An Evaluation of the TCT Tool for the Synthesis of Controllers of
Discrete Event Systems

Christopher M. Enright
Michel Barbeau

Département de mathématiques et d’informatique
Université de Sherbrooke
Sherbrooke (Québec) CANADA J1K 2R1

Abstract Increasingly, softwarc engineering
profcssionals are attempting to integrate automated systems
development into their projects. One well-known instance is
YACC, which, when given the specilication of a language, can
produce that language’s parser. In this instance, we tested an
automated development tool, TCT. Specifically, we evaluated
its ability to synthesize the controller of a discrete event
system (DES), namely, a mine drainage system.

INTRODUCTION

This paper comprises three " sections. The first section is
concerned with the TCT interface, with emphasis on its
inherent strengths and weaknesses. The second section is a
detailed description of the DES problem model used as input
for the TCT tool tests. The third section follows a sequential
development of the controller synthesis algorithm as proposcd
by Ramadge and Wonham [2,3], with respect 10 a TCT
approach,

THE TCT TooL AND INTERFACE

The TCT tool is a software program implemented on the IBM
PC DOS platform, and it is written in Borland’s Turbo Pascal
6.0 (TP6). The use of TP6 could possibly lead to a few
problemn areas. For example, the use of TP6 reserved words as
DES file names could potentially result in data corruption
troubles. Aware of this possibility, the authors, have expressed
their concerns in the "readme” lext accompanying the TCT
tool. Also available is a MS-Windows 3.1 version, which docs
not significantly differ from its DOS predecessor. As well,
-the overall nature and the text bascd look and fecl of the
System are carricd through to the windows product. The lack
of a graphical metaphor in the representation of a DES in the
MS-Windows product is an unfortunate oversight on the part
of the TCT authors, as well as a dissipation of the power and
resources of Windows.

With cither version, the tool's structure is composed of various
sub commands (procedures), each onc capable of carrying out
a transformation on an input DES. The differcnt commands
and their functional description can be found in [2], or a bricl
summary can be found in the “Introduction 1o TCT" option of
the "MAIN OPTIONS" menu.

The most evident drawback of the tool is its textual interface

used for both menu sclections and representation of a DES, its
states and transitions. For example, the "main control” menu

CCECE/CCGEI '93

0-7803-1443-3/93 $3.00 © 1993 IEEE

offers the user a choice of an "Introduction to TCT" or to
perform a "RESET DES file Directory Path" before getting to
the TCT PROCEDURES menu. It would have been more useful
to put these options directly in the TCT PROCEDURES menu,
One reason for this is that it would allow direct access to the
“help" information included in the "Introduction to TCT" option
during DES manipulation, a time when this information is needed
most (since there is no other "help” system available). Another
reason, is that the inclusion of the "RESET .DES file directory
path” option in the "TCT Procedures” menn would allow for
direct reallocation of the file structures during a TCT session.

The "Main option" screen and all subsequent screens are based
on a menuing system where the user must enter a letter or
number associated with the option he/she wishes. This
letter/number option is not necessarily associated with the choice
itself, thus it is not mnemonic. For example, the "1: Create"
option, the "1" being the choice tag and not "C"; although with
other options such as "M: Minstate”, the "M" is both the tag and
the first letter in the choice title (as it should be). This
inconsistency can lcad to a confused user. In this age of GUI's,
a control menu should, at the very least, use a bar that moves
through the options with cursor control,

The "TCT PROCEDURES" menu incorporates all the DES
manipulation routines of the tool, as well as a "# Kbyles
available on heap: XXX" message that does not seem to have
any relation to the DES manipulation. We tried to track the
variations in the heap size when performing system routines and
found that there seemed 1o be no apparent relation to the system
function.

In order for the reader to understand the functionality of TCT,
we will usc the "1: Create” procedure to illustrate the main points
of the system. Having chosen the "1: Creale" option, the uscr
must name the DES to create (remembering not to use TP6
reserved words as names). Once the name is accepted by hitting
the carriage return key, there is no way of changing it except to
cxit to DOS and use the rename command, an action that proves
1o be quite cumbersome. The next step in creating a DES is to
enter its "size", We, as users, are not given maximum value for
this parameter anywhere, and due to the lack of an interactive
help system, we can only guess its limits. The DES size is
defined in terms of positive integers to some N maximum. Once
the size has been entered, the next step is to enter "marker states"
for the DES. The marker states are entered as a table of positive
integer values with negative one (-1) as the terminating input,
Again, a rough management structure. A marker state can be

15.3

241

242

defined as any integer from zero to the total number of states
minus one, because the system numbers the states 0 to N-1, N
being the total number of states. Once the marker states are
entered, the only way to modify them is to finish the "1:
Create” option, return to the "PROCEDURES MENU" and use
the "E: Edit" option. The next step in creating a DES model
through the "1: Create" option is to enter the TCT transition
representations. This takes the form of a positive integer triplet,
with the first input being the exit state (which must exist in the
DES), the second being a transition tag, with uncontrollable
events being tagged as even positive integers (0,2,4,...) and
controllable events being tagged as odd positive integers
(1,3,5,...), and the third input being the entrance state (which
must also by definition be within the DES). An example of
this is "0 2 1" where "0" is the initial (exit) state tag, "2" is the
transition tag (which is "even", therefore it is controllable) and,
“1" is the resultant (entrance) state. As with the previous
options, the list of marker states is unalterable once entered,
except through the external "E: Edit" option. To terminate, a
negative one (-1) in the first "exit state” column is required.
The system then saves the DES created and requires a carriage
return to get back to the "TCT PROCEDURES" menu. If an
error has been made at any point while creating the DES, one
must use the "E: Edit" option and go through the same
cumbersome structures to correct the inaccuracy. Any time
during the construction of the DES, it is possible to exit the "1
Create” option by using the "Escape" key; although this
alternative is destructive and invalidates any of the data that
had been input.

Since the "1: Create" option is essentially representative of all
the TCT procedures, its brief description gives us a detailed
look at the interface and command structures used throughout
the tool. ’

THE MODEL

The mine drainage system (1] has four modules, namely a
methane monitor, a pump, a water level detector, and a
controller (Figure 1). The methane monitor has two states:
“Safe" (methane concentration low) and "UnSafe" (methane
concentration high). Its task is to inform the controller when
the concentration of methane has reached a critical level.

Environment
monitor

_ Methane sensor |

Y

=1 Pump controller

(4

Level
detector

4
IRININ]

)3I222)0)

(€L

Figure 1 : Mine Drainage System

The pump also has two states: "Idle" (not pumping water) and

“Working" (pumping waler). Its task is to evacuate water from
the mine when signalled by the controller. The water level
detector consists of five states, "Undefined,” "Low," "High,"
“Low Reset," and "High Reset," its task is to monitor the water
level in the mine. The controller regulates the pump and
receives signals from the water level detector and methane
monitor and reacts accordingly. That is, if the water level is
"High" and the methane concentration is "Safe", then the pump
must be activated. During all other conditions the pump must be
"Idle."

THE PROBLEM

The behaviours of the methane monitor, the water level
detector, and the pump are known (Figure 2).

Stan? Alarm!
I |
Stop? IsSafe!
Pump Environment monitor

Level detector

Figure 2 : Behaviours of Known Components

The problem we will address is the construction of the language
describing the controller’s behaviour. This task will be performed
using the synthesis algorithm described in (3] and the TCT tool.

THE TCT APPROACH

Hereafter we will outline the controller synthesis approach [3]
and the functionality of the TCT tool.

In order 1o use the synthesis algorithm we must provide three
input parameters. First, "G" the plant DES and its language
"L(G)". Second "L" the legal sublanguage of "L(G)" and finally,
"M" a function masking non observable events. The legal
sublanguage "L" is obuained from “L(G)" by imposing the
security constraints stated above and described in [1). It is
required that the behaviour of "G" under the supervision of the
controller be included in "L".

The TCT Derivation of the Mine System Model ("G")

In order to form the combined DES of the mine drainage control
system, each of the three modules, the behaviours of which were
known, were modeled separately using the TCT "1: Create"
option and then joined to create the combined DES. This was
accomplished by using the TCT "sync" ("4: Sync") procedure,
which is designed to take two input DESs and combine them 0
form the reachable synchronous product by "synchronizing" and
"anding" their respective states and transitions to form a third

(output product) DES.

Using TCT to produce the language of thc mine drainage
system, the uscr is forced to synchronize the three DESs in a
two-step fashion. The first step is to combine ("sync”) the
"PUMP" DES and the "MONITOR" DES to form an
intermediate "PUMPMON" DES, then that product is
"synced” with the level "DETECTOR" DES to form the mine
drainage system DES "G". The three modules of the system
combine to form a DES of 20 statcs and 72 transitions. This
complex two-step procedure (Figure 3) was necessary because
TCT cannot deal with more than two input DESs during any
of its procedures. This limitation results in a decrease in the
system’s efficicncy and usability.

PUMPMON = Sync (PUMP, MONITOR)
G = Sync (PUMPMON, DETECTOR)

Figure 3 : Production of the mine system model

Once "G" was arrived at through TCT, the increased states and
transitions generated by TCT had to be verified correct. This
was accomplished by mapping the TCT product (o0 a previous
table that had been created manually [1}. The TCT generated
product had reacted correctly, since its product was found to
be accurate.

Construction of the Legal Language (L)

The next step is to eliminate from "G" the states and
transitions determined to be illegal according o the sccurity
rules formulated in [1], with the result being "L", the legal
language of the DES. The TCT tool’s capacity for automatic
translation of security and liveliness properties into a legal
language arc limited. In fact, the only way of automatically
incorporating these propertics into a TCT model is to use the
"Mutex" (6: Mutex) option, which forces compliance with
mutual cxclusion propertics of a given legal language. The
"Mutex” command could have been used in this example, but
due to the relative simplicity of the security properties used
and the difficulties with the TCT interface, we proceeded
manually removing the illegal states and transitions from "G"
with the "E: Edit" function.

Calculation of the Largest Recognizable Sublanguage
The synthesis algorithm [3] rcquires computation of the

largest recognizable sublanguage "L," of "L", mathematically
defined as:

L=L- M"'M(L(G)-L)

To compute "L," with the TCT tool, we break the equation
down into sub-cquations, starting with the rightmost scction.

1) We calculate the set of illegal words of the plant, i.e. L(G) -
L. TCT has no subtraction operation, so we must carry out the
operation in two steps as follows :

D1 = COMPLEMENT (L)
D2 = MEET (G,D1)

;Z-L
;L(G)ND1

(COMPLEMENT forms the marked language complementary
to the input DES and a list of event labels.

MEET forms the reachable cartesian product of the two input
DESs.)

2) We mask the illegal words with respect to the plant’s non-
observable events, i.e. computation of M(L(G)-L), in effect
describing how the illegal words are observed.

D3 = PROJECT (D2, {8,18))

(PROJECT forms the closed and marked language of the input
DES with listed events erased.)

3) We take the inverse of the second step’s result, constructing
the set of all legal and illegal words observed as illegal words
(i.e. M'(M(L(G)-L))).

D4 = SELFLOOP (D3, {8,18))

(SELFLOOP augments the input DES by attaching selfloops at
each event in the list.)

4) This step eliminates from "L" all legal words that have
illegal counterparts observed in the same manner,
ie. L-M'(M(L(G)-L))).

D5 = COMPLEMENT (D4)
D6 = MEET (L,DS)

L(D6) is the largest recognizable sublanguage of "L".
Synthesis of the Controller

1) We calculate the mode! of the system as seen by the
controller by masking "L(G)" with respect to the non- observable
events,

D7 = PROJECT(G,{8,18}) ; L(D7)=M(L(G))

2) We also mask "L,” (D6) with respect to the non-observable
events, thereby deriving the projection of the largest recognizable
sublanguage of L.

D8 = PROJECT(D6,{8,18})) ; D8=M(L(D6))

3) We then take these results and generate the controller for the
plant, "G".

D9 = SUPCON(D7,D8)

(SUPCON, for the first input parameter, forms a trim recognizer
for the 'supremal controllable sublanguage of the marked legal
language of the second input parameter, which in tum is the
controller for the first input parameter.)

L(D9) is the plant controller automaton. We verified the results
manually using document [1], TCT performed correctly.

This entire multi-step algorithm has been incorporated into the
most recent version of TCT in the form of a single operation, the
"R1: SUPNORM" option. We have taken the trouble to describe

243

244

the detailed process to allow the reader to view the basic
operations of TCT relative to the synthesis of controllers. The
same results are achieved if one uses the "SUPNORM" option
to solve this example.

CONCLUSION

The TCT program is a necessary first step in the quest for an
automated product that can synthesize basic software
enginecring activities; however, it is certainly not the final
solution. The authors have invested most of their time and
effort on the functional and procedural aspects of the internal
design process, to the detriment of a very important aspect of
software development, the external design architecture. The
TCT product’s usability and effectiveness are reduced due to
a cluster of interface design problems such as the use of
textual interface structures, non-editable input fields, negative
one (-1) terminating flags and integer based flags, as in the
case of transition labels. Even though the TCT interface is
scant, its internal structures appear to be well engineered,
powerful, and they accomplish what they are programmed for
and it is still a powerful and useful tool in the modelling of a
DES. A simple addition, such as the use of alphanumeric
identification labels would be a considerable improvement in
promoting a greater understanding of the modeled problem.

The MS-Windows version of the tool vanquished a great
many hopes by continuing to incorporate the same control and
labelling structures of its DOS predecessor. The fact that the
TCT authors did not embrace the GUI paradigm to model a
DES would suggest that they have focused their effort
elsewhere, most certainly on the internal structures of the
program. This dedication of effort 1o the DES manipulation
procedurcs gives us insight into the complexity of code
necessary to automate the DES manipulation algorithms. That
said, the authors would be well advised to take a step into the
larger graphical universe, thereby, for the most part,
remedying TCT interface limitations and increasing the
sysiem’s casc of use. A system is only as good as the uscr’s
ability to use it, after all; the best programming in the world
could be rendered useless by masking it with a cumbersome
and unwieldy interface.

Direct improvements to the conceptual base of TCT as an
automated software synthesis system would be twofold. First,
the addition of a procedure specifically suited to the operation
of deriving the legal sublanguage of a language with respect to
liveliness and sccurity propertics. An example of the potential
benefit of this addition would be the automatic removal of
states and transitions deemed illegal with respect to certain
properties, such as presented in [1].

Sccondly, a fully graphical interface directly modelling DES
structures would be a great improvement. The ability to
directly edit graphical DES models would greatly improve the
uscr's comprehension of the system and increase his/her
effectiveness with using the tool. The graphical interface
should also allow for a host of user {riendly additions such as
the ability to name, tag, and label, alphanumerically, graphical
images, that represent states and transitions. As well, the
addition of the GUI paradigm would allow the level of
complexity of the modeled system (DES) o increase

considerably.

It is well documented that "a picture is worth a thousand words
(or numbers)", so a graphically based software synthesis program
would be a truly realistic, and understandable model of the DES
system in question. This evolution to a graphical system would
be the next great step towards achieving our ultimate goal, of
automation in the synthesis of software projecits.

ACKNOWLEDGEMENTS

We would like to thank Professor Murray Wonham of . the
University of Toronto Electrical Engineering faculty for the use
of the TCT tool. Without his willingness to share his work, this
article would not have been possible.

As well, we would like to thank Dr. S.M. Enright and L.R.
Ball for their unending encouragement and Dr. R. Sutherland and
M.C. Hopps for their support and syntactical contributions.

REFERENCES

{1] M. Barbeau, G. Custeau, R. St-Denis, "A Synthesis- Based
Solution to a Mine Drainage Control System Problem," Technical
Report no. 106, Université de Sherbrooke, Département de
mathématiques et d’informatique, 1992.

[2] W.M. Wonham Notes on Control of Discrete-Event Systems.
Toronto, University of Toronto, Department of Electrical
Engineering, 1992,

[3) P.J. Ramadge and W.M. Wonham "Supervisory control of
a class of discrete event processes," SIAM Journal of Control and
Optimization, 25 (10 1987), 206-230.

