface initialization,
//which starts the OMNeT++ execution.
setupUserInterface(argc, argv);

//Shared library termination function
libuwpskTerminate();

//Matlab initialization function
mclTerminateApplication();

}

The previous C++ code contains all the necessary system

calls to initialize and terminate the integration of Matlab
modules within the execution space of an OMNeT++ library.
This is done via the setupUserInterface function. In turn,
the following OMNeT++ code, denoted as Simulation-
Network.ned, is required to create the network structure
in which the UWModel module will be placed during the
simulation:

import SocketGate;

//Definition of an OMNeT++ node
simple UWModem
{

gates:
input in;
output out;

}

//Definition of an OMNeT++ network
network UWNetwork
{

submodules:
proxy: SocketGate;
uwmod: UWModem;

connections:
uwmod.out-->{delay=100ms;}-->proxy.in;
uwmod.in<--{delay=100ms;}<--proxy.out;

}

The above OMNeT++ code defines a new network, called
UWNetwork, and places two submodules that are connected
via a bidirectional link. The only property associated to the
communication link is the transmission delay, defined with the
parameter delay=100ms. The first submodule, called proxy,
is an OMNeT++ module (based on the INET and MiXiM
libraries) that allows the simulation from receiving information
from external applications. It provides a socket-like interface
(e.g., via Berkeley sockets) to allow inter-process communi-
cation. As soon as it receives a new message, e.g., via a
local port number, it forwards the message to the second
submodule, denoted as uwmod. This second submodule uwmod
is an instantiation of our proposed UWModem module class.
The associated code to this submodule is defined in a C++ file,
that we call uwmodem.cc:

class UWModem:public cSimpleModule
{

protected:
//Module functions
virtual void initialize();
virtual void handleMessage(cMessage *msg);

};

//OMNeT++ primitive to register the new module
Define_Module(UWModem);

//Method to handle incoming messages
void UWModem::handleMessage(cMessage *inMessage)
{

//Matlab variables
mxArray *x_ptr;

mxArray *y_ptr = NULL;

//Matlab function to convert from byte
//representation to double representation
x_ptr = mxCreateDoubleScalar(*inMessage);

//call our Matlab function to modulate
//the message using PSK modulation
mlfPSK(1, &y_ptr, x_ptr);

//print the result
printf("\%08x\n",mxGetPr(y_ptr)[0]);

cMessage *outMessage = new cMessage(’ACK’);
send(outMessage, "out");

}

The previous OMNeT++ code is an example that allows
module class UWModem to modulate incoming messages via
the shared Matlab function mlfPSK. The implementation of
function mlfPSK is contained within the shared library libuw-
psk.so that we created at the beginning of our example (cf. the
mcc command-line example). Once modulated the message,
the module acknowledges the reception.

We conclude our example by showing the sample code
of the external application, in charge of sending messages to
our UWModem module. It is assumed to use a socket-like
interface (e.g., via Berkeley sockets) to provide inter-process
communication with the OMNeT++ simulation. The following
code, encoded in file sender.c, represents just a simplified
version of such a third party application. Several parts of the
code are omitted (e.g., definition of indexes, constants, socket
transmission and reception functions, etc.).

int main(void)
{

connection = tcp_socket(IP_address, port);

while (index<COUNTER) {

// Generate a new random message
for (i=0; i<nbits; i++) {

message[i] = rand();
}

// Send the message
socket_write(connection,message);

// Receive acknowledgment
socket_read(connection,message);

index++;
}

// Close connection
socket_close(connection);
socket_free(connection);

}

To sum up, the example proposed in this appendix reports

a very simple OMNeT++ simulation that expects incoming
messages from a third party application (either from a virtual
software application, or from a real device). The communi-
cation starts from the third party application (cf. file sender.c)
and sends messages to the OMNeT++ simulation via a socket-
like communication interface. This interface is connected to a
new module we called UWModem, that uses our own Matlab
function PSK.m to conduct PSK modulation of the received
messages. Upon reception, the module simply acknowledges
the messages.

	Appendix

