Discrete Event Dynamic Systems: Theory and Applications, 9, 147-169 (1999)
© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Synthesis of Controllers of Processes Modeled as
Colored Petri Nets

MBI MAKUNGU
Département de maéimatiques et d’'informatique, Universitle Sherbrooke, Sherbrooke @ac) CANADA
J1IK 2R1

MICHEL BARBEAU michel.barbeau@dmi.usherb.ca
Département de maéimatiques et d'informatique, Universitle Sherbrooke, Sherbrooke @ec) CANADA
J1K 2R1

RICHARD ST-DENIS richard.st-denis@dmi.usherb.ca
Département de maéimatiques et d’'informatique, Universide Sherbrooke, Sherbrooke @eac) CANADA
J1K 2R1

Abstract. This paper presents an adaptation of a supervisory control theory and a supervisor synthesis problem
to a class of colored Petri nets. More specifically, the forbidden state control problem with full observation, in
which a discrete-event system is modeled as a colored Petri net with a symmetry specification, is investigated.
This problem is decidable if the colored Petri net has finite color sets and bounded places. A new algorithm for
deriving a controller is presented in detail with a proof of correctness. Unlike conventional algorithms that explore
the entire reachable set of states, our algorithm avoids an exhaustive search of the state space by exploiting a
symmetry specification. It performs particularly well when applied to large but structured processes with similar
components. Furthermore, this approach leads to a representation of controllers which are smaller than those
obtained with automaton-based approaches.

Keywords: discrete-event systems, supervisory control, colored Petri net, symmetry specification, synthesis

1. Introduction

A control theory has been devised by Ramadge and Wonham for modeling supervised
discrete-event systems (DESs) and synthesis of controllers. This theory has been pri-
marily studied in the context of automaton-based models (Ramadge and Wonham, 1987).
Automaton-based modeling is, however, cumbersome, particularly in representing large
systems consisting of numerous similar interacting components. Even though the compu-
tational complexity is polynomial in the number of system states, it grows exponentially
with the number of components (Ramadge and Wonham, 1989). This phenomenon, called
thestate explosion problefiClarke et al., 1994), can be overcame by partitioning the com-
ponents into a small number of equivalence classes so that all components in a given class
are essentially similar. This paper makes a contribution in this direction and presents an
algorithm that reduces the complexity of a supervisory control problem under full obser-
vation for DESs consisting of large but structured processes with similar behaviors. DESs
are modeled as colored Petri nets. The purpose of this algorithm is to rigorously scale up
the approach of Ramadge and Wonham.

148 MAKUNGU ET AL.

Recently, Petri nets have begun to receive attention as models for investigating the control
of DESs. The Petri net-based models are more powerful than the automaton-based models
in that the set of Petri net languages is a superset of regular languages. Furthermore, they
allow smaller representations of multiple interacting components than equivalent automaton
models. Indeed, a single Petri net structure can describe the behavior of several concurrent
components modeled as tokens marking the structure.

One may identify mainly two different approaches. In the first approach, introduced in
(Krogh, 1987) and (Ichikawa and Hiraishi, 1988), a DES is described by usiogtolled
Petri net(CtIP-net). A CtlP-netis an extension of a standard Petri net in which the enabling
of transitions can be influenced by external binary control inputs. A tutorial survey of work
related to this approach can be found in (Holloway, Krogh, and Giua, 1997). Holloway
and Krogh have developed methods for avoiding forbidden markings for a class of Petri
nets called cyclic marked graphs (Holloway and Krogh, 1990). Later, Holloway et al. have
extended this method to guarantee liveness of the control (Holloway et al., 1996). Ushio
has discussed modular control synthesis and presented a necessary and sufficient condition
for the unique existence of a maximally permissive feedback (Ushio, 1990). Boel et al.
have treated the forbidden state problem for a class of Petri nets called state machines (Boel
et al., 1995). Sreenivas has studied the way to enforce liveness via supervisory control in
DES modeled as controlled Petri nets (Sreenivas, 1997b).

In contrast, the second approach does not include the concept of control input. The
control is obtained by synchronizing the Petri net of the plant with a controller which
may be an automaton or an ordinary Petri net. Denham has described a supervisory control
theory in which the Petri net of the system is viewed as a two-sorted algebra and the required
behavior is specified as Petri net invariants (Denham, 1988). Li and Wonham have extended
the notions of controllability and observability to Petri nets which they call vector DES (Li
and Wonham, 1993). Giua and DiCesare have examined the synthesis of controllers when
the systems are modeled as conservative Petri nets (Giua and DiCesare, 1991a). They have
also presented necessary and sufficient conditions for the existence of a Petri net supervisor
when both the system and control specifications are given as Petri net languages (Giua and
DiCesare, 1991b). Moody and Antsaklis, and Yamalidou et al. have described a method
for synthesizing a Petri net controller in the presence of uncontrollable and unobservable
transitions (Moody and Antsaklis, 1995; Yamalidou et al., 1996). Their method uses place
invariants and is able to enforce logical and algebraic constraints containing elements of
the marking and firing vectors. Sreenivas and Krogh have introducei-tte= nets, a
class of Petri nets for which controllability of event languages is decidable (Sreenivas and
Krogh, 1992; Sreenivas, 1993). More general results on the decidability of controllability
can be found in (Giua and DiCesare, 1995). Finally, Kumar and Holloway have shown
that the problem of determining controllability for Petri net languages is reducible to the
reachability problem of Petri nets (Kumar and Holloway, 1992).

Several types of control specifications have been applied to synthesis methods for Petri
nets, including: avoiding a set of forbidden states (Krogh, 1987; Holloway and Krogh, 1990;
Boel et al., 1995); enforcing event language specifications (Giua and DiCesare, 1991b;
Kumar and Holloway, 1992); enforcing fairness (Sreenivas, 1997a); enforcing liveness
(Holloway et al., 1996; Sreenivas, 1997b); and enforcing real-time control constraints

SYNTHESIS OF CONTROLLERS 149

(Sathaye and Krogh, 1992; Park and Chong, 1995). These synthesis methods can be
divided into two classes: methods that explore the state space and methods that examine
only the Petri net structure. The main problem with the first class is that the state space can
grow exponentially with respect to the size of the Petri net. The limitation of the second
class is due to conditions on the net structure, that is, restrictions on the interactions among
sub-systems in the modeling process.

Among the Petri net-based models, colored Petri nets (CP-nets) are powerful enough
to describe complex systems in a manageable way, particularly when they contain many
interacting components that are similar but not identical (Jensen, 1992). It is well-known
that the class of CP-nets with finite color sets is equivalent to the class of place/transition
nets (PT-nets). The CP-nets describe the same systems as the PT-nets but often in a more
compact form and allow the use of equivalence classes to represent similar components.
Specifications can be more readable and eventually more tractable. If no restrictions are
imposed on the definition of CP-nets, then they are equivalent to Turing machines.

The work presented in this paper addresses the forbidden state control problem for a class
of CP-netsinwhich color sets are finite and behaviors satisfy boundedness properties. Given
a control specification expressed as a set of forbidden markings, a procedure computes the
unigue maximal set of admissible markings and a controller by means of an occurrence graph
with symmetries. The symmetries guarantee that equivalent markings have similar behavior
(Jensen, 1995). Our aim is not to include, as control logic, additional places and transitions
to the CP-net being controlled. Such an approach is generally used when a simulation or a
performance analysis is performed for a given control policy (Krogh, 1987). In this work,
the process being controlled is separated from the control logic. This approach is suitable
for controller synthesis in which the process to be controlled already exists and the aim is to
compute, from a control specification, a separated controller which, when embodied with
the process in a closed-loop system, satisfies the control specification. Thus, this approach
permits formulations and solutions of different control synthesis problems for the same
process.

The layout of the paper is as follows. The next section introduces the notation and
definitions used in CP-nets. Section 3 extends supervisory control theory to processes
modeled by CP-nets with a consistent symmetry specification. Section 4 formulates the
control synthesis problem for avoiding a set of forbidden markings. Section 5 describes in
detail a new synthesis algorithm and gives a proof of its correctness. Section 6 illustrates
its application with an example. Finally, concluding remarks are provided in Section 7.

2. Notation and Preliminaries

The formal definition of CP-nets requires the notion of multi-set. A multi-set is defined as a
set in which given elements may appear several times. A multi-set can also be defined as a
function mapping each element of a setto a non-negative integer (the number of occurrences
of that element). Given a s& the set of all multi-sets ove8is denotedSys. A multi-set

over a setS can be represented by a sum. Each term of the sum consists of a coefficient
and an element 06. The former indicates the number of occurrences of the latter. For
the sake of simplicity, zero occurrence elements are omitted and the coefficient of a single

150 MAKUNGU ET AL.

Figure 1. Example of a network.

occurrence element is omitted. For instanc& i {x, y, z}, a multi-set in which there are
one occurrence of, three ofy, and none of can be represented ast 3'y.

We use two operations over multi-sets. The union of two multi-sgtandm, is rep-
resented as; + m,. Element-wise comparison af; andm; is represented ag; < m,
and holds true ifn; is a sub multi-set ofn,. The expressiomm| denotes the number of
elements om.

A CP-netisamany-tuplez, P, T, A, N, C, E, Mp), whereX is a finite set of non-empty
types, calleccolor sets P is a finite set ofplaces T is a finite set oftransitions A is a
finite set ofarcsconnecting places and transitioméjs anode functior{defined fromA to
P x TUT x P)that maps each arc to a pair of nodes of different kinds (i.e., one is a place,
while the other is a transition; is acolor function(defined fromP to X) that associates a
color set to each plac& is anarc expression functiothat maps each ag; with attached
placep(a), to a multi-set ofC(p(a))us; andMg is the initial marking. It maps each place
p to a multi-set over the coldZ(p) of p. The sets, T, and A are pairwise disjoint. We
consider only CP-nets with decidable properties as valid modeBE&s that is, the color
sets are finite and contents of places are bounded. Furthermore, for the sake of simplicity,
we assume that guards (occasionally used in the definition of CP-nets) always evaluate to
true. Hence, guards are not modeled explicitly in this paper.

A token element is a paifp, ¢), wherep € P andc € C(p). Let TE be the set of all
token elements. The state of a CP-netis given by its cumanking Mwhich is a multi-set
overTE. A marking gives a distribution of tokens over the places. The sets of all markings
is denoted byM.

Let us consider an example. We assume a hetwork of switches interconnected by point-to-
point links. The network contains data sources and sinks, which are senders and receivers
of cells, and are calleddosts A host can be both a source and a sink. The network supports
permanent virtual circuits (PVCs). A PVC exists between two hosts, one with the source
role and the other with the sink role, and passes through at least one switch. Every cell
belongs to some PVC. All cells in the same PVC follow the same path through the network.
For simplicity, we consider simplex PVCs so that a communication actually consists of
two one-way PVCs connecting the same two hosts in opposite directions. Figure 1 shows
a simple network. Switches are represented by circles numbered from 0 to 4, hosts by
squares, and communication links by oriented edges.

SYNTHESIS OF CONTROLLERS 151

begin

(g.11)

Receive Send

-

(g.z,iP 1)

Route Produce

S|
dest((q.z, im (9,9 (z.p,) T(z’, i)

Consume Transmit

begin

begin

Figure 2. CP-net model of the network in Figure 1.

Each switch has two queues, an input queue and an output queue. The operation of a
switch consists of three tasks: receive and add a cell in the input queue, remove the front
cell from the input queue and either consume the cell (if destinated to the local host) or
add it in the output queue (otherwise), and transmit a cell on a link. Each point-to-point
link is also modeled as a queue of cells. Cells queued up for output are transmitted as
rapidly as possible. If cells arrive too fast for the switch to process them, the network runs
out of memory for arriving cells. When this saturation point is reached, the network is
congested.

We model the network operation as a CP-net. Figure 2 shows a CP-net that models the
network in Figure 1. Figure 3 shows declarations of token values, operators, functions,
and variables used in the model. The constargpresents the total number of switches in
the network. The constaeginrepresents the initial contents of a place: a multi-set of
pairs, a queue contents and the number of the switch that owns the queue. Each switch is
represented by a numerical value of typitch A cell is represented by a numerical value
of typeCell that gives its destination switch. Each queue of cells is represented by a value
of type Queuewhich is the Cartesian product of tiRListandSwitchcolor sets, where the
QList color set represents a list Gkll tokens manipulated as a queue. The concatenation
operator “.” is used as a constructor of FIFO queues, thatdsis a queue with rear ceX
and resty, andg.x is a queue whose front cell isand rest ig). The operator&” denotes
modulon addition.

152 MAKUNGU ET AL.

val n = 5;

val begin = (,0) + (e,1) + (6,2) + (€,3) + (¢, 4);
color Switch =0...n—1;

color Cell=0...n—1;

color @ List = list Cell;

color Queue = product QList x Switch;

€ € QList: empty list;
: binary concatenation operator on Cell;

F: addition modulo n operator;
var x: Cell;

p, q: QList;

1. Switch,;

fun dest((g.x,7)) = if i = z then (q.z,1);
fun out((g.z,?)) = if i # = then (g.z,7);

Figure 3. Declaration of elements used in the CP-net model.

In Figure 2, switches, hosts, and links are represented by places (cirlclpa):Queue
for the switch input queue§utput Queudor the switch output queueblostfor the host
output queues, andink for the communication links. Every place contains token values
from the color seQueue Each token value models a queue of a switch, host, or link.
The host (link) number corresponds to the switch to which the host is attached (link source
switch). For example, the token valgg, 1) contained in plac®utput Queuenodels the
state of the output queue of switch 1 with conteqtsWe assume that each queue has a
fixed capacity of five cells.

Actions are represented by transitions (rectangles). The tran$itamucerepresents
production of cells by hosts. Consumption of cells is modeled as the tranSitinsume
The operations of a switch are represented by four transitions: the trarReicgivefor
receiving incoming cells from an adjacent switch through a communication link, transition
Transmitfor receiving incoming cells from an attached host, transiRmutefor making
routing decisions, and transitiddendfor sending outgoing cells. We have the following
arc expressionsdes{(q.x, i)) means that transitio@onsumds enabled if host is the
destination of celk (i.e.,i = x) andout((q.x, i)) means that transitioRouteis enabled if
hosti is not the destination of ceX (i.e.,i # x). In the latter case, ceX is in transit and
moved to the output queue. Initially, each place contains five empty queues represented
by the constanbegin there are no cells in the network. This CP-net is represented as the
many-tuple of Figure 4.

The definition of the behavior of CP-nets is based on the concep¢afling and
occurrence(Jensen, 1992). For all € T, let Var(t) be the set olvariablesappearing
on arcs that havé as source or destination. For instan®d@r(Consumg = {i, q, x}.
The type of a variable is denoted agype(v) Let the functionA(p,t) be the set of
arcs from placep to transitiont, that is, A(p,t) = {a € A|N(@) = (p,t)}. For all
(p,t) e Px T, letE(p,t) = ZaeA(p,t) E(a) be the sum of the expressions on arcs from

SYNTHESIS OF CONTROLLERS 153

Y = {Switch, Cell, QList, Queue}

P = {Input Queue, Output Queuve, Host, Link}

T = {Produce, Consume, Receive, Transmit, Route, Send}

A = {{Input Queue, Consume),(Consume, Input Queue),

(Input Queue, Route), ...}
N(a) a,for all @ in A
C(p) = Queue,forall pin P
dest((g.x,1)) if a = (Input Queue, Consume)
E(a) = (g,1) if a = (Consume, Input Queue)
Mo(p) = begin,forall pin P

Figure 4. The CP-net of Figure 2 represented as a many-tuple.

placep to transitiont. In our example A(p, t) = {(p,)} if (p,t) € A, because between
any given pair of nodes there is at most one arc in every direction. Hence, for instance,
E (Input QueueConsumg = dest(q, X, i)). E(t, p) is defined in a similar fashion.

A binding bof a transitiort is a substitution{v; = ¢, ..., vy = C,), that assigns a color
¢ (also called token) to every variable € Var(t) (1 <i < n). It is required that; is of
the color set ofyj. The set of all bindings for a transitidnis denoted a8(t). A binding
elementis a pair(t, b), wheret € T andb € B(t). The set of all binding elements is
denoted a8E.

A step Yis a function that maps eadhe T to a multi-set overB(t) such thatY (t)
is finite for allt € T and non-empty for at least ortec T. The expressior(p, t)(b)
yields the multi-set of tokens removed from plapevhen transitiont occurs with the
bindingb. Similarly, the expressiok(t, p)(b) yields the multi-set of tokens inserted in
place p when transitiort occurs with the bindind. For instance, when the transition
Receiveoccurs with the bindingy, = (i =2, p = ¢,q = ¢, x = 2), E(Link, Receivg(b,)
extracts token(e.2, 3) from placeLink while E (Input QueueReceivg(b;) extracts token
(g, 2) from placelnput QueueandE (ReceiveLink)(b;) deposits tokefie, 3) in placeLink
while E(Receivelnput Queug(b,) deposits tokeri2.¢, 2) in placelnput Queue

A stepY is enabledin markingM if and only if

Z Z E(p,t)(b) < M(p)forallpe P (1)

teT beY(t)
The left term of the inequality yields the multi-set removed from plaednen the transitions
in stepY occur. The multi-set removed is required to be less than or equal to the contents
of p. When a stefy is enabled in a markiny1, it may occur. Occurrence changed to
another markingv’, defined by:

M'(p) =M —> Y E@tbY+Y Y Et pibVpeP 2
teT beY(t) teT beY(t)

The first sum defines the tokens removed from placehile the second specifies the
inserted tokens. We say thit’ is directly reachablefrom M by the occurrenceof the

154 MAKUNGU ET AL.

stepY, which is also denoted bWl[Y)M’. For instance, the steyy that maps transition
Produceto binding(i = 0,q = ¢, x = 0) and all other transitions to the empty multi-set
is enabled in a markindp where every place is marked with the expresdiegin (see
Figure 3). IfYy occurs inMg, we get a markingv; in which placeHostis marked with the
tokens(0, 0) + (¢, 1) + (&, 2) + (¢, 3) + (&, 4) and every other place contains the expression
begin Cell 0 has been inserted in the queue of Host 0. The concegtanfrring steps
extended to dinite occurrence sequenoé markings and steps as follows:

Ml[Y1> MZ[Y2> v Mn[Yn) Mn+1

wheren € N is thenumber of stepms the sequence and;[Y;)M; ;1 foralli € {1,...,n}.

The abbreviated foriv;[Y1Ys ... Y) My 1 is also used. A markinlyl’ isreachableérom a
markingM if and only if there exists a finite occurrence sequence haMirgg start marking
andM’ as end marking. A markinlyl is reachable if and only if it is reachable frolfy.

The set of markings that are reachable frivhis denoted asNl). By definition,M e [M).

The marking directly reachable froml when the stepy is enabled is represented by
M[Y). Inthis paper, we assume that every step maps one transition to one binding element,
while all other transitions are mapped to the empty multi-set, although a number of binding
elements can be concurrently enabled. Therefigie!) M’ is written asM|[(t, b)) M” and
M1[Y1Y2. .. Yo)Mni1 @asMy[(ty, b1)(t2, b2) . . . (tn, Bn)) M1

Symmetry Specification

It is often the case that large systems have numerous interacting components with similar
behaviors. These components are so alike that we may abstract the differences between
them. As aforementioned, in the initial marking of Figure 2, Host O can produce Cell 0.
From My, every other cell can be produced and every other host can produce a cell. In
this problem, we supervise the length of queues, not their actual contents. Hence, all the
immediate successors bfy are considered equivalent or symmetrical to each other. They
are symmetrical in the sense that any one of them can be obtained from any of the others
by a consistent exchange of colors (e.g., Host 1 for Host 0, Cell 1 for Cell 0).

The set of atomic color sets is denotedXgr and the set of structured color sets is
denoted asZst. Let SGhe a function that maps each atomic color Set X1 to a
subgroupSG(S)of the set of all permutations &. A permutation symmetry foBGis a
functiong that maps each atomic color st T a1 to a permutatiops € SH(S). The set
of all permutation symmetries f@Gis denotedbsg and is called permutation symmetry
specificationJensen, 1995).

The domain of each permutation symmetrys ®sg is extended fronE a1 to X. For
each permutation symmetgye ®sg and each structured color SE s, ¢s is defined
as follows:

1. if S=list A, ¢s(@ay...an) = pa(@)da(@) ... Pa(an).

2. if S=product Ay x Ay, ¢s((a1, @) = (Pa,(a1), Pa,(a2)).

SYNTHESIS OF CONTROLLERS 155

Let a permutation symmetgy € ®sg, a markingM, a bindingb, and a binding element
(t, b); ¢(M), ¢ (b), andg ((t, b)) are defined as follows:

1. forallpe P, ¢(M)(p) = ¢cp(M(p)).
2. forallv e Var(t), ¢(0)(v) = ¢1ypew) (b()).
3. ¢(t,b) = (t, ¢(b)).

Note that(®sg, o) is an algebraic group, wheteis the function composition operator
and the neutral element is the identity function. In order to capture the fact that two
symmetrical markings have similar properties, a permutation symmetry specifidaiion
must be consistent with the behavior of the CP-net. A symmetry specificdtienis
consistentif and only if each permutation symmetry maps the initial marking to itself,
¢(Mg) = My, binding elements to binding elements, for hlle B(t) ¢(b) € B(t),
and it does not matter whether the permutation symmetry is applied before or after the
evaluation of an arc expression,dfis an arc and the transition ofa, for all b € B(t)
E@) (¢ (b)) = ¢(E(a)(b)) (Jensen, 1995). It is the responsibility of a person developing
a CP-net model to provide a permutation symmetry specification and to prove that it is
consistent. An alternative approach is to leave to a software tool the task of finding a
permutation symmetry specification. Itis atopic of research (Jensen, 1995). In our example,
it is easy to see that arbitrary permutation of cell and host nhumbers yields a consistent
symmetry specification.

A consistent permutation symmetry specificatibgs induces the equivalence relations
~u and~gg on markings and binding elements, respectively. WeMseand BE- to
denote the set of all equivalence classesigr and~gg, respectively. The notatiorX]],
whereX C M, represents all the markings equivalent to a marking fdnjX] = {M ¢
M | 3x € X) M =y x}. The notation {M}], whereM e M, is simplified to M].
Hereafter®sg is imply written as® and called a symmetry specification.

Occurrence Graph

An occurrence graph (OS-graph) models the behavior of a CP-net. A part of an occurrence
graph for the CP-net of Figure 2 is shown in Figure 5. It has a set of nodes and a set
of arcs. Each node represents a reachable marking. The marking is inscribed within
the node. The node labeldd, represents the initial marking. The rows indicate the
markings of place#iost Output QueugLink, andInput Queue Each arc represents a
step. The arc is labeled with a binding element. For the sake of conciseness, we write
(P, ¢,0,0) instead of(Produce (q = ¢,x = 0,i = 0)) and(T, 134, ¢, 0, 0) instead of
(Transmit (q = 134, p = ¢,x = 0,i = 0)), analogously for the other steps.

Figure 5 shows just some of the reachable markings. Let us compute the total number
of reachable markings. For each queue, ther&ate 5 = 3906 token values. There are
five queues stored in each place. Hence, for each place there 3@@kings. There are
four places, it means that there @8906)* = 3906° ~ 1072 different markings in the
OS-graph.

156 MAKUNGU ET AL.

Mo
- P,e,4,4)
begin | (Pre 4,
(P,¢,0.0) begin (P, ¢,0,1)
begin
begin (P,4,0) ‘
My M,
0.0 (1) +(62) +(03) (1) @0+ (e D+ (02 +(03) + (1)
begin begin
begin begin
begin begin
Pty
¥
(1340,0) + (€,1) + (6,2) + (¢,3) + (€, 4) 134,0) + (¢,1) + (6,2) + (¢,3) + (¢,4)
begin 0,0) + (e, 1) + (€,2) + (&,3) + (¢, 4)
begin - begin
begin . begin
(1,134, ¢,0,0) [is0.4.0)
; (T€,340,1,0)
begin
(1340,0) + (¢,1) + (&,2) + (¢,3) + (¢,4)
begin
begin

Figure 5. Occurrence graph for the CP-net of Figure 2.

From a behavioral point of view, there is little difference between symmetrical markings
Mz and M, in Figure 5 under the permutation symmegryn which Cell 0 is mapped to
Cell 4 and all other token values remain the same. Each occurrence sequence starting from
M; as a symmetrical occurrence sequence starting fiymnand vice versa. Occurrence
sequences can be obtained from each other by applicatipn bfence, during behavior
analysis it makes sense to explore a single marking for each class of symmetrical markings.
More formally, an occurrence graph is a 4-tuple A, N, vg), where

e Vs the finite set of node§M] € M~ | [M] N [Mg) # @);

e Ais the finite set of arc§([M4], [(t, D)], [M2]) € V x BEx x V | 3(My, (t, b'), M%)
€ [M1] x [(t, b)] x [M2] such thatM;[(t, b")) M};

e Nisthe node function from\into V x V. If a = ([M4], [(t, b)], [M2]), thenN(a) =
([My], [M2]);

e 1y € V is the initial node ¢y = [Mo)).

For the example of Figure 5, let us suppose that we explore just one marking in each class
of symmetrical markings. We make abstraction of the actual contents of queues. We just
retain their length. Every queue may have from zero to five elements. There are therefore

SYNTHESIS OF CONTROLLERS 157

sixindividual queue states. In every place there are five queues but we make also abstraction
of the actual owner of every queue. We distinguish 252 different states of five queues (this
figure corresponds to the number of multi-sets of cardinal five that can be constructed from
six different elements). Since there are four places, we have a total 6f2520°61
markings to explore. We have reduced the complexity of the problem for at least 62 orders
of magnitude. It is still, however, a lot of markings. Note, although, that synthesis of a
controller does not have to generate all these markings. Indeed, in the implementation of
our algorithm we construct the OS-graph of the process while we synthetize the controller,
on the fly. During synthesis many paths are cut off because they are outgoing from invalid
states. Hence, the controller itself is much smaller than the OS-graph. Construction on the
fly of reachability graphs is explained in (Barbeau et al., 1997).

3. CP-net Supervisory Design under Full Observation

The basic problem in supervisory control is to construct a controller that can turn off various
events of an uncontrollddES called gprocesg Pr), according to some requirements. The
processPr is defined as a tripl¢CPN, @, K), whereCPN is a CP-net with a consistent
symmetry specificatio® andK: P — N is acapacity functiorbounding the contents of
every place. Therefore, we require thity(p)| < K(p) and|M’(p)| < K(p) forall p €
P, in the enabling rule (1) (wittM’(p) defined by rule (2)).

Let I be the set of all functiong, calledcontrol patternsthat assign a subset &ft)
to every transitiont to T, that is,b € y(t) = b € B(t). If b € y(t), then the controller
prevents the transitionfrom occurring with the binding. Let T, andT, be fixed disjoint
subsets of denoting the sets abntrollableanduncontrollableransitions, respectively. A
controllable transition is one which occurrence can be disabled by the controller whereas an
uncontrollable transition cannot. The basic notion of activity in a CP-net is that of binding
element. For the applications we handled so far, we found more convenient to specify
controllability of transitions which by extension applies to bindings because the former are
not as numerous as the latter.

A controlled DES(CDES is an ordered tupl®r, = (CPN, &, K, T'). In a CPN,
M[c(t, b)) M” denotes that a markirnlg’ is directly reachable frorM by the occurrence of
the binding elementt, b) under the control of € I". This is defined as:

MI[(t, b)) M’ ifteTy
M[(t,)M b y(t) ifte Tcandy e T

A controlleris a pairS = (G, ¢), whereG is a subgraph of an OS-graph with symmetries
andg is the feedback function.

The feedback functiop: V — T satisfies the following conditiongo((B(t)) denotes
the power set oB(t)):

p)t) =0 ifteT,
p()(t) e p(BM)) ifteT

The graphG can be interpreted as the transition graph of an automaton modeling the
behavior of a controller as in the original framework of Ramadge and Wonham. It is

158 MAKUNGU ET AL.

Process Pr. Controller S
€
M; ¢ v;
€
(ti, i) ¢ l
€9
Mia Vi1
o1
Vit e(vit1) = Vig1

e () = {67 (1), ., 6B | (¢, [b1,-- ., b)) €4}

Figure 6. An execution step of the closed-loop system.

driven by a sequence of steps occurringdBN. That is, after the firing of a transition,
the controller moves to a nodewhich represents the marking reached@®N. The role
of the feedback functiom is to provide, after each execution step of the process and the
controller, the control pattern that represents the binding elements inhibited for the next
step.

The CDES and controller are then embodied in a closed-loop system to constitute a
supervised DESSDES)S/Pr. = (S, Pr¢). A state of aSDE Sis a pair(v, M) where
v € V andM is a marking ofCPN. such thatM € v. The behavior o5/ Pr is illustrated
in Figure 6. LetM; be the current marking of the process and= [M/] be a node ofG
such that there exists € ® with M/ = ¢ (M), that is,M; € v;. Let (4, by) be the next
step such thai[(t;, b)) Mi,1 andb; ¢ ¥ () with the current control pattem. First, the
controllerSmoves to the next node,; = [M/ ;] by executing the transition from nodge
on the arc labeletl= [(t;, b)]. The binding elementt;, b)) is the representative member
of binding elements equivalent to the process stef;), that is, (t, b)) = (&, ¢ (b)).
The controllerSincludes, by construction, control patterns for a representative marking of
each equivalence class of reachable markingsyLgt= ¢(vi11) be the control pattern of
nodewv; ;. To compute the control pattern corresponding to the next mading of the
process, the controller uses the inverse of the permutation symgétrynap the control
patterny/,, to the control pattermy ;1 = qﬁ_l(yi/ﬂ). Since(®d, o) is a groupg—* always
exists. Formally, if(vi, M;) is the current state d8/Pr., then a next state i@j_ 1, Mi1)
if and only if there exists a binding elemett, by) such thatM;[(ti, b)) M1, b & i (t)
with y = ¢’1(q)(vi)), and(vi, I, viy1) € Awith M € vi, Mi;1 € viy1 and(t, b)) € I.
The control pattern oM; 1 is ¢ 1(¢(vi4+1)). The controllerS must becompletein the
sense thatvi, |, vi.1) € AwheneverS/Pr is in state(v;, M;) with M;[(ti, b)) M; 1 and
bi & yi(t).

SYNTHESIS OF CONTROLLERS 159

4. The Forbidden State Control Problem

In this paper, we consider the forbidden state control problem in which the control speci-
fication is expressed as a set of forbidden markitgs € M. If a marking is forbidden,

all its equivalent markings are also forbidden. Therefore, only one representative per each
equivalence class of forbidden markings is included .

Inadmissible Marking

Given a set of forbidden marking®ty, there is, in general, a larger set of markings which
must be avoided, due to uncontrollable transition sequences. The markings from which the
process can uncontrollably reach forbidden markings are characterized by the following
predicate:

InadmissibleM) < 3n > 0)(Aty, ..., th € Ty)
(3by € B(ty)) ... (3by € B(tn)) 3)
M[(t1, by) ... (th, bn)) € [My]

A node with associated inadmissible markings is inadmissible. When the initial marking is
admissible, and steps contain only one binding element, the maximally permissive solution
to the forbidden state control problem exists and prevents the process from reaching any
inadmissible marking (Holloway and Krogh, 1990).

Problem

The problemis expressed as follows. Given a setof forbidden markifigsin uncontrolled
DESPr = (CPN, @, K), and anadmissible initial markirigo ¢ [My], derive anaximally
permissivecontrollerS, that is: (1) the closed-loop syste®iPr. is safe Pr. cannot reach

a forbidden marking under the control 8, and (2) a reachable marking Bf, which is an
unreachable marking d®r. under the control 08, is either forbidden, can uncontrollably

lead to a forbidden marking, or can only be reached from the initial marking by sequences
that pass through a forbidden or inadmissible marking. Before describing the synthesis
algorithm, let us introduce an admissibility assessment predicate and the notion of latest
controllable binding elements.

Latest Controllable Binding Elements

Let y denote a node in th@S-graph Thelatest controllable binding elements vy is a
set (denoted asCBE) of all triples of the form(x, t, b) such that (the expressioi, and
Icbe, denote a representative markingandLCBE of the nodex, respectively):

1. xisanode inth€®©S-graph

2. (t,b)is a binding element, whetds a controllable transition;

160 MAKUNGU ET AL.

1 procedure Synthesize_Controller(Pr,~ s~ pg,Mp,T¢)

2 V «{}; A+ {}; processednodes — {}; unprocessed_nodes +— {New_Node(Mo,{})}
3 repeat

4 select x in unprocessed_nodes;

5 if not (M, ~p M) for some y in processed_nodes then
6 for all (¢,b) enabled in M, do

7 M < New_Marking(Mz,(t,b));

8 if M 225, M’ for some M' in M, then

9 if t € Tc then

10 p(@)(t) p(x)(1) U {b)

11 else

12 Inadmissible(x); break

13 else

14 if not (M ~sp; My) for some y being a son of x then
15 if t € T, then lcbe. « {(x,1,b)} else lcbe, « lcbe,;
16 2z + New_Node(M lcbe,);

17 unprocessed_nodes <— unprocessed_nodes U {z};

18 a + New_Arc(z,(t,b),2); A+ AUa

19 if x.status = admissible then V <+ V U {z}

20 else

21 if y.status = inadmissible then Inadmissible(x) else Icbey < lcbey Ulcbe,

22 processed < processedU {z};
23 unprocessed_nodes < unprocessed_nodes \ {x}
24 until unprocessed_nodes — {};

Figure 7. Algorithm for synthesizing a compact controller.

3. (3n = 0) My[(t, b)(t, by) ... (tn, bn))My with t; € Ty, fori =1,...,n.

Atriple (x, t, b) contained in th& CBEof y is interpreted as follows. The occurrence of the
step(t, b) from My is controllable whereas the sequence of sigpds) ... (th, by) from
My[(t, b)) to My are uncontrollable. Therefore, to mak&, and its equivalent markings
unreachable in the process, it is necessary to disable the bibpfiing when the process is
in marking My.

5. The Synthesis Algorithm

The basic idea behind our algorithm is to reduce the number of markings that must be exam-
ined by gathering the components that “behave in the same way” into the same equivalence
class. Therefore, the set of all markings and the set of all steps are partitioned into disjoint
nonempty equivalence classes. The algorithm, given in Figure 7, is based on the notion
of latest controllable binding elementsquivalent markingsandinadmissible markings
It accepts as input a proceBs, a consistent symmetry specification represented by the
equivalence relationsyy and~gg, a set of forbidden markings1,, and a set of con-
trollable transitionsl;. A maximally permissive controlled = (G, ¢) is computed from
representative members, one per class of equivalent markings and class of equivalent steps.
The algorithm uses many functions briefly described hereafter. FunigenNode
creates a new node, of the controller gr&gHrom a marking and ahCBE. The marking

SYNTHESIS OF CONTROLLERS 161

1 procedure Inadmissible(z) :
z.status < inadmassible; Remove_Sons(z); V « V \ {z}
for each 2’ in From Nodes(z) such that 2’'.status = admissible do
Inadmissible(z’)
if lcbe, # {} then
for each (2',t,b) € Ilcbe, do
p(@)(t) (a')(t) U {b}
else “no solutions”
end

O RV~ AR WN

Figure 8. Procedure for determining inadmissible nodes.

associated to a node is a representative of its equivalence class. Fihetidmarking
yields the marking reached after the occurrence of a binding element from a given marking.
The functionNew Arc creates a new arc from a source node, a binding element, and a
destination node. The functidfrom _Nodes takes as argument a nogeand returns the
set of nodes iV from which x is directly reachable on occurrence of an uncontrollable
binding element.

Each node has a status indicating whether or not its associated markuhgiissible A
new node has its status settmissible The functioninadmissible , given in Figure 8,
fixes the status of a nodeittadmissibl€line 2), determines those that become inadmissible
among its predecessors (lines 3 and 4), and updates the feedback function by inserting, for
each &/, t, b) in the LCBE of x, the bindingb in the set of forbidden bindings farof x’
(lines 6 and 7). When a node becomes inadmissible, all its son nodésiia removed
(including their bound arcs) by using the procedBemove Sons (line 2). If theLCBE
of x is empty, then there are no solutions (line 8).

The algorithm works as follows. Initially, the sets of nodésand arcsA of the graph are
both empty. The set of processed nodes is also empty. Theugodg Moy, {}) is created
and inserted into the set of unprocessed nodes (line 2). While there are unprocessed nodes,
a nodex is selected (line 4) and processed. The processing of a nhode starts with a test for
an equivalence between the markidg and the markingvly of an already processed node
y (line 5). Only the first-picked node in each equivalence class is developed further. If
such a nodey exists, then the algorithm checks if it is an inadmissible node. If so, then
thelnadmissible function is called on nodr to disable the latest controllable binding
elements on the path leadingxtdline 21). Otherwise, the contentslabe; is inserted in
Icbey (line 21). If such a nodg does not exist, every binding elemehtb) enabled inMy
is analyzed (line 6). The markinigl reached after the occurrence of the binding element
(t, b) is computed (line 7) and checked for an equivalence with some other mavking
included in the set of forbidden markings (line 8). If so, there are two cases: tither
controllable or not. If transitiont is controllable, the binding is inserted in the set of
forbidden bindings ok (line 10). Ift is uncontrollable, then the functidnadmissible
is called on nodex (line 12). If M is not equivalent to some forbidden marking.y,
then the algorithm checks if marking is equivalent to a markingly, wherey is a son
of x (line 14). If all the above conditions are not satisfied, it means that the makking

162 MAKUNGU ET AL.

is not equivalent to a marking of a sonwfand not forbidden. In this case, a new node

z is created with the following attributes: the markiiy andlcbe, which is defined as

{(x, 1, b)} if the transitiont is controllable; otherwise, it is thebe, of its parent nodex

(lines 15 and 16). Furthermore, the set of unprocessed nodes is updated (line 17) and a new
arc is created from nodeto nodez and added t@& (line 18). At the end of the analysis of

all binding elementst, b) enabled inMy, if the status ok is admissiblethenx is included

in V. Finally, the node is included in the set of processed nodes and removed from the
set of unprocessed nodes (lines 22 and 23).

In the implementation of the algorithm, testiy ~\, M’ translates to finding a permu-
tation symmetryp € ® such thatp(M) = M’. In our example, the permutation symmetry
specification is arbitrary permutation. Calculation of a permutation can be factorial in the
worst case. Jensen (1995) proposes, however, techniques to efficiently calculate symme-
tries. For instance, several cases can be eliminated by first testihg&n be mapped to
M’ by verifying if they have the same multi-set of positive coefficients.

The following theorem shows that the set of nodegenerated by our algorithm represents
the unique maximal set of markings that solves the forbidden state control problem with
respect to a set of forbidden markingd,. The proof of the theorem is based on two
lemmas. Let us first introduce some properties of Jensen’s OS-graph (Jensen, 1995) that
are used in the proof. Hereafter, a node is identified to its representative marking.

PROPOSITION1 Let ® be a consistent symmetry specification @iél A, N, vg) an OS-
graph. The following properties hold for all M. .., Mp.1 € [Mo) and all¢ € ®:

1. [Mo) =[W]

2. Mq[(t1, b1)) ... Mp[(tn, bn) > Mpp1 &
¢ (MD[(ty, p(b))) ... ¢ (Mp)[(tn, & (bn)))p (Mny1)

3. Me[My) & ¢(M) e [Mg)

LEMMA 1 Let® be a consistent symmetry specification. For allklMMy) and all¢ € @,
InadmissibléM) < Inadmissiblép (M)).

Because of the definition of the predic#ta@dmissiblethere exists a sequence of uncon-
trollable binding elementéy, by) ... (t,, by) with tj € T, and a markingM’ € M such
thatM[(t1, by) ... (th, bp))M" and M’ € [My]. From Proposition 1¢ (M)[(t1, ¢ (b)) ...

(th, @ (bp)))p(M’). By the definition of My, ¢(M’) € [Mp]. Therefore,Inadmis-
siblgl¢(M)) = true. The proof of the converse is similar, using the functipn'.
]

LEMMA 2 Let predicate Inadmissible be restricted to markings labeling nodes in the set
processedhodesy € V iff Inadmissibl¢[M,]) = false.

Proof: We use induction on the numb&rof times therepeat-until loop is executed.
Because of the initialization process in line 2, this loop will be executed at least one time.

SYNTHESIS OF CONTROLLERS 163

Basis. (k = 0) Trivially true sinceprocessecdhodes(the set of markings reachable form
Mpo) is empty.

Induction hypothesis.v € V iff InadmissibléM,) = false

Induction. (k > 0) We show that, if the hypothesis holds at the start of the loop, then it
holds at the end. Let € processechodesat the end of the loop. There are two cases:
whetherx € processechodesat the start of the loop or not.

Case 1. Whenx ¢ processechodesat the start of the loop, suppose tlas selected from
the setunprocessedodesby the current loop, yielding two subcases.

Subcase 1.1.The conditions of the statement at line 5 is satisfied. Tioe loop at line 6
is entered, that is, all enabled markingd\vit are examined. This loop is finite since the
color sets are finite. For each marking we have three subcases:

Subcase 1.1.1The condition of théf statement at line 8 is satisfied and thetatement at
line 9 is not satisfied. The proceduradmissible is called with the actual parameter
X (line 12). The nodex is not included inV (line 19) since its status has been set to
inadmissibldn procedurdnadmissible (line 2, Figure 8). These conditions are titfe
there exists a binding elemet b) such thaM[(t, b))M, t € Ty, andM € [M’] for some

M’ € [Mp]. ThenlnadmissibléMy) = true because of (3).

Subcase 1.1.2. The conditions of théf statement at line 8 and line 9 are both satisfied.
ThenlInadmissibléMy) = falsebecause of (3) (wittm = 0) andx € V because of the
line 19.

Subcase 1.1.3.The condition of théf statement at line 8 is not satisfied, thathg, and its
equivalents are not prohibited. TherefdregdmissibléM,) = falseandx € V because of
the line 19. The condition of thié statement at line 14 is used for implementation purpose
only to avoid including enabled equivalent sond\wf in the set of unprocessed nodes.

Subcase 1.2.The condition of théf statement at line 5 is not satisfied and the condition of
if statement at line 21 is satisfied. The procednagimissible is called with the actual
parametek (line 21) and its status is setittadmissibl€line 2, Figure 8). These conditions
are trueiff there exists an inadmissible nogles processechodeswith a marking that is
equivalent toM, (3¢ € ® such thatMy = ¢(M,)). Thereforenadmissibl¢M,) = true
because of Lemma 1. When the condition ofifh&tatement at line 21 is not satisfiedy

and its equivalents are not prohibited. ThereftmadmissibléM,) = false by Lemma 1.

Case 2. xe processechodesat the start of the loop. At the start of the loop, either
x € V or not. It can easily be checked thabif¢ V at the start of the loop, then the
algorithm never inserts a node with a marking equivaleriifoin V (because of line 5).
Let us consider the case whexee V at the start of the loop. The nodeis removed

164 MAKUNGU ET AL.

from V at the end of loofiff a nodex’ from unprocesseghodeshas been selected and the
procedurdnadmissible has been called with actual parametéeflines 12 or 21). Then,
x’.statusreceived the valumadmissibleand the recursive calls toadmissible follow
backward all the paths incoming 10, while transitions are uncontrollable. Furthermore,
every encountered inadmissible node in paths leadirgaoe removed, including (line 2,
Figure 8). The above is, however, possilftex’ has been selectethadmissibléMy) =
true, in accordance with Case 1, and there is a sequence of uncontrollablé/'step¥,
with My[Y1...Ys)My. These conditions are tru# InadmissibléMy) = true at the end
of the loop because of (3). [|

THEOREM 1 The procedure&Synthetize _Controller always terminates and, if Mg

[Mp] and InadmissibléMg) = false, then it returns a controller & (G, ¢) that is the
unigue maximal solution to the forbidden state control problem with respect to the set of
forbidden markings\,.

Proof: Note that the procedui®ynthetize _Controller always terminates since the
color sets are finite anBr satisfies boundedness properties.

Let us assume tha¥ly ¢ [Mp] andInadmissibléMy) = false Let S = (G, ¢) be the
controller computed bgynthetize _Controller . We can show the following by using
Lemma 2 and the definition of the predichtadmissiblevhich expresses the converse of
controllability. For everyw € V, M, € [Mp) andIlnadmissibléM,)) = false Furthermore,
forallt € T, andb € B(t), if M,[(t, b)) € [Mp) thenInadmissibléM,[(t, b))) = false
From Lemma 1, this property holds for all markings equivalenMia Therefore, the
controller is safe.

From Proposition 1, we know that a marking is reach#bli¢belongs to W], whereW is
the set of nodes of th®S-graphgenerated fronfPr. Remark thaV C processechodesC
W. Letw € W such thatnadmissibl¢M,,) = false M,, is reachable under the control of
S, andw ¢ V. If w € processechodes then, from Lemma 2lnadmissibléM,,) = true,

a contradiction. Ifw ¢ processechodesthen for all sequences of steftg, by) . . . (tn, by)
such that

Mo[(t1, b)) M1 ... Mn_1[(tn, bn)) My,

there exist € {1,...,n — 1} andv € processechodes InadmissibléM,) = true (that
isv ¢ V), andM; € [M,]. Therefore, W] are non reachable under the control®fa
contradiction. Hence, the controller is maximal. [|

6. An Example

Let us consider as an example, the network of Section 2.

SYNTHESIS OF CONTROLLERS 165

Congestion Control Specification

Congestion arises in a switch when the rate at which cells arrive and queue up exceeds the
rate at which cells can be transmitted. The queue size then grows without bound and cells
are lost. We call such states congestion states. A rule of thumb states that when the link
for which cells are queuing is 80% or more utilized, the queue length begins growing at
an alarming rate (Stallings, 1997). We use this rule to specify the congestion states in the
CP-net. That is, every CP-net marking in which at least one queue has four or five cells is
considered as forbidden marking.

When the network reaches a congestion state, one of the following two strategies can
be adopted: (i) a switch simply discards any incoming cell for which there is no available
memory space; (ii) a congested switch exercises some sort of flow control over its neighbors
and hosts so that the traffic flow remains manageable. In this paper, we adopt the second
strategy. In the CP-net model of Figure 2, transitiBneduce Route Send andTransmit
are controllable.

It is clear that switch behaviors are similar and there is little difference in the way they
handle cells. For example, a marking in which all queues are empty except queue number 1
in placeHostwith two cells (cell numbered 2 and 3) is equivalent to a marking in which
all queues are empty except queue number 2 in plsgwith two cells (cell numbered 3
and 4). This equivalence is obtained by the permutation symmetinat mapQueueto
dauevedefined as:

2 ifx=1
‘t’Queu&X) = 1ifx=2
X otherwise

andCell to ¢ce) defined as:

3ifx=2
dcel(X) =1 4 ifx=3
X otherwise

The congestion states are CP-net markings in which one place has at least one queue
with four or five cells. It should be noted that the forbidden markings are not all given
explicitly. We give one representative per equivalence class. Furthermore, in the im-
plementation forbiddeness can be tested by an user provided function, making forbidden
marking specification even simpler.

We compute the number of classes of forbidden markings as follows. First, letus compute
the number of classes of unforbidden markings. For each place, we distinguish 56 different
unforbidden states of five queues (this figure corresponds to the number of multi-sets of
cardinal five that can be constructed from four different elements, elements 0 to 3). Since
there are four places, we have a total of 56 10°°% classes of unforbidden markings.
Hence, we have P — 100998 ~ 107905 classes of forbidden markings.

166 MAKUNGU ET AL.

Limitations of the Model

Before showing how the derived controller can be combined with the network to prevent
congestion, we first assess our model. This model deviates somewhat from the real world.
We assume that cell transfer is not affected by communication delays and that a centralized
controller can observe all network events. In the real world, cells are transmitted with
delays and some network events are unobservable.

Despite these unrealistic modeling assumptions, the model remains a good theoretical
first step toward application of supervisory design to the congestion control problem, for
two reasons. First, the effect of communication delays can be counteracted by imposing
additional constraints on the process model. In order words, we can, for example, model
communication links with more than one place. Second, the centralized scheme may be
approached by exchanging traffic statistics between switches. The original framework by
Ramadge and Wonham can handle a decentralized and partial observation scheme (Lin and
Wonham, 1988) and has also been extended to handle real-time constraints (Brandin and
Wonham, 1994; Barbeau et al., 1998). Similar extensions must to be done in our CP-net
framework.

Congestion Supervisory Control

Given a set of congestion states (CP-net forbidden markifgs)a network (uncontrolled
DES) modeled by a CP-net, and the network initial state (initial markifigthe congestion
control problem can be stated as the synthesis of a cont®ker G, ¢) that prevents the
network from reaching any congestion state.

The state space of the CP-net model of the network with five switches is approximatly
1071835, |t is clear that an automaton-based approach is impracticable. Comparison given
in Tables 1 and 2 show that our approach is very efficient relative to the automata approach.
In addition to the congestion problem discussed in this paper, we give data for two other
problems that we considered:

1. the circular railway example as the one introduced in (Makungu et al., 1994), but the
track is divided in ten sections and transitidnk, T3, T5, T7, andT 9 are controllable
and

2. the flexible assembly problem introduced in (Desrochers and Al-Jaar, 1995; Makungu
etal., 1996).

Tables 1 and 2 give the number of states (and transitions) in the process, the control
specification, and the controller when the automata is the formalism used. These tables give
also the number of places (and transitions) in the process, the number of forbidden markings
in the control specification, and the number of states (and transitions) in the controller
automaton when the colored Petri net is the formalism used in conjunction with a symmetry
specification (a number between brackets represents the number of states generated).

The numbers in the tables were obtained by experimentation, in part using the tool
SUCSEDES (Barbeau and St-Denis, 1995). The number of nodes in the graph of the con-

SYNTHESIS OF CONTROLLERS 167

Table 1. Comparison of the automata and CP-nets approaches—

Part 1.
Process Control specification
Automaton CP-net Automaton My
Trains
2 1R 2x10%) 10(9) 70 (120) 20
3 100 3x 10° 10(9) 150 (300) 180
4 10t (4x 10 10(9) 100 (160) 1800
Robots
3 14(27) 4(3) 13(24) 1
Congestion
5 ~ 1072 4(6) — ~ 109605

Table 2.Comparison of the automata and CP-
nets approaches—Part 2.

Controller
Automaton graph
Trains
2 60 (100) [70] 30 (50) [54]
3 90 (150) [135] 30 (50) [64]
4 40 (40) [75] 10 (10) [17]
Robots
3 13 (24) [13] 5(7)[8]
Congestion
2 — ~ 10p-798

troller for the congestion problem has been computed as follows. For Hesequeues

may contain from zero to three elements. The contents of plastcan be kept below 80%

by disabling its controllable transitioRroduce There are therefore 56 classes of admis-
sible equivalent markings for that place. The contents of plugut Queuean be kept
below 80% by disabling its three input transitiom&{ite Send andTransmi). There are
therefore 56 classes of admissible equivalent markings for that place. Trafstieives
uncontrollable. To keep below 80% the contents of plapeit Queuethe contents of link
queud @1 (=0,...,4) mustbe controlled in accordance to the amount of empty space
in input queud. For instance, when the input queueontains one cell, the link queue

i @1 may have either zero, one or two cells. In other words, the total contents of link queue
i @ 1 and input queué must always be less than or equal to three. Maintenance of that
condition is the task of the controller. There is a total of 2002 classes of admissible joint
markings for placeink andIinput Queue Hence, there is a total of 56« 2002~ 105798
classes of admissible markings, a figure within the capabilities of current computers.

168 MAKUNGU ET AL.

7. Conclusion

In this paper, we have presented a colored Petri-net approach to the control of DESs. One of
the benefits of using CP-nets instead of equivalent PT-nets is the more compact and readable
representation of the system. The algorithm developed for synthesizing the controller avoids
an exhaustive search of the state space by the use of equivalence relations.

This work constitutes a first step towards the exploitation of the notion of symmetry with
the aim of reducing the complexity of the controller synthesis procedurere. We deliberately
unconstrained the structure of the Petri nets. At least two problems remain to be addressed.
Firstly, how can we integrate our approach and approaches that do take advantage of the
actual Petri net graphical structure, for example the approach in (Holloway and Krogh,
1990). Further complexity reduction could certainly be obtained. Secondly, how can we
synthesize a CP-net model for the supervisor instead of an automaton. This would have the
benefit of homogenizing the framework.

Acknowledgements

The research described in this paper was supported in part by the Natural Sciences and
Engineering Research Council of Canada and the Fonds pour la formation de chercheurs et
I'aide a la recherche (FCAR).

References

Barbeau, M. and St-Denis, R. 1995. Verification of discrete event systems with the SUCSEDEBrtwmolof
AMAST Workshop on Real-Time Systems (Models and Pr@afigjeaux.

Barbeau, M., Kabanza, F., and St-Denis, R. 1997. An efficient algorithm for controller synthesis under full
observationJournal of Algorithm25(1): 144-161.

Barbeau, M., Kabanza, F., and St-Denis, R. 1998. A method for the synthesis of controllers to handle safety,
liveness, and real-time constraintEEE Trans. on Automatic Contrdi3(11): 1543-1559.

Boel, R. K., Ben-Naoum, L., and Van Breusegem, V. 1995. On the forbidden state problems for a class of
controlled Petri netslEEE Trans. on Automatic Contrdl0(10): 1717-1731.

Brandin, B. A. and Wonham, W. M. 1994. Supervisory control of timed discrete-event sydteHEis.Trans. on
Automatic ControB9(2): 329-342.

Clarke, E. M., Grumberg, O., and Long, D. E. 1994. Model checking and abstradti.Trans. Programming
Languages and Systerh§(5): 1512-1542.

Denham, M. J. 1988. A Petri net approach to the control of discrete-event systerslvdnced Computing
Concepts and Techniques in Control Engineering. 191-214, Springer-Verlag, NATO ASI Series, vol. F47.

Desrochers, A. A. and Al-Jaar, R. Y. 199%pplications of Petri Nets in Manufacturing Systems: Modeling,
Control, and Performance Analysi€EEE Press.

Giua, A. and DiCesare, F. 1991a. Supervisory design using PetriRegs. 30th IEEE Conf. on Decision and
Control, Brighton, England, pp. 92-97.

Giua, A. and DiCesare, F. 1991b. Blocking and controllability of Petri nets in supervisory cotEit Trans.
on Automatic ControB9(4): 818-823.

Giua, A. and DiCesare, F. 1995. Decidability and closure properties of weak Petri net languages in supervisory
control. IEEE Trans. on Automatic Contrdl0(5): 906-910.

Holloway, L. E., Guan, X., and Zhang, L. 1996. A generalization of state avoidance policies for controlled Petri
nets.|IEEE Trans. on Automatic Contrdl1(6): 804—816.

SYNTHESIS OF CONTROLLERS 169

Holloway, L. E. and Krogh, B. H. 1990. Synthesis of feedback control logic for a class of controlled Petri nets.
IEEE Trans. on Automatic Contr85(5): 514-523.

Holloway, L. E., Krogh, B. H., and Giua, A. 1997. A survey of Petri net methods for controlled discrete event
systemsDiscrete Event Dynamic Systems: Theory and Applicafi¢@s 151-190.

Ichikawa, A. and Hiraishi, K. 1988. Analysis and control of discrete event systems represented by Petri nets.
Proc. of Discrete Event Systems: Models and Applications 198715-134, Springer-Verlag, Lectures Notes
in Control and Information Sciences, vol. 103.

Jensen, K. 1992Coloured Petri Nets, Basic Concepts, Analysis Methods and PracticaMdkenme 1, Springer-
Verlag.

Jensen, K. 1995Coloured Petri Nets, Basic Concepts, Analysis Methods and PracticaMdkene 2, Springer-
Verlag.

Krogh, B. H. 1987. Controlled Petri nets and maximally permissive feedback I1Bgic.. 25th Annual Allerton
Conf. on Communication, Control, and Computiipnticello, IL, pp. 317-326.

Kumar, R. and Holloway, L. E. 1992. Supervisory control of Petri net languagesc. 31st IEEE Conf. on
Decision and ContrglTucson, AZ, pp. 1190-1195.

Li, Y. and Wonham, W. M. 1993. Control of vector discrete-event systems |—The base ni6H&.Trans. on
Automatic ControB8(8): 1214-1227.

Lin, F. and Wonham, W. M. 1988. Decentralized supervisory control of discrete-event systaimsnation
Scienced4(3): 199-224.

Makungu, M., Barbeau, M., and St-Denis, R. 1994. Synthesis of controllers with colored PetfPras32th
Annual Allerton Conf. on Communication, Control, and Computignticello, IL, pp. 709-718.

Makungu, M., St-Denis, R., and Barbeau, M. 1996. A colored Petri net-based approach to the design of controllers.
Proc. 35th IEEE Conf. on Decision and Contr&lobe, Japan, pp. 4425-4432.

Moody, J. O. and Antsaklis, P. J. 1995. Petri net supervisors for DES in the presence of uncontrollable and
unobservable transitionsProc. 33rd Annual Allerton Conf. on Communication, Control, and Computing
Monticello, IL, pp. 176-185.

Park, Y. and Chong, E. K. P. 1995. Distributed inversion in timed discrete event syBistnete Event Dynamic
System$(2/3): 219-241.

Ramadge, P. J. and Wonham, W. M. 1987. Supervisory control of a class of discrete event praaidddes.
Control and Optimizatior25(1): 206—-230.

Ramadge, P. J. and Wonham, W. M. 1989. The control of discrete event systeroslIEEE77(1): 81-98.

Sreenivas, R. S. 1993. Deterministidree Petri net languages and their application to the supervisory control of
discrete event dynamic systent&roc. Midwest Circuits and Systems Coifetroit, MI.

Sreenivas, R. S. 1997a. On supervisory policies that enforce global fairness and bounded fairness in partially
controlled Petri netsDiscrete Event Dynamic Systems: Theory and Applicaffi¢®s 1-18.

Sreenivas, R. S. 1997b. On the existence of supervisory policies that enforce liveness in discrete-event dynamic
systems modeled by controlled Petri ndiSEE Trans. on Automatic Contrd2(7): 928-945.

Sreenivas, R. S. and Krogh, B. H. 1992. On Petri net models of infinite state superiid€iEsTrans. on Automatic
Control 37(2): 274-277.

Sathaye, A. S. and Krogh, B. H. 1992. Logical analysis and control of time PetriPeis. 31st IEEE Conf. on
Decision and ContrglTucson, AZ, pp. 1198-1203.

Stallings. W. 1997Data and Computer Communicatigrisfth Edition, Prentice-Hall.

Ushio, T. 1990. Maximally permissive feedback and modular control synthesis in Petri nets with external inputs
places.IEEE Trans. on Automatic Contr@5(7): 844—-848.

Yamalidou, K., Moody, J., Lemmon, M., and Antsaklis, P. 1996. Feedback control of Petri nets based on place
invariants.Automatica32(1): 15-28.

