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This paper presents a simple and flexible on-line synthesis algorithm that derives
the optimal controller for a given environment. It consists of finding the greatest
possible number of admissible event sequences of a discrete-event system with
respect to a requirements specification. It generates and explores the state space
on-the-fly and uses a control-directed backtracking technique. Compared to a
previous algorithm of Wonham and Ramadge, our algorithm does not require
explicit storage of the entire work space and backtracks on paths of arbitrary
length to prune the search space more efficiently. This paper also discusses an
implementation of our algorithm and includes an evaluation of its performance on
a variety of problems. Q 1997 Academic Press

1. INTRODUCTION

Control problems involve finding an efficient machine that senses and
controls an environment through connections and guarantees satisfaction

w xof requirements 9 . These machines have wide applications in areas
ranging from robotics and manufacturing to telecommunications. The

w xsupervisory control theory developed by Ramadge and Wonhan 15 consti-
tutes an appropriate framework for tackling this kind of problem when the

Ž .environment is modeled as a discrete-event system DES . It allows the
automatic generation of abstract controllers that are close to real ma-
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chines. Furthermore, it ensures that each controller derived by a synthesis
procedure is correct and optimal. This is fundamental in the design of
safety critical systems.

This paper is concerned with the synthesis problem under full observa-
tion, which is informally stated as follows. Given a model of an environ-

Žment, a set of controllable events, and a requirements specification also
.called legal behavior , find a controller such that the behavior of the

environment connected with the controller is as large as possible but legal
w xwith respect to the requirements specification. Wonham and Ramadge 17

proposed an algorithm using an automaton-based approach to solve this
problem. It synthesizes a controller mainly through comparison of the
transition structures of automata modeling the environment and its legal
behavior. The computational complexity of this algorithm is polynomial in
the cardinalities of state spaces of automata modeling the unrestrained
and legal behaviors of the environment. Note, however, that the number of
states of the automaton modeling the environment grows exponentially

w xwith the number of its components 18 . This is due to the fact that the
environment’s transition structure is obtained by taking the shuffle or
synchronous product of the transition structures of automata modeling the
components. Thus the Wonham and Ramadge synthesis procedure re-
quires first the computation of a global automaton from those of compo-
nents, then the intersection with the legal behavior, and finally the
extraction of the optimal controller from the result of these two operations
using a fixed point calculation.

In this paper, we propose a single-phase synthesis algorithm that com-
putes the product elements, while simultaneously synthesizing a controller,
on-the-fly from the transition structures of components and considers only
the part of the product state space necessary for generating the optimal
controller. Therefore, it does not require explicit storage of the entire state
space of the environment. Furthermore, our algorithm detects early unsat-
isfactory states using a control-directed backtracking technique that goes
back over uncontrollable paths of arbitrary length. Although our algorithm
has the same worst-case complexity as the Wonham and Ramadge algo-
rithm, our experiments suggest a better average complexity. This is essen-
tially due to the fact that an algorithm that enumerates states on-the-fly
performs better in scenarios where relevant control information is local so
much so that most of the known algorithms for computing the optimal
controller are not suitable for practical implementations because they do
not tackle the complexity of the problem well. The present paper consti-
tutes a first step in this direction.

The rest of the paper is organized as follows. Section 2 gives the
notation and background results of the supervisory control theory for DES.
Section 3 presents the basic ideas of our synthesis approach and introduces
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related concepts. Section 4 details the synthesis algorithm. Section 5
provides the main results of a comparative experiment, discussion on
related work, and concluding remarks.

2. PRELIMINARIES

In the context of the supervisory control theory, an environment is
called a plant and its interconnection with a controller forms a closed-loop

Ž .system. A plant G is a DES represented by a generator S, X, d , x , X ,0 m
which is a deterministic finite automaton, where S is a finite set of events,
X a finite set of states, d : S = X ª X a transition function, x g X an0
initial state, and X : X a set of marker states. It is convenient tom
introduce the extended transition function d : S* = X ª X in the usual

w x Ž .way 7 . The actï e set of a state x, denoted S x , is defined by
� Ž . 4 1s N d s , x ! . The closed beha¨ior and marked beha¨ior of G are defined,
respectively, as

L G s w g S* N d w , x ! ,� 4Ž . Ž .0

L G s w g S* N d w , x g X .� 4Ž . Ž .m 0 m

The set X represents the complete tasks of the plant. Usually, G ism
2Ž .nonblocking, that is, L G s L G . Intuitively, this means that all sub-Ž .m

tasks in G can be completed.
The alphabet S is divided into two disjoint subsets S and S ; that is,c u

Ž .controllable events and uncontrollable events, respectively. Let L s ` S ,c
the power set of S , be the set of all control inputs, and l g L. If s g l,c
then s is disabled; otherwise, it is enabled. An uncontrollable event is
always enabled. Therefore, in a controlled DES, the transition from a state

Ž .x on the event s is enabled if d s , x ! and s f l. The role of control
inputs is to govern the behavior of G with respect to a legal language L
over the alphabet S. Let H be a finite deterministic automaton
Ž . Ž .S, Y, j , y , Y such that L s L H .0 m m

Given a plant G and a legal language L, a nonblocking controller C must
be constructed such that the behavior of G under the supervision of C is
restrained to the greatest possible number of admissible event sequences.
The language defined by these sequences is called the supremal control-
lable sublanguage of L and the synthesized controller is termed maximally
permissï e. The plant and controller are usually brought together in a

1 Ž . Ž .d s , x ! is an abbreviation for the expression ‘‘d s , x is defined.’’
2 L denotes the prefix closure of L.
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closed-loop system denoted by CrG. They evolve concurrently so that they
interact with each other. Their interactions may be regarded as events that
require their simultaneous participation; the events are generated by G
with respect to control inputs established by C. Whereas the plant and
controller share the same set of events, each event that actually occurs
must be possible in the independent behavior of each process separately.

In the supervisory control theory for DES, one may distinguish three
Ž .basic problems: the super̈ isory control SC problem, the marking non-

Ž .blocking super̈ isory control MNSC problem, and the nonblocking super-
Ž .¨isory control NSC problem. In the SC problem, the fact that states are

marked is irrelevant. In the MNSC problem, some controller states are
marked, so the controller must recognize complete tasks. Finally, in the
NSC problem, the plant detects complete tasks. The algorithm presented
in this paper can be used to solve any of these problems. For the sake of
simplicity, however, we focus on the MNSC problem.

w xThe fundamental property of controllability 14 must be introduced to
deal with a control problem. A language K : S* is controllable with

Ž .respect to G if K S l L G : K. Intuitively, a language K is controllableu
if any subtask of K followed by an uncontrollable event that is possible in
G is also a subtask of K.

Ž Ž ..Let CC L l L G be the set of controllable sublanguages of L lm
Ž .L G with respect to G; that ism

CC L l L G s K : L l L G N K S l L G : K .Ž . Ž . Ž .� 4Ž .m m u

w xThis set is nonempty and closed under unions 14 . Therefore, it contains a
unique supremal controllable sublanguage denoted by K ­ . If K ­ / B,

Ž . ­there exists a controller C for G such that L CrG s K , which solvesm
the MNSC problem. From a practical point of view, the controller C is a

Ž . Ž .pair S, w , where S is a finite deterministic automaton S, Q, z , q , Q0 m
and w : Q ª L is a feedback function. The closed-loop system CrG is

Ž ² :represented by the product structure S, Q = X, z = d , q , x , Q =0 0 m
. ² : ² Ž . Ž .:X , where a transition from q, x to z s , q , d s , x on the event sm

Ž . Ž . Ž .is defined if z s , q !, d s , x !, and s f w q . From the previous defini-
tions, the following properties hold:

L CrG s L G l L S , 1Ž . Ž . Ž . Ž .m m m

L CrG s L G l L S , 2Ž . Ž . Ž . Ž .

L CrG s L CrG . 3Ž . Ž . Ž .m
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The most well-known computional method to obtain K ­ comes from
w xWonham and Ramadge 17 . It proceeds by calculating the fixpoint of the

operator

V K s L l L G l sup T : S* N T s T , T S l L G : K .Ž . Ž . Ž .� 4m u

Ž .In this equation, the expression L l L G guarantees that the closed-m
loop system includes only the legal complete tasks possible in G. The

Ž .equality T s T and inclusion T S l L G : K are related to the con-u
cepts of nonblocking and controllability, respectively. The synthesis algo-

Ž . Ž .rithm works on paths of length 1 of H, assuming that L H : L G and
there exists a correspondence function f between the states of H and states

Ž .Ž . Ž . Ž . 3of G such that f (j w, y s d w, x for all w g L H . At each step,0 0
the algorithm removes the states of H that violate the controllability

Ž Ž .. Ž .constraint S f y l S : S y . At the end of each step, the algorithmu
Želiminates the states of H that are not coreachable i.e., not leading to a

.marker state . This process stops when no states can be removed. The
result is then a controller automaton.

3. THE SYNTHESIS APPROACH

Our synthesis approach is described hereafter. Let us consider the
Ž . Ž .intersection of L G and L H , the closed behaviors of G and H,

Ž ² : .respectively. Let R s S, X = Y, g , x , y , X = Y such that for all0 0 m m
s g S, x g X, and y g Y,

² :d s , x , j s , y , if d s , x ! and j s , y !,Ž . Ž . Ž . Ž .² :g s , x , y sŽ . ½ undefined, otherwise.

Ž . Ž . Ž . Ž . Ž .It is easily shown that L R s L H l L G and L R s L l L G .m m
² : ² :A state x, y of R records a finite sequence of events t s s , s , . . . , s0 1 n

Ž .called a trace in which G and H have engaged up to some moment in
Ž .time. It should, however, be noted that d s , x may be defined for some

Ž .s g S while j s , y is undefined, as shown in Fig. 1. In this particular
case, the goal of the controller is to disable the event s , if s is
controllable, or prevent the plant from reaching the state x by disabling
the latest controllable event s from the end of the trace t.i

Let s, s9 g X = Y. Let s.lct denote the set of latest controllable transi-
Ž .tions LCT on paths leading to s with respect to some controllable events;

3 Ž . ŽIn general, the function f is defined from X = Y the states of G = H to X the states
. ² : Ž² :.of G . Specifically, for x, y g X = Y, f x, y s x.
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² :FIG. 1. Latest controllable transition of x, y .

w xthat is, s can be prevented by disabling s 9 at s9 for each s 9, s9 g s.lct
w x13 . One can see the latest controllable transitions as a function lct: X =

Ž Ž ..Y ª ` S = X = Y . Referring to Fig. 1, the LCT is interpreted asc
Ž .follows. The transition from x to x labeled s in the plant isi iq1 i
Ž .controllable, whereas the transition from x labeled s is uncontrollable

as are the transitions from x to x. Therefore, the only way to avoid theiq1
state x in the plant is by disabling the controllable event s contained ini

² : ² :the LCT of x, y . The disablement of a transition from x, y on s
according to whether s is controllable or not is formalized as

² : ² : � 4w x , y s w x , y j s , if s g S , 4Ž .Ž . Ž . c

² : ² : � 4w x9, y9 s w x9, y9 j s 9Ž . Ž .
² : ² :w xfor all s 9, x9, y9 g x , y .lct if, s g S . 5Ž .u

Two new expressions are introduced to implement the function lct. Let
Ž .s. pre : ` X = Y denote the set of states from which the state s is

Ždirectly reachable on an uncontrollable event. Let s. pct : ` S =c
Ž .. �w x Ž . 4X = Y denote the set s , t N g s , t s s and s g S ; that is, thec
state s is directly reachable from the state t on the controllable event s . If
w xs 9, s9 g s.lct, then there exists a sequence of states s , . . . , s , with1 n
n G 2, s s s9, and s s s, such that s g s . pre, 3 F i F n, and1 n iy1 i
w xs 9, s9 g s . pct.2

² :Let s s x, y g X = Y, then s. x and s. y denote the states x g X and
y g Y, respectively. Our synthesis approach is also based on the predicates

1, if s. x g X and s. y g Y , 6Ž .m mMarked s sŽ . ½ 0, otherwise,

Coreachable sŽ .

¡ 71, if Marked s or Ž .Ž .~s 8if 'w g S* g w , s ! and Marked g w , s , Ž .Ž . Ž . Ž .Ž .¢
0, otherwise,
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¡1, if 's g S d s , s. x ! and not j s , s. y ! orŽ . Ž . Ž . 9Ž .u

if 's g S d s , s. x !, j s , s. y !Ž . Ž . Ž . 10Ž .u~Sink s sŽ .
² :and Sink d s , s. x , j s , s. y s 1,Ž . Ž .Ž .¢

0, otherwise.

The first predicate is based on the definition of the intersection of two
languages. It is used to record information about complete tasks in the
controller. The second predicate formalizes the notion of coreachable
state. The third predicate determines if a state is a sink and expresses
recursively the converse of controllability. For instance, in Fig. 1, if
w ² :x ² : ² : Ž .s , x , y g x, y .lct, then the state x, y satisfies Eq. 9 , whereas thei i i

² : ² : Ž .states x , y , . . . , x , y fulfill Eq. 10 . During the synthesis pro-iq1 iq1 n n
cess, a status is associated with each visited state s g X = Y, indicating
whether s is sink, coreachable, or undefined.

Generally, a synthesis procedure computes an automaton S that accepts
­ Ž . ­ Ž . Ž .K ; that is, L S s K . Based on the fact that L S : L l L G ,m m m

this can be done in at least two ways. One strategy consists of obtaining S
from R by pruning undesirable states; more specifically, sink states and
noncoreachable states. This strategy, however, has the disadvantage of
wasting memory space because it is usually unnecessary to consider the
whole state space of R and indirectly the whole state space of G. An
alternative is to construct S incrementally and generate only the states of
R that are needed to solve the MNSC problem. Our synthesis procedure
follows this strategy. More precisely, it performs the following operations
simultaneously and on-the-fly: expansion of the state space of R from the
initial state, identification of sink states, identification of noncoreachable
states, and control-directed backtracking to prune the state space.

4. THE SYNTHESIS ALGORITHM

Before describing the algorithm, we define the following auxiliary proce-
dures:

v Ž .Mark_State s establishes if a state s represents a complete task.
v Ž .Initialize_New_State s initializes the attributes of a new

state s.
v Ž .Sink s fixes the status of a state s to sink and determines those

that become sinks among its predecessors.
v Ž .Coreachable s sets the status of a state s to coreachable and

identifies those that become coreachable among its predecessors.
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FIG. 2. Procedures for marking and initializing a new state.

v Ž .Undefined s verifies if the status of a state s can be set to
undefined and then determines those that can potentially become unde-

Žfined among its predecessors the status undefined will be made clearer
.later .

The pseudo-code of the first two procedures is shown in Fig. 2. The code
of these procedures is straightforward. The procedure Mark_State re-

Ž .flects Eq. 6 . Note that it can be adapted to solve the SC or NSC problem.
Figure 3 contains the pseudo-code of the procedure Sink. It is always

called with a parameter s such that s.status / sink. This prevents the
procedure Sink from looping infinitely on a sequence of states that forms
a cycle in the working transition graph. When a state becomes a sink, all
its incoming and outgoing transitions are removed by the procedure

Ž .Delete_Bound_Transitions line 2 . Furthermore, some of its prede-
Ž .cessors may become sinks or noncoreachable. Line 3 implements Eq. 10

of the predicate Sink. Lines 4]6 check if every unmarked and coreachable
predecessor state remains coreachable after deletions, which is the specific
role of the procedure Undefined.

w Ž . Ž .xThe definition of the predicate Coreachable Eqs. 7 and 8 is given
with respect to the actual transition structure of R. The fact that sink
states are identified and their bound transitions are removed as the

FIG. 3. Procedure for determining sinks.
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working transition structure is expanded impacts on the coreachability of
some states. Indeed, when a marker state is identified as a sink, some
coreachable states may become noncoreachable. Besides, when a new
marker state is added to the working transition structure, some nonco-
reachable states may become coreachable. The role of the procedures
Coreachable and Undefined is to update the status of such states.
Figure 4 shows the pseudo-code of these procedures; they are analogous
and complementary. The former is always invoked with a parameter s such
that s.status s undefined and the latter is always called with a parameter s
such that s.marked s falsen s.status s coreachable. When a state be-

Ž .comes coreachable line 2 of the procedure Coreachable , every state
w Ž .leading to it also becomes coreachable in accordance with Eq. 8 of the

xpredicate Coreachable . Lines 3]6 of the procedure Coreachable search
backward for these states. On the contrary, when a state becomes unde-

Ž .fined that is, neither coreachable nor sink , the status of its predecessors
may be set to undefined. As in the procedure Coreachable, lines 4]7 of
the procedure Undefined search backward for these states.

The synthesis algorithm is shown in Fig. 5. It accepts as input a list of
finite automata C , . . . , C modeling the components of a plant, a finite1 n
automaton H accepting the legal language, and a set of uncontrollable
events S . It produces as output a nonblocking and maximally permissiveu

Ž .controller S, w satisfying the control requirements and consisting of an
automaton S and a feedback function w. The algorithm incrementally
computes a product transition structure of C , . . . , C , and H from which1 n

FIG. 4. Procedures for determining coreachable and undefined states.
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FIG. 5. Synthesis algorithm.
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S is extracted. The pseudo-code is logically divided into three parts: the
Ž . Ž . Žprologue line 2 , the search process lines 3]27 , and the epilogue lines

.28]37 .
² :The prologue creates the initial state s s x , y and assigns default0 0 0

² 1 n:values to its attributes. It should be noted that x s x , . . . , x , where0 0 0
i Ž .x is the initial state of C 1 F i F n . The set of states X = Y is0 i

partitioned into the subsets of expanded and unexpanded states. Initially,
the set of expanded states, CLOSED, is empty and the set of unexpanded
states, OPEN, contains the initial state s . The status of a state that0
belongs to OPEN is undefined.

ŽThe search process has the following framework. The main loop lines
. ² :3]27 repeatedly selects a state s s x, y from OPEN. Given a current

unexpanded state s, the algorithm determines its successors for all events
Ž . Ž .s such that d s , x is defined. Note that d s , x is computed on-the-fly

from the transition functions d , . . . , d of automata C , . . . , C . Figure 61 n 1 n

shows a situation in which some successors have been calculated after a
Ž .number of iterations of the for loop lines 6]23 . At this particular step,

the algorithm proceeds with the event s by determining if it is possible in
s and, in this case, leads to state s9. The loop proceeds until all possible
events have been exhausted or the status of s has become sink. In the last

Žcase, successors of s not yet uncovered are just ignored see the break
.statement at lines 9 and 13 . The for loop considers three cases, as

illustrated in Fig. 7.
Ž .In the first case, s9 cannot be computed because j s , s. y is undefined;

that is, the event s does not occur on this path in H, as illustrated in Fig.
7a. Therefore, the state x9 terminates an illegal path in G. If s is
controllable, then the controller must prevent the occurrence of s . Other-

FIG. 6. The expansion of the state s.
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FIG. 7. The three basic cases.

wise, s is uncontrollable and s is a sink. This particular subcase is
represented by the conjunction of conditions at lines 6, 8, and 9 and

Ž .corresponds to Eq. 9 of the predicate Sink.
The second case is shown Fig. 7b. The state s9 is reachable from s on s ,

Ž .but s9 has already been expanded i.e., s9 g CLOSED and is a sink. The
operations to be performed are exactly the same as in the previous case.
This subcase is represented by the conjunction of conditions at lines 6, 10,

Ž .12, and 13 and corresponds to Eq. 10 of the predicate Sink.
In the third case, s9 is reachable from s on s and s9 is not a sink. The

transition function g is updated to keep track of the fact that this
transition occurs simultaneously in the process and legal behavior on s ,

Ž .from states x and y, respectively line 15 . If s9 is a new state, its attributes
Ž .are initialized and it is inserted into OPEN line 17 . Then, the set of

Ž . Ž .predecessors s9. pre or previous controllable transitions s9. pct of s9 is
Ž .updated line 19 or line 21 depending on whether or not s is uncontrol-

lable. Finally, if s is not a marker state and s9 is a coreachable state in
Ž .CLOSED, then s becomes a coreachable state lines 22 and 23 . In fact, if

s9 is coreachable, there exists a path labeled w from s9 to a marker state
s0. Hence, there exists a path labeled s w from s to s0, that is, s is

w Ž . xcoreachable Eq. 8 of the predicate Coreachable .
When a state has been expanded, its status is set to coreachable if it is

Ž . Ž .marked and not a sink lines 24 and 25 . This case represents Eq. 7 of the
Ž .predicate Coreachable. Finally, s is added to CLOSED line 26 .

The epilogue builds the controller from the intermediate automaton.
First, lines 28 and 29 change the status of undefined states to sink because
they represent incomplete tasks. This prevents the closed-loop system from
blocking. Because the procedure Sink deletes transitions, the exit states
of uncontrollable transitions, thus removed, need also to be avoided. This
is done by the recursive call in Sink. Second, lines 30 and 31 remove the
sink states. The expression CLOSED denotes the set of states inreachable
CLOSED that are reachable from the initial state if it is not a sink;
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Ž .otherwise, it denotes the empty set line 33 . At the end of this step, the
intermediate automaton contains only reachable and coreachable states;
that is, the automaton S is obtained. Finally, lines 34]36 compute the
feedback function.

The efficiency of this algorithm may be further improved by addressing
implementation details. First, every state selected from OPEN at line 4
must be reachable to prevent the expansion of useless states. Two strate-
gies can be exploited. One strategy consists of labeling nonreachable
states; the other consists of removing them from OPEN. Deleted states
would, however, be re-expanded when reached again by further expan-
sions. Therefore, the overhead due to the update of the nonreachable
labels is replaced by the overhead incurred by re-expanding states. This
problem is comparable to the management of backpointers in the search

w xalgorithm A* 16 . These strategies are incomparable in terms of perfor-
mance. Second, when a state is expanded, it is preferable to start with the

Ž .uncontrollable events see line 6 to prune the state space as soon as
possible. Third, when sequences of states are processed backward in the
procedure Sink, pre must be considered before pct. In this way, if
Ž . Ž . Ž . Ž . <g s , s9 s s s g S and g s , s9 s s s g S , then s9 g s. pct X=Yc c c u u u

l s. pre. Therefore, if line 3 is swapped with lines 4 and 5 in the procedure
Sink, then the status of s9 can be set to undefined and immediately after
to sink. This cannot happen when the operator pre has a higher priority
than pct, because when the status of a state becomes sink, it cannot be
changed afterward. Finally, it should be noted that the feedback function
could be computed on-line during the expansion of the transition structure

Ž . Ž .by using Eqs. 4 and 5 and changing lines 9 and 13 as follows:

if s in S thenu
Ž .Sink s ;

w xfor each s 9, s9 in s.lct do
Ž . Ž . � 4w s9 ¤ w s9 j s 9 ;

break;
else

Ž . Ž . � 4w s ¤ w s j s ;

Nevertheless, the on-line approach is more expensive than the off-line
approach because the feedback function is calculated for all expanded
states, including those that will become sink. Furthermore, it requires
computation of the function lct.

The correctness of the algorithm is based on the following theorem.

THEOREM 1. The procedure Derive_Controller always terminates
­ Ž .and, if K / B, then it returns a controller C s S, w satisfying

Ž . ­L CrG s K .m
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The proof of this theorem relies on four lemmas and one corollary. We
do not give a detailed proof because the synthesis algorithm is a refine-
ment of the known optimal supervisory computation mainly based on the

w xnotion of the synchronous composition of the plant and controller 12 .
Such an approach simplifies the analysis of synthesis problems considered
in this paper and proofs of synthesis algorithms. The reader can find a

w xdetailed proof of correctness in a companion technical report 2 .

( )LEMMA 1 In¨ariant of the repeat-until loop, lines 3]27 . Let predicate
Sink be restricted to the elements of CLOSED. For e¨ery state s g CLOSED,

Ž .s.status s sink iff Sink s is true.

( )LEMMA 2 In¨ariant of the repeat-until loop, lines 3]27 . Let predicates
Coreachable and Sink be restricted to the elements of CLOSED. For e¨ery

Ž .state s g CLOSED, s.status s coreachable iff Coreachable s is true and
Ž .Sink s is false.

( )LEMMA 3 In¨ariant of the while loop, lines 28 and 29 . For e¨ery state
s g CLOSED, s.status s coreachable or s.status s undefined iff Control-

Ž . Ž . Ž .lable s is true, where Controllable s is true if for all s g S , d s , s. x !u
Ž .implies g s , s !.

( )LEMMA 4 In¨ariant of the while loop, lines 28 and 29 . For e¨ery state
Ž .s g CLOSED, s.status s coreachable iff both Coreachable s and Control-

Ž .lable s are true.

­ Ž .COROLLARY 1. If K / B and C s S, w is calculated by
Ž . Ž .Derive_Controller, for e¨ery w g S*, g w, s !, and g w, s g0 0

Ž . Ž² Ž . Ž .:.CLOSED iff Marked d w, x , j w, y is true and for allm reachable 0 0
�² Ž . Ž .: 4 Ž .s g d w9, x , j w9, y N w9 g w , Controllable s is true.0 0

Proof of Theorem 1. Note that the procedure Derive_Controller
always terminates. It takes as input the finite transition structures
C , . . . , C , and H. In output, it yields a transition structure in which every1 n

Ž .state is an n q 1 -tuple in which the component at position i is a state
Ž . Ž .picked in C i s 1, . . . , n or H i s n q 1 . There is a finite number ofi

Ž .such combinations. The number of times the repeat-until loop lines 3]27
is executed is determined by the number of elements inserted in OPEN

Ž .and is bounded, because every n q 1 -tuple is inserted once in OPEN
Ž . Ž .lines 16 and 17, Fig. 5 and selected once from OPEN line 5 . The

Ž .number of iterations of the while loop lines 28 and 29 is bounded as well,
because every execution of it changes the status of a state from undefined
to sink.

­ Ž .Now, let us assume that K / B and let C s S, w be the controller
calculated by Derive_Controller. We show the following. For every
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Ž . Ž .w g S*, w g L CrG iff w g L, w g L G , and for all w9 g w, s g S ,m m u
Ž .if w9s g L G , then w9s g L.

Ž . Ž . w Ž . Ž . Ž .String w g L CrG iff w g L S by Eq. 1 and L S : L R sm m m m
Ž .x Ž . Ž . Ž .L l L G . By construction of S, w g L S iff g w, s ! and g w, s gm m 0 0

Ž . Ž . Ž .CLOSED . From Corollary 1, g w, s ! and g w, s gm reachable 0 0
Ž . Ž² Ž . Ž .:.CLOSED iff Marked d w, x , j w, y is true and for allm reachable 0 0

�² Ž . Ž .: 4 Ž .s g d w9, x , j w9, y N w9 g w , Controllable s is true. The preced-0 0
Ž .ing statement is true, however, iff w g L, w g L G , and for all w9 g wm

Ž .and s g S , if w9s g L G , then w9s g L.u

5. DISCUSSION

Table 1 summarizes statistics obtained from a comparative experiment
conducted with the algorithm in Fig. 5 and the Wonham and Ramadge

Ž .algorithm W & R algorithm . These two algorithms have been imple-
mented in Cqq by using an object-oriented approach. They use the same
base classes and code results from a straightforward translation of their
description while considering implementation details mentioned in the
previous section. Four different problems consisting of tens to several
thousands of states were used. The first three problems are extracted from

w xa paper by Ramadge and Wonham 15 : the maze problem in which a cat
and a mouse move, the problem of sharing a single resource by two users,
and the factory problem in which two machines feed a buffer and another
takes parts from the buffer. The fourth problem was initially suggested by

w x w xJensen 10 , then reconsidered by Makungu et al. 13 in the framework of
control theory, in which the plant is represented by a colored Petri net. It

Ž .consists of synthesizing a controller that supervises m 2 F m F 4 trains
on a circular railway composed of 10 sections. Table 1 indicates the state
space complexity of these problems. The W & R algorithm requires the

TABLE 1
Summary of Results

Our algorithm

Problem C G H G = H S W & R Gen. Exp.i

Maze 5 25 18 18 6 25 8 8
Two users 3 9 9 9 9 9 9 9
Factory 3 27 32 120 96 120 111 111
Two trains 10 100 70 70 60 100 70 70
Three trains 10 1,000 150 150 90 1,000 135 135
Four trains 10 10,000 100 100 40 10,000 75 60
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Ž .computation of G from all C 1 F i F n , then the calculation of G = H.i
Our algorithm derives the automaton S directly from H and all Ci
Ž .1 F i F n . In the W & R algorithm, the state space is characterized by

< < Žthe number of states generated, which is the maximum of X column
. < < Ž .labeled G and X = Y column labeled G = H . With our algorithm, the

state space is characterized by the number of states in G = H that are
generated and the number of states in G = H that are expanded. Accord-
ingly, our algorithm is better in terms of the number of states generated.
The computation time savings come from different sources: the product of
components on-the-fly, forward-chaining search, and control-directed
backtracking technique. The first two sources focus on local information,
whereas the third source prunes the state space as soon as possible.
Finally, it should be noted that the measures are all identical for the
problem with two users, because the legal behavior, represented as a

Žregular language, is controllable and as large with respect to the number
.of states as the unrestrained behavior. This is solely a case of verification

and is representative of the worst case.
Our algorithm can also be compared with other similar algorithms, in

w xparticular with the algorithm of Kumar, Garg, and Marcus 12 and the
w xalgorithm of Kumar and Garg 11 that solve the SC problem and MNSC

problem, respectively. These algorithms, however, obtain S from R by
Ž .pruning bad states see the strategies presented at the end of Section 3 .

As in the Wonham and Ramadge algorithm, they require explicit storage
of the entire state space. Several algorithms have also been proposed in

w xthe context of supervisory control of DES using limited lookahead 6 . The
Ž .VLP-S variable lookahead policy with state information algorithm com-

putes a state cost function that is used to define a control function on-line
w x4 . An off-line version that derives the supremal controllable sublanguage
of a legal language has also been developed by using VLP-S. As in our
approach, VLP-S is based on a forward search technique. However, with
VLP-S it is assumed that the automaton H is a submachine of G. This
property can be easily satisfied, but it implies a product of transition
structures. Finally, VLP-S has been extended to the case of partially

Žobserved DES. This new on-line algorithm is called VLP-PO variable
. w xlookahead policies under partial observation 5 and works for legal

languages that are prefix-closed. In conclusion, implementations of all
these algorithms require some strong assumptions regarding the state
space. Furthermore, to the best of our knowledge, no comparative experi-
ment has been reported in the literature.

Another advantage of our algorithm is that it has been adapted to
situations where the automaton H accepting the legal behavior is replaced

w xby a temporal logic formula 1 . In this particular case, the states of H are
replaced by formulas and the transition function j is replaced by a
mechanism of formula progression. This allows compact representation of
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the legal behavior and the uniform handling of safety, liveness, and
w xreal-time constraints 3 . Our algorithm could also be used as the underly-

ing algorithm to compute controllers on-line under the assumption of
w xpartial observation 8 .

Finally, our approach could benefit by adapting various search space
techniques developed in areas that model discrete-event systems, such as
heuristic search in artificial intelligence and partial-order exploration in
verification. These methods work on graphs and are based on forward-
chaining search using state expansion. As such, our approach seems
promising for integrating such techniques to further improve the explor-
ation of search spaces.
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