CCECE/CCGEI 95

602

An Object-Oriented Re-Engineering of the Remote Procedure Call,
STREAMS and Transport Layer Interface.

C. Enright

enright@dmi.usherb.ca

and M. Barbeau barbeau@dmi.usherb.ca
Unversité de Sherbrooke
Sherbrooke, Qc, JIK 2R1

Abstract - The capacity to use object-oriented features
when using operating system primitives such as Remote
Procedure Calls (RPC), Streams and Transport Layer
Interface (TLI), is extremely limited. These operating
system primitives were constructed to be used within a
structured programming paradigm. With the advent and
proliferation of object-oriented technology the use of
these primitives in their present state within this
paradigm is difficult. This work describes an
 intermediate step between a fully object-oriented
implementation of these primitives and their present
form. This intermediate state allows for the use of RPCs,
STREAMS, and TLI within an object-oriented paradigm
using all the benefits therein, such as inheritance and
polymorphism.

keywords: UNIX System V, RPC, TLI, Streams, object-
oriented, C++.

1. INTRODUCTION

During the past several years, there has been a
substantial increase in use of the object-oriented paradigm
within the world of software engineering. This increased use
has taken place at virtually every phase of the software
engineering life-cycle, from analysis of needs right through to
implementation and testing. Although this proliferation of the
object-oriented paradigm is easily observed both in the
commercial and scientific literature, many of the basic
applicatiod building primitives available to system
programmers have not taken this step into this brave new
world.

The impetus for this work was derived from a project
that specified an object-oriented re-write of the OSI transport
layer carried out at the Université de Sherbrooke. The project
was implemented using STREAMS and TLI, even though
these primitives were not designed or implemented in an
object-oriented manner. The difficulties encountered due to
the structured, non-object-oriented nature of the TLI and
STREAMS code lead to the work described in this article.

The contribution of this work is to offer an outline for
an intermediary state between the structured implementation
of these primitives and an object-wrapped version allowing
access to object-oriented features such as, inheritance,
function overloading, aggregation, genericity encapsulation

0-7803-2766-7-9/95/$4.00 © 1995 |EEE

and polyvmorphism to system programmers using these
application building operating system primitives.
Specifically, Remote Procedure Call (RPC), STREAMS. and
Transport Layer Interface (TLI) as implemented in UNIX
svstem V, are excellent candidates for this procedure.

This paper is composed of six sections: the first is the
introduction, the second is a literature survey of object-
oriented telecommunications, the third describes the UNIX V
operating system and the component primitives being studied.
the fourth outlines the object-wrapping technology and the
fifth presents an example, based upon TLI, of the code used to
wrap the existing primitives within a set of C++ classes, and
the final section presents the conclusions of this work.

II. LITERATURE SURVEY OF OBJECT-ORIENTED
TELECOMMUNICATIONS

The basic tenants, concepts and structures of the
object-oriented technology are well defined, stable and
starting to appear in high performance design systems [3].
Integration of the technology into the existing software and
organistic systems has proven both possible and effective {14].
With this evidence, object-oriented software development has
reached a level of critical mass and should prove to be the 90s
analog to the 70s advance in software development through
structured programming. In this section, several articles
related to the present work are discussed.

An object-oriented model of the OSI layers using a
parallel, object-oriented specification language called Mondel
was done by Mondain-Monval and Bochmann [12].

A second experiment was carried out at Bellcore [2]
using object wrapping technology. This technology outlines a
strategy for wrapping the non-object-oriented software within
an object-oriented envelope. Alfano and Mathews used this
approach successfully. Alfano and Mathews stated initially
that the developers thought that a prototype was a complete
waste of time and that they should have made the jump
directly from paper to production. However, a year latter the
developers’ who had initially thought the prototyping stage to
be a waste of time, now considered it, in retrospect, the single
most important and valuable design activity.

A third project undertaken by Feldhoffer [6] described
an object-oriented modeling of an OSI basic reference model

compliant application layer. This work was based on the
modeling of the application layer concepts, such as
Application Service Elements (ASE) using an object-oriented
approach. Several refinements and enhancements of ASE
properties were achieved by using the object-oriented
paradigm

A fourth project performed by Koivisto and Reilly (8]
concentrated on how aspects of object-oriented development
can use existing ASN.1 (Abstract Syntax Language 1) code.
The primary focus of this work was to create supporting code
for object-oriented telecommunications software in C++ from
ASN.1 code artifacts. This object-oriented code was
integrated into an existing functional telecommunications
protocol, called OTSO, and an experimental tool called
CLASN was developed from an existing C base ASN.1
compiler.

A fifth project done by Guenther and Wackerbarth [7]
approached the concept of the object-oriented paradigm for
large scale software projects. The principal effort of this study
was to verify that object-oriented development could be used
for large scale software projects. The conclusions drawn from
this work are in favor of object-oriented development for
switching software. The development was simplified and
stabilized, even though the software developers had to follow
new paths of development. The one negative aspect was the
decreased performance of the switch, thought to be a result of
inheritance.

In a sixth project, Liu [11], presents an object-based
approach for protocol implementations. Each state in an FSM
is implemented as an object. The International Standards
Organization (ISO) Open Systems Interconnection (ISO)
Transport Protocol 0 (TP0) example is given. The member
functions of objects are based on event triggers and the sub-
states of said objects are represented the by sub-classes in
question. [ncremental development is proposed and reuse of
constructs is suggested.

Object-oriented implementation of telecommunications
software is also discussed by Divin and Petitpierre [5], their
work is based on a new design of C++ specifically for
protocols. Further references to object modeling for
telecommunications software can be found in research papers
by Abe [1], Mann [10] and Kadoch, Erradey and Bochmann
[9].

1II. THE UNIX V OS AND ITS TELECOMMUNICATIONS
PRIMITIVES: RPC, STREAMS, AND TLI

UNIX system V release 4 (SRV4) is a unique version
of the standard multi-user, multi-tasking operating system
(OS). TIts uniqueness, in part, is based on its support for
multiple standards (such as, System V, SunOS, BSD, Xenix,
SCO) within one OS. This multiplicity of standards support
allows access to many different OS primitives, structures and
functions at the networking level [13]. This study will focus

on three of these primitives, Remote Procedure Calls (RPC)803
STREAMS and Transport Layer Interface (TLI).

RPCs are of interest since they allow system
programmers to have access to procedures running in separate
processes on local or remote machines through a
telecommunications network. This is done via a programming
interface that does not require the programmer to manage the
details of the communication while making use of its facilities.
For example, consider a system of distributed databases, the
sorting procedure could be located in one machine on the
network and all the separate database managers could use an
RPC to call the said sorting procedure. The application. using
an RPC, can use any transport provider available, whether the
provider is connection-oriented or connectionless (of course
the choice affects the type of remote procedure that can be
designed).

STREAMS (a subsystem, not the return of fopen),
furnishes a framework upon which communications services
can be constructed. These services can be between process
within the same memory space, or between processes running
on different computers, furthermore, they could be between
terminals and host computers. The STREAMS interface is
placed at a much lower level than that of the RPC.
STREAMS in their simplest incammation supply a bi-
directional data pipe between a user level process and a kernel
level device driver. Data flows downstream (from user to
driver) and upstream (from driver to user) by way of
messages, although if necessary, the STREAM elements can
treat the data as a byte stream. As an example, consider an OS
in which multiple processes wish to write to a printer deamon
implemented as a device driver, each process could then use a
STREAM type interface.

TLI is usually the principal networking interfaced used
in SRV4 programming. TLI provides an abstract view of a
network based on layer four (transport) from the OSI seven
layer model. This interface operates end-to-end, allowing
applications to establish communication even though they
have no knowledge of the networks topology. TLI can either
be connection-oriented, using TCP, or connectionless using
UDP. Furthermore, the TLI services conform to many other
standard protocol suites such as, TCP, XNS, SNA and [SO.
There are three components that form the TLI, first a user
level library (provides interfaces to the transport layer for the
application), second, a transport provider (TP) (fumnishes
transport and could be implemented by STREAMS) and third,
TMOD, is a module that maps TLI primitives to TP primitives
and is based on STREAMS.

In the remaining sections of this article the object-
oriented wrapping will be defined and the object-wrapping -
re-engineering of TLI will be presented. The TLI primitive
was chosen since it is the primary networking interface used
in SRV4: moreover, it provides all the necessary structures to
describe object-wrapping within the context of this article and
due to spatial constraints all three primitives could not be

604

presented.
IV. OBJECT-WRAPPING TECHNOLOGY

The object-wrapping technology has been used
successfully in various experiments, as described in section
two. Essentially, this technology takes structured, non-object-
oriented code and wraps it in an object-oriented envelop.
Most code that was well written in a structured fashion (the
modules should have high cohesion and low coupling) can be
taken and re-engineered in an object-oriented manner. But,
there are some circumstances where structured code should
not be object-oriented re-engineered using wrapping. For
example, when the existing code can not be grouped into a
coherent class structure, that is, the code does not form a
representative object within the problem domain; or under
conditions of poor structured code that has either low
cohesion properties or high coupling properties or both.

The object-wrapping concept involves looking at the
problem domain and verifying that the coded functions can be
grouped in a framework that can be interpreted as a coherent
group within the problem space. This group of functions
provides the basis for the definition of classes and their object
instances. Once the functions have been coherently grouped
they usually become the methods for the relevant class.

This method has been used to object re-engineer the
TLI, as described in the next section.

V. TRANSPORT LAYER OBJECT INTERFACE (TLOI)
(THE OBJECT WRAPPING OF TLI)

TLI has three major duties. The first is connection
establishment and release. The second is data transfer. The
third is error handling. Connection establishment can be
further subdivided into the building of an address, and the
opening and closing of the connection. These duties should
provide a suitable starting point for the class formation of
TLOI. Figure one illustrates a mapping of TLI functions to
TLOI methods and eventually the classes.

Due to this strong delineation of structure inherently
present in the TLI, the derivation of the class structure was
straightforward. The TLOI class is composed of three classes.
First, the connection establisher/releaser class whose
responsibilities are to handle connection establishment and
release, with all the necessary details. This class is itself
composed of two classes, the address_manager class and the
connection_manager class, which perform the duties of
building the machine address of the desired destination and
open and closing the connection to said machine respectively.
The second class, data_transfer, is responsible for the details
of transferring the data between the applications. Last, the
error_handler class is charged with decoding trapped errors
and displaying relevant messages to the user.

Figure two is a Booch notation [4] (a common object-

oriented analysis and specification notation) representation of
the TLOI class structure; dotted clouds represent the classes.
Clouds within clouds are the aggregated classes forming the
outer class. Each class has its methods described in the text

TLI functions -

used for connection establishment/Release
address management
getnetconfigent()
freenetconfigent()
netdir__getbyname()
netdir_free()
connection management
t_open()
t_bind()
t_close()

used for UDP Data Transfer
t_senudata()
t_rcvudata()

used for TCP Data Transfer
t_connect()
t_snd()
t_rev()

used for error handling
t._revuderr()
t-errorno()
t_error()
netdir_perror()

Fig 1 Mapping of TLI functions to TLOI classes-methods.

under the class name. This class framework is an abstract
object-oriented representation of the new TLOI. The existing
functions used to perform each of the TLI procedures will

T~
T - o
7 e ~
i —
—
Transport Layer Object Interface
(TLOD ST ™
. PN Dawa T nsfer !
’ -~ ~ © snducsa(}
/ Ve — N~ 7 ! revuaag
/ / Connection Esta isher/Reicaser SO el ot !
, . tsna(} /
e // ~—— . -
/ Address 1 nager . -
;o
, /
. 7 Freenetcon T
. N AN m—mmmx ',.ConneenoLManagu; SR
N e + ovent ' Emort ndler
~—— \;,_‘ Tel ::m% . - t revuael)
_closel) | t efromeor)
™~ N P e - 1 ermorn)
< vl s netor)
P -~
-
_ i
-
N
LT -
e
N -
~

Fig. 2 Booch notation representation of TLOI class structure.

become the methods of the newly formed classes. For
example, the getnerconfigent function will become a method
of the address_manager class. All the functions of the TLI
are treated in the same way; being allocated to their respective
classes. Figure three provides an example of the C++ code
used to implement this class hierarchy. This code is only
partial in nature, that is, no data structures are included;
moreover, it is meant as an outline to help the reader

understand object-wrapping and does not conatin the compiete
code necessary to implement the TLOIL.

Both RPC and STREAMS can be treated in a similar
manner achieving object-wrapped results.

class TransportLayerObjectinterface TLOI {
public:
class connection establishmer_relcaser {

public:
class address_manager {
public:
getnetconfigent(),
freenetconfigent();
netdir_getbyname():
netdir_free();
private:...};
class connection_managemer {
public:
t_open():
t_bind();
t_close();
private:...};
private:...};
class data_transfer {
public:
/1 UDP It

t_senudata();
t_rcvudata();
/TCP 1
t_conneci();
t_snd(}:
t_rev();
private:...}:
class error_handler
public:
t_rcvuderr();
t_erromo();
t_error(),
netdir_perror();
private:...}; }

Fig. 3 Partial listing of C++ code for TLOI Class.

V1. CONCLUSIONS

In effect, we have taken a non-object-oriented set of
UNIX system V primitives (RPC, STREAMS, and TLI) and
through a process of object-wrapping we have brought the
object-oriented attributes to them. These newly created
object-oriented primitives behave as if they were originally
written within the object paradigm. All the positive attributes
of the object-oriented paradigm are available from these
operating system functions. The new procedures, Remote
Object Call (ROC), Object Streams and Transport Layer
Object Interface (TLOI), allow system programmers object-
oriented interfaces when developing and programming system
applications bypassing the old standby structured routines.

This wrapping technology provides an efficient
intermediary way to utilize object-oriented facilities without a
complete re-write of the structured code. It is useful until
such time when natively object-oriented primitives are mature
and available. Object-wrapping technology does not work for
all situations, as was discussed in section three, and it is not a
substitute for a complete and total re-write, and re-design of

605

the primitives in question. Within the context of this study the
wrapping proved to be effective and useful.

For future study we propose the iteration of an
increasingly more detailed and refined object-wrapping. This
approach would see the wrappings descending further into the
structured code on every iteration. This iterative-wrapping
approach could be used to negotiate the transition from legacy
structured code to fully object-oriented code.

VII. REFERENCES

(1] T. Abe, Y. Mitsunga. etal., “Application of Object-Oriented
Techniques 1o Subscriber Cable Networks™ . Globecom.

Orlando. December, 1992 pp. 260-264.

. Alfano and P. Mathews "Introducing object-orientation in a
main frame software development organization" Globecom,
Orlando, December, 1992. pp. 274-278.

T. Biggerstaff, "Design recovery for maintenance reuse”. IEEE
Computer, Vol. 22, No. 8 (July 1989), pp.36-49.
[4] G. Booch. Object Oriented Design and Analvsis with
Applications. Benjamin Cummings, Redwood, Cal.., 1994,
[5] A.Divinand C. Petitpeirre. "An object-oriented method for
implementing protocol stacks”. Proc.of FORTE May 14. 1993.
[6] M. Feldhoffer, "Object-oriented modelling of the application
. layer structure”, ULPA4A. Neufeld & Plattner (Eds), Elsevier
Science Publishers B.V., North-Holland. IFIP, 1992.
[7] W. Guenther, Wackerbarth, "Object-Oriented Design of ISDN
Call-Processing Software”, [IEEE Communications, 04 1993.
[8] J. Koivisto and J. Reilly, "Generating Object-Oriented
Telecommunications Software Using ASN.1 Descriptions”,
ULPAA, Elsevier Science B.V. NorthHolland, 1992, IFIP.
[91 M. Kadoch, S. Erradi and G.v. Bochmann, Object-Oriented
Methodology of the MHS Protocol, Ecole de Technologie
Supérieure, Technical Report, Dec. 1993.
{10] S. K. K. Man, "Experiences in using object-oriented
technology in the development of the SPACE
system".Globecom, Orlando. December. 1992, pp. 265-272.
[11] C.Liu. "An Object-Based Approach to Protocol Software
Implemenation”, Computer Communications Review of the
ACM., proceedings of SIGCOMM, 1994,pp. 307-316.
P. Mondain-Monval and G. v. Bochmann, Object-oriented
Software Architecture for the OS] Basic Reference Model.

Département d'informatique et de recherche operationelle.
Universit¢ de Montréal, 1990.

[12]

[13] Rago. UNLX Svstem v Networkin Programming. Addison-
Wesley Publishing, Don Mills, 1993.

[14] E. Yourdon. Object-Oriented Design: An Iniegrated Approach,
Prentice-Hall, Toronto, 1994.

