
Implementation of Two Approaches for the Reliable Multicast of Mobile Agents
over Wireless Networks

Michel Barbeau
Département de math´ematiques et d’informatique

Faculté des sciences
Université de Sherbrooke

Sherbrooke (Qu´ebec) CANADA J1K 2R1
www.dmi.usherb.ca/�barbeau

Abstract

On a multi-access wireless network, it may be required to
send a mobile agent (MA) that goes on every network node
to set, for instance, the radio interface to a new frequency.
It needs to be done on all nodes at the same time. Instead of
forcing the origin node to dispatch a separate MA to every
destination node, it is better to send a single MA to a multi-
cast address and for the agent transfer service to deliver a
copy of the MA to every member of an associated group of
nodes. In this type of tasks, reliable delivery of the MA to
every node is a must otherwise the full operation of the net-
work may not be maintained. Although, wireless networks
are often characterized by relatively high error rates.

In this paper, we present the design and implementation,
of an API comprising two modules for the reliable multi-
casting of MAs over wireless TCP/IP networks. The two
approaches are described and compared in terms of the us-
age they make of the bandwidth of a 802.11 type of wireless
local area network.

1 Introduction

Use of mobile agents (MAs) in network management has
recently been reviewed [5]. It is an alternative to the client-
server style of management, of the Simple Network Man-
agement Protocol (SNMP) [7] for instance, to a distributed
and asynchronous style of management [1]. With SNMP,
management systems send get or set requests to managed
network elements. On network elements, requests are re-
ceived and replied by rather passive daemons calledSNMP
agents. A management system can also request, from a
SNMP agent, to be notified by trap messages when certain
events occur.

In the MA paradigm, the management systems do not

send requests to SNMP agents with some form of synchro-
nization. They pass their goals to MAs that know how to
handle them without being synchronized with their client.
They perform their task off-line and return feedback when
they are finished.

On a multi-access wireless network, it may be required
to send a MA to every network node to set, for instance,
the radio interface to a new frequency. It is a type of opera-
tions that needs to be done reliably on all nodes at the same
time. Instead of forcing the origin node the dispatch a sep-
arate MA to each destination node, it is better for the origin
node to send a single MA to a multicast address and for the
agent transfer service to deliver a copy of that MA to ev-
ery member of an associated group of nodes, exploiting the
multicast capabilities of the underlying networks. TCP/IP
networks provide best-effort multicast services with the IP
protocol. They are accessible a the transport level through
UDP. Wireless networks are, although, often characterized
by error rates higher than comparable guided medium tech-
nologies. Network configuration tasks require reliable de-
livery of the MA to every node otherwise the full operation
of the network may not be maintained. Such a degree of
reliability cannot be obtained relying only on a best-effort
multicast service.

In, this paper we present the design and implementa-
tion of an experimental API comprising two modules for
reliably multicasting MAs over TCP/IP wireless networks.
Several reliable multicast transport protocols have recently
been proposed in the literature. We selected and developed
a Java API for multicast transfer of MAs with two of them,
namely, Single Connection Emulation (SCE) [9] and Reli-
able Multicast data Distribution Protocol (RMDP) [6]. The
two approaches are described and compared in terms of the
usage they make of the bandwidth on a wireless local area
network.

This paper is structured as follows. Sec. 2 discusses



multicasting of MAs and presents our reliable multicast ap-
proaches based on SCE and RMDP. Sec. 4 describes our
API. A simple application is also shown. Finally, we con-
clude in Sec. 5.

2 Reliable Multicasting of MAs

A multicast agent transfer service may be best-effort,
meaning that the transfer of a MA to all destinations is not
guaranteed. This may be acceptable for a MA that does a
clean-up of log files on all network nodes. Guaranteed de-
livery is not required because if it fails, the clean-up will
most probably be done the next time.

The transfer of a MA is anall or nothing situation. A
single packet error makes impossible the deserialization and
correct execution of a MA. For network management, reli-
ability is often a must. For instance, let’s suppose that a
MA has to go on every node of a multi-access wireless area
network to change the setting of interfaces to a new radio
frequency. All interfaces have to change successfully to the
new frequency otherwise the operation of the network fails.

We developed an API, calledAiglet, for experimenting
multicast MA transfer, see Fig. 1. Some of the concepts we
use are inspired of the Aglets software development kit [3].
The two core concepts are agent, or MA, and agent system.
An agent has an interface, an implementation, and a state.
The interface consists of signatures of methods that may be
called by other agents or applications. The implementation
is made of the code that the agent executes. The state is
made of anobject state, the values of data members, and an
execution state, a program counter and a stack. When an
agent is transferred, it takes its implementation and object
state.

An agent systemis to agents what an operating system
is to processes: a context in which they execute and use
resources. An agent system is identified by a network ad-
dress, called alocation. It can also be member of multicast
groups, also identified by network addresses.

The Aiglet API is written in Java [4], and provides
classes for creating agents and agent systems with multi-
cast agent transfer capability. Therefore, all these things
run over a Java Virtual Machine (JVM).

The architecture of the Aiglet API is depicted in Fig. 2.
There are three main classes:Agent, AgentStub, andCon-
text. ClassAgentis an abstract class. I cannot be instan-
tiated and some of its methods can be overridden. It is a
base class for defining by inheritance concrete MA classes,
such as classSnmpAgent. An agent has methodsrun(), dis-
patch(), andsetStub(). Methodrun() is executed when a
MA arrives to a new agent system. Methoddispatch()pro-
vides the reliable multicast agent transfer service. The MA
does not handle itself the dispatch function and forwards
the request to its execution environment. MethodsetStub()

AgentNetwork

The Aiglet API

Agent system

Java Virtual Machine

Computer

Figure 1. The Aiglet API.

provides to a MA a reference to its execution environment.
AgentStubis a Java interface modeling the view that a

MA has on its environment of execution. The environment
of execution provides services to MAs. One such service is
the methoddispatch().

An instance of classContextmodels an environment in
which MAs execute. It implements the interfaceAgentStub.
Every agent system runs an instance of classContext. It
sends the MAs using multicast. It also starts MAs when
they are received.

Details of a reliable multicast agent transfer are handled
by classSCEMulticaster, for SCE, and classRMDPMul-
ticaster, for RMDP. They both share properties which are
captured through inheritance of classMulticaster. Class
Multicasteris contained within classContext. The multicast
transport services of SCE and RMDP are accessible as APIs
in the C language. The link between the Java classes and
C APIs is done by means of Java Native Invocation (JNI)
methods [4].

2.1 Reliable Multicast with SCE

We outline the design of our reliable multicast agent
transfer service based on SCE. We review the key ideas
of SCE and discuss the MA dispatch and reception mecha-
nisms.

Single Connection Emulation

SCE is a reliable multicast transport service [9]. It is based
on IP multicast capable network services. A layer called
SCE is inserted between IP and an user-level TCP imple-
mentation. The SCE layer bridges the gap between the TCP
unicast like protocol and IP multicast. SCE aggregates ac-
knowledgments and control segments from the members of

2



put()
get()

Context

Multicaster

dispath()

AgentStub

SnmpAgent

setStub()

run()

Agent

SCEMulticaster

start()

open()

close()

bye()

RMDPMulticaster

is part of

dispatch()

inheritance

has by reference

Figure 2. Architecture of the Aiglet API.

a multicast group. Aggregated segments are passed to TCP
as single entities, giving to it the illusion of a single remote
TCP entity.

The key idea of SCE is illustrated in Fig. 3. SCE is
connection oriented. There are a source and several des-
tinations. A connection is established from the source to
all the destinations. They behave as TCP protocol enti-
ties. As TCP, SCE goes through three phases: connec-
tion establishment, data transfer, and connection release.
These phases are implemented as multicast and unicast IP
packets. To establish the connection, the source sends us-
ing multicast aSYNsegment (in an IP packet). In Fig. 3,
the first two interactions are actually performed by a sin-
gle multicast IP packet. A connection acceptance, unicast
segmentSYN&ACK, is expected from every individual des-
tination. The acceptances are acknowledged individually
as well, withACK unicast segments, to complete the three-
way handshake connection establishment. The connection
is successful when all destinations have confirmed accep-
tance of the connection.

Even though there are control segments exchanged in all
directions, user data flow only from the source to the des-
tinations in multicast packets. During data transfer, each
multicast data packet is acknowledged individually by ev-
ery destination. The source aggregates the control packets

aSource aDestinationA aDestinationB

SYN

SYN & ACK

ACK

ACK

SYN

SYN & ACK

multicast a connection
request.

Every destination returns
a connection acceptance.

acceptance is acknowledged
individually.

A source sends using

Reception of every connection

Figure 3. Aggregation of segments in SCE.

received from the destinations.

Dispatch of a MA

Methoddispatch()dispatches a MA to a group of agent sys-
tems. The callee ofdispatch()provides a set of destination
host names. The MA forwards the call to the context in
which the work is done. The MA is serialized in a tempo-
rary local file. A multicast session is started. ClassMulti-
casterSCEoffers a set of JNI methods for running a multi-
cast session. Methodopen()is called for every destination
host. It adds the host to a multicast group and establishes
an unicast control connection with it. Methodput() opens
the multicast connection and sends the MA over it. Method
close()is called for every host. It removes the host from the
multicast group and closes the control connection with it.
Methodbye()releases resources and marks the end of the
multicast session.

Reception of a MA

Reception of a MA is taken care by methodrun() of the
classContext. Method run() consists of an infinite loop
comprising several steps. It blocks and waits until it ac-
cepts a control connection, accepts a multicast connection
request, receives a serialized MA, stores it in a file, and
closes both the multicast and control connections. The MA
is read from the file and deserialized. A thread is created
from the deserialized MA. The JVM calls methodrun() on
the MA.

2.2 Reliable Multicast with RMDP

We now outline the design of our reliable multicast agent
transfer service based on RMDP. The key ideas of RMDP
and the MA dispatch and reception mechanisms are pre-
sented.

3



Reliable Multicast data Distribution Protocol

RMDP is based on retransmission on demand Automatic
Retransmission reQuest (ARQ) and Forward Error Correc-
tion (FEC). On demand ARQsends repair packets only
when requested. FEC transmits redundant data allowing the
receiver to reconstruct the original message in the presence
of missing packets. RMDP handles the data to be transmit-
ted ask units. Thesek units are interpreted as the coeffi-
cients of a polynomialP of degreek � 1. PolynomialP is
fully characterized by its values atk different points. Re-
dundancy is produced by evaluatingP atn different points,
with n > k. The fact is that reconstruction is possible as
long ask different point values are available.

RMDP is datagram oriented. There are a source and
several destinations. The source computes then different
points from thek data units and transmits the firstk points
to the destinations using an individual multicast packet for
every point. Every destination counts the number of re-
ceived points. If a destination, e.g.,aDestinationB, misses
points, i.e., the number of received points is less thank,
it sends the number of missing points to the source. The
source extends the transmission of the previous sequence of
k points and starts transmitting up ton � k new redundant
points using multicast. A destination starts reconstruction
of the data when it has successfully received a total ofk
different points.

Dispatch of a MA

Methoddispatch()sends a MA to a multicast location. The
MA forwards the call to the context in which the work is
done. The MA is serialized in a local file. ClassMulticas-
terRMDPprovides the operationput(). It creates an UDP
socket, makes datagrams with the well know destination
multicast group address and serialized MA read from the
local file, and sends the datagrams over the UDP socket ac-
cording to the conventions of ARQ and FEC.

Reception of a MA

The agent system joins the multicast group at startup. Re-
ception of a MA is handled by an instance of classCon-
text. It executes an infinite loop. It blocks and waits for
new MAs. When a new MA arrives, it is stored in a local
file. The MA is read from the local file and deserialized. A
thread is created from the deserialized MA. The JVM calls
the methodrun() on the MA.

3 Bandwidth usage

Analysis of bandwidth usage by every approach is done
assuming a single CSMA/CA wireless network of the type

802.11 [2]. We developdata frame count modelsof band-
width usage. Counting of frames is the metric used by most
of the network hardware interfaces.

We analytically model the number of data frames gen-
erated by our two multicast agent transfer approaches. We
do not count control frames explicitly. It must be, how-
ever, understood that a data frame transmission is supported
by at least three control frame exchanges. For details, see
Ref. [2].

The size, in bytes, of the serialized representation of a
MA is denoted asC. The amount of data that can be put
in a single data frame is represented byMTU (Maximum
Transmission Unit) . To theMTU, we remove eight bytes
for the UDP header and 20 bytes for the IP header, when
it applies. LeavingMTU � 28 bytes for the data itself.
MTU is often 1500 bytes. The number of destination agent
systems is denoted asN .

In the SCE case, the interactions between the origin
agent system and destination agent systems involve: 1)
transmission of the multicast address and port, 2) opening
of a multicast transport connection, 3) transfer of the agent
over the connection, and 4) release of the connection.

Item 1 is out of band data transmitted over a standard
unicast TCP connection. It is repeated for every destination
agent system. The origin agent system sends the multicast
address and port number and the destination agent system
acknowledges reception. This requires a total of 11 data
frames (for details see Ref. [8]). There is therefore a total
of 11N generated data frames.

Each destination agent system then joins the multicast
group using IGMP, generating2N data frames.

Items 2, 3, and 4 are done using SCE. For Item 1, a total
of 1 + 2N data frames is generated.

The transfer of the MA over the multicast connection,
requires transmission of a number of control and data mes-
sages. Control messages are sent to mark the beginning
and end of the MA transmission, requiring a total3(N +1)
frames. The number of data frames depends onC andMSS
(Maximum Segment Size). Most of the times it is 1024

bytes, yielding a total of(N + 1)
l

C
MSS

m
data frames.

The release of the multicast connection requires the mul-
ticast transmission of a segmentFIN, reception of aFIN
& ACK segment from every destination agent system, and
multicasting of a lastACK segment. For a total of2 + N
data frames.

We add a last data frame for the IGMP leave. We may
also eventually add the polling traffic if the transfer cannot
be done within a single polling interval.

For the whole multicast agent transfer, the total packet
count is:

7 + 19N + (N + 1)

�
C

MSS

�

A graph presenting the data frame count is pictured in

4



SCE

0
2000

4000
6000

8000
10000

C (in Bytes) 10
20

30
40

50
60

70
80

90
100

N

0

500

1000

1500

2000

2500

3000

Frame count

Figure 4. SCE Case: Frame count versus C
and N .

Fig. 4. The frame count is plotted againstC and the number
of destinations. It is clear that the bandwidth usage of the
SCE based approach is relatively sensitive to the number of
destination nodes.

With RMDP, the transfer of an agent requires the trans-
mission of a number of data frames that depends onC and
segmentation and blocking factors that are explained in de-
tails in Ref. [6]. With the implementation we use, the num-
ber of data frames is expressed by the following formula

34
l
dC=1024e

31

m
.

In addition, there is overhead generated by IGMP to join
and maintain membership into groups. When a node joins
a multicast group, it sends twice an IGMP report. If there is
a multicast router on the physical network, it sends at regu-
lar intervals an IGMP query to check the existence of group
members. A single node responds for the group with an
IGMP report. This polling is performed at random intervals
of length between zero to 10 seconds. IGMP messages are
rather small (eight bytes) and every one of them fits in a sin-
gle data frame. We assume an uniform distribution with an
polling every five seconds, in average. When a node is the
last to leave a multicast group, it may send an IGMP leave
message. We attribute to each agent transfer a share of the
IGMP traffic. LetN denote the number of destination agent
systems,T the average time between two transfers, andD
the number of transfers performed while the whole collec-
tion of agent systems is running. The share of traffic in
terms of data frames associated with a single agent transfer
corresponds to1+2ND + 2T

5
.

For the RMDP based approach, the count of frames in-
curred to a single agent transfer is expressed by the follow-
ing formula:

1 + 2N

D
+

2T

5
+ 34

�
dC=1024e

31

�

RMDP

0
20000

40000
60000

80000
100000

C (in Bytes) 10
20

30
40

50
60

70
80

90
100

N

0

20

40

60

80

100

120

Frame count

Figure 5. RMDP Case: Frame count versus C
and N .

A graph presenting the data frame count is pictured in
Fig. 5. We assume thatT andD are respectively equal to
five seconds and 20 transfers. The frame count is plotted
againstC and the number of destinations. It is clear that the
bandwidth usage of the RMDP based approach is relatively
sensitive to the size of the MA. Under the actual conditions,
RMDP looks more scaleable than SCE.

4 Application Programming Interface

In this section, we describe the interface provided to pro-
grammers of MAs. We present the syntax for invoking the
multicast agent transfer services with the semantics intro-
duced the Sec. 2. The API takes the form of Java classes.

On the origin side, the main abstraction is classAgent. It
provides methods for initializing, executing, and dispatch-
ing a MA.

public abstract class Agent {
public void onCreation(){}
public void run(){}
public final void dispatch(

ArrayList destinations, int protocol,
String address, int port, int ttl){}

public static final int RMDP = 1;
public static final int SCE = 2; }

MethodonCreation()is executed only once, when the agent
is created. It can be overridden by the programmer to put
its own initialization behavior. The method that triggers the
dispatch of an agent isdispatch(). Argumentdestinations
is a list of destination host names. It is mandatory when
SCE is used. Theprotocolargument identifies the protocol
that is going to be used for the transfer,RMDPor SCE. The
addressargument specifies the IP class D address that is
going to be used in the outgoing packets. The argumentport
gives the destination port number put in the UDP datagrams.
The ttl argument indicates the value that will be put in the
Time To Live (TTL) field of every outgoing packet.

5



On the destination sides, the main abstraction isContext.

public class Context {
public void setProtocol(int protocol){}
public static final int RMDP = 1;
public static final int SCE = 2;
public void setAddress(String address){}
public void setPort(int port){} }

MethodsetProtocol()sets the protocol used for the agent
transfer. Creating an agent system server is done as follows:

public class Server {
public static void main(String[] args){

1. Context aContext = new Context();
2. aContext.setProtocol(Context.RMDP);

aContext.setAddress("224.5.5.6");
aContext.setPort(5657);

3. Thread server = new Thread(aContext, "...");
4. server.start(); } }

Line 1 creates an instance of classContext. The multicast
transport protocol is selected on Line 2, as well as the IP
address and port number. On line 3, a thread is created from
the objectaContextand started on line 4.

4.1 Example application

We show the implementation of a simple program that
uses the API to send, using RMDP, a MA to change the
network id (NWID) of all interfaces of a 802.11 type of lo-
cal wireless network. A NWID identifies a cell. Change
of NWIDs may be useful for reconfiguring cells. When
the MA reaches a destination agent system, it uses SNMP
services to access a local Management Information Base
(MIB). The code of the MA is as follows:

public class SnmpAgent extends Agent {
1. private String nwid;
2. private String oid =

".1.3.6.1.4.1.74.2.21.1.2.1.4.1";
3. public void onCreation(String nwid) {
4. this.nwid = nwid;
5. dispatch(Agent.RMDP, "224.5.5.6", 5657, 1); }
6. public void run() {
7. Runtime.getRuntime().exec(

"snmpset -v 1 localhost sysadmin "+
oid+" s "+nwid); } }

The MA overrides methodsonCreation(), Line 3, and
run(), Line 6. The argument ofonCreation()is the NWID
that is going to be used to configure the interfaces. It is
stored in private data membernwid, Line 4. Afterwards,
the MA dispatches itself, Line 5. Methodrun() is executed
when the MA arrives to a new location. The MA contacts a
local SNMP agent supporting the MIB. Thesnmpsetcom-
mand is called as a separate process, Line 7. Actual param-
eters are the object identifieroid, Line 2, of the MIB ab-
straction corresponding to the NWID of the interface, and
the NWID value to put in this abstraction. It is possible, but
not detailed here, to get feedback from the execution of the
command which can be analyzed and returned by the MA
to the management system.

5 Conclusion

We have presented and discussed the implementation of
two approaches for the reliable multicast of MAs over wire-
less networks. The SCE based approach is relatively sensi-
tive to the number of destination agent systems whereas the
RMDP approach is relatively sensitive to the size of the se-
rialized code of the MA. An API providing access to these
services as well as a simple MA example performing a con-
figuration task have been shown.

Note that we do not yet provide a complete answer to
the question. The bandwidth usage models do not take into
account the retransmission required when errors occur. The
models give lower bounds of bandwidth usage. Future re-
search are required to compare the bandwidth usage of the
two approaches under various patterns of packet losses that
can occur on a wireless network.

Acknowledgment

This work was done while the author was a visiting re-
searcher at The University of Aizu, Japan. The author
thanks The University of Aizu for supporting this research.

References

[1] M. Baldi, S. Gai, and G. Picco. Exploiting code mobil-
ity in decentralized and flexible network management. In
H. Rothermel and R. Popescu-Zeletin, editors,First Inter-
national Workshop on Mobile Agents 97 (MA’97) - Lecture
Notes on Computer Science vol. 1219, pages 13–26, Berlin,
Germany, 1997. Springer-Verlag.

[2] L. M. S. Committee. 802.11 - Local and metropolitan area
networks. Institute of Electrical and Electronics Engineers,
Inc., New York, NY, November 1997.

[3] D. Lange, M. Oshima, and O. Mitsure.Programming and
deploying mobile agents with Java Aglets. Addison-Wesley,
1998.

[4] S. microsystems. Java development kit.
http://www.javasoft.com.

[5] A. Pham and A. Karmouch. Mobile software agents: An
overview. IEEE Communications, 36(7):26–37, July 1998.

[6] L. Rizzo and L. Vicisano. RMDP: An FEC reliable multicast
protocol for wireless environments.ACM Mobile Computer
and Communication Review, 2(2), April 1998.

[7] W. Stallings. SNMP and SNMPv2: The infrastructure for net-
work management.IEEE Communications Magazine, pages
37–43, March 1998.

[8] W. Stevens.TCP/IP Illustrated, Volume 1. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, profes-
sional computing series edition, 1994.

[9] R. Talpade and M. Ammar. Single connection emulation
(SCE): An architecture for providing a reliable multicast
transport service. InProceedings of the IEEE International
Conference on Distributed Computing Systems, Vancouver,
BC, Canada, June 1995.

6


