
Discrete Event Dynamic Systems: Theory and Applications, 9, 147–169 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Synthesis of Controllers of Processes Modeled as
Colored Petri Nets

MBI MAKUNGU
Département de mathématiques et d’informatique, Université de Sherbrooke, Sherbrooke (Québec) CANADA
J1K 2R1

MICHEL BARBEAU michel.barbeau@dmi.usherb.ca
Département de mathématiques et d’informatique, Université de Sherbrooke, Sherbrooke (Québec) CANADA
J1K 2R1

RICHARD ST-DENIS richard.st-denis@dmi.usherb.ca
Département de mathématiques et d’informatique, Université de Sherbrooke, Sherbrooke (Québec) CANADA
J1K 2R1

Abstract. This paper presents an adaptation of a supervisory control theory and a supervisor synthesis problem
to a class of colored Petri nets. More specifically, the forbidden state control problem with full observation, in
which a discrete-event system is modeled as a colored Petri net with a symmetry specification, is investigated.
This problem is decidable if the colored Petri net has finite color sets and bounded places. A new algorithm for
deriving a controller is presented in detail with a proof of correctness. Unlike conventional algorithms that explore
the entire reachable set of states, our algorithm avoids an exhaustive search of the state space by exploiting a
symmetry specification. It performs particularly well when applied to large but structured processes with similar
components. Furthermore, this approach leads to a representation of controllers which are smaller than those
obtained with automaton-based approaches.

Keywords: discrete-event systems, supervisory control, colored Petri net, symmetry specification, synthesis

1. Introduction

A control theory has been devised by Ramadge and Wonham for modeling supervised
discrete-event systems (DESs) and synthesis of controllers. This theory has been pri-
marily studied in the context of automaton-based models (Ramadge and Wonham, 1987).
Automaton-based modeling is, however, cumbersome, particularly in representing large
systems consisting of numerous similar interacting components. Even though the compu-
tational complexity is polynomial in the number of system states, it grows exponentially
with the number of components (Ramadge and Wonham, 1989). This phenomenon, called
thestate explosion problem(Clarke et al., 1994), can be overcame by partitioning the com-
ponents into a small number of equivalence classes so that all components in a given class
are essentially similar. This paper makes a contribution in this direction and presents an
algorithm that reduces the complexity of a supervisory control problem under full obser-
vation for DESs consisting of large but structured processes with similar behaviors. DESs
are modeled as colored Petri nets. The purpose of this algorithm is to rigorously scale up
the approach of Ramadge and Wonham.

148 MAKUNGU ET AL.

Recently, Petri nets have begun to receive attention as models for investigating the control
of DESs. The Petri net-based models are more powerful than the automaton-based models
in that the set of Petri net languages is a superset of regular languages. Furthermore, they
allow smaller representations of multiple interacting components than equivalent automaton
models. Indeed, a single Petri net structure can describe the behavior of several concurrent
components modeled as tokens marking the structure.

One may identify mainly two different approaches. In the first approach, introduced in
(Krogh, 1987) and (Ichikawa and Hiraishi, 1988), a DES is described by using aControlled
Petri net(CtlP-net). A CtlP-net is an extension of a standard Petri net in which the enabling
of transitions can be influenced by external binary control inputs. A tutorial survey of work
related to this approach can be found in (Holloway, Krogh, and Giua, 1997). Holloway
and Krogh have developed methods for avoiding forbidden markings for a class of Petri
nets called cyclic marked graphs (Holloway and Krogh, 1990). Later, Holloway et al. have
extended this method to guarantee liveness of the control (Holloway et al., 1996). Ushio
has discussed modular control synthesis and presented a necessary and sufficient condition
for the unique existence of a maximally permissive feedback (Ushio, 1990). Boel et al.
have treated the forbidden state problem for a class of Petri nets called state machines (Boel
et al., 1995). Sreenivas has studied the way to enforce liveness via supervisory control in
DES modeled as controlled Petri nets (Sreenivas, 1997b).

In contrast, the second approach does not include the concept of control input. The
control is obtained by synchronizing the Petri net of the plant with a controller which
may be an automaton or an ordinary Petri net. Denham has described a supervisory control
theory in which the Petri net of the system is viewed as a two-sorted algebra and the required
behavior is specified as Petri net invariants (Denham, 1988). Li and Wonham have extended
the notions of controllability and observability to Petri nets which they call vector DES (Li
and Wonham, 1993). Giua and DiCesare have examined the synthesis of controllers when
the systems are modeled as conservative Petri nets (Giua and DiCesare, 1991a). They have
also presented necessary and sufficient conditions for the existence of a Petri net supervisor
when both the system and control specifications are given as Petri net languages (Giua and
DiCesare, 1991b). Moody and Antsaklis, and Yamalidou et al. have described a method
for synthesizing a Petri net controller in the presence of uncontrollable and unobservable
transitions (Moody and Antsaklis, 1995; Yamalidou et al., 1996). Their method uses place
invariants and is able to enforce logical and algebraic constraints containing elements of
the marking and firing vectors. Sreenivas and Krogh have introduced theλ-free nets, a
class of Petri nets for which controllability of event languages is decidable (Sreenivas and
Krogh, 1992; Sreenivas, 1993). More general results on the decidability of controllability
can be found in (Giua and DiCesare, 1995). Finally, Kumar and Holloway have shown
that the problem of determining controllability for Petri net languages is reducible to the
reachability problem of Petri nets (Kumar and Holloway, 1992).

Several types of control specifications have been applied to synthesis methods for Petri
nets, including: avoiding a set of forbidden states (Krogh, 1987; Holloway and Krogh, 1990;
Boel et al., 1995); enforcing event language specifications (Giua and DiCesare, 1991b;
Kumar and Holloway, 1992); enforcing fairness (Sreenivas, 1997a); enforcing liveness
(Holloway et al., 1996; Sreenivas, 1997b); and enforcing real-time control constraints

SYNTHESIS OF CONTROLLERS 149

(Sathaye and Krogh, 1992; Park and Chong, 1995). These synthesis methods can be
divided into two classes: methods that explore the state space and methods that examine
only the Petri net structure. The main problem with the first class is that the state space can
grow exponentially with respect to the size of the Petri net. The limitation of the second
class is due to conditions on the net structure, that is, restrictions on the interactions among
sub-systems in the modeling process.

Among the Petri net-based models, colored Petri nets (CP-nets) are powerful enough
to describe complex systems in a manageable way, particularly when they contain many
interacting components that are similar but not identical (Jensen, 1992). It is well-known
that the class of CP-nets with finite color sets is equivalent to the class of place/transition
nets (PT-nets). The CP-nets describe the same systems as the PT-nets but often in a more
compact form and allow the use of equivalence classes to represent similar components.
Specifications can be more readable and eventually more tractable. If no restrictions are
imposed on the definition of CP-nets, then they are equivalent to Turing machines.

The work presented in this paper addresses the forbidden state control problem for a class
of CP-nets in which color sets are finite and behaviors satisfy boundedness properties. Given
a control specification expressed as a set of forbidden markings, a procedure computes the
unique maximal set of admissible markings and a controller by means of an occurrence graph
with symmetries. The symmetries guarantee that equivalent markings have similar behavior
(Jensen, 1995). Our aim is not to include, as control logic, additional places and transitions
to the CP-net being controlled. Such an approach is generally used when a simulation or a
performance analysis is performed for a given control policy (Krogh, 1987). In this work,
the process being controlled is separated from the control logic. This approach is suitable
for controller synthesis in which the process to be controlled already exists and the aim is to
compute, from a control specification, a separated controller which, when embodied with
the process in a closed-loop system, satisfies the control specification. Thus, this approach
permits formulations and solutions of different control synthesis problems for the same
process.

The layout of the paper is as follows. The next section introduces the notation and
definitions used in CP-nets. Section 3 extends supervisory control theory to processes
modeled by CP-nets with a consistent symmetry specification. Section 4 formulates the
control synthesis problem for avoiding a set of forbidden markings. Section 5 describes in
detail a new synthesis algorithm and gives a proof of its correctness. Section 6 illustrates
its application with an example. Finally, concluding remarks are provided in Section 7.

2. Notation and Preliminaries

The formal definition of CP-nets requires the notion of multi-set. A multi-set is defined as a
set in which given elements may appear several times. A multi-set can also be defined as a
function mapping each element of a set to a non-negative integer (the number of occurrences
of that element). Given a setS, the set of all multi-sets overS is denotedSMS. A multi-set
over a setS can be represented by a sum. Each term of the sum consists of a coefficient
and an element ofS. The former indicates the number of occurrences of the latter. For
the sake of simplicity, zero occurrence elements are omitted and the coefficient of a single

150 MAKUNGU ET AL.

Figure 1. Example of a network.

occurrence element is omitted. For instance, ifS= {x, y, z}, a multi-set in which there are
one occurrence ofx, three ofy, and none ofz can be represented asx + 3 ỳ.

We use two operations over multi-sets. The union of two multi-setsm1 andm2 is rep-
resented asm1 +m2. Element-wise comparison ofm1 andm2 is represented asm1 ≤ m2

and holds true ifm1 is a sub multi-set ofm2. The expression|m| denotes the number of
elements ofm.

A CP-net is a many-tuple(6, P, T, A, N,C, E,M0), where6 is a finite set of non-empty
types, calledcolor sets; P is a finite set ofplaces; T is a finite set oftransitions; A is a
finite set ofarcsconnecting places and transitions;N is anode function(defined fromA to
P×T ∪T × P) that maps each arc to a pair of nodes of different kinds (i.e., one is a place,
while the other is a transition);C is acolor function(defined fromP to6) that associates a
color set to each place;E is anarc expression functionthat maps each arca, with attached
placep(a), to a multi-set ofC(p(a))MS; andM0 is the initial marking. It maps each place
p to a multi-set over the colorC(p) of p. The setsP, T , andA are pairwise disjoint. We
consider only CP-nets with decidable properties as valid models forDESs, that is, the color
sets are finite and contents of places are bounded. Furthermore, for the sake of simplicity,
we assume that guards (occasionally used in the definition of CP-nets) always evaluate to
true. Hence, guards are not modeled explicitly in this paper.

A token element is a pair(p, c), wherep ∈ P andc ∈ C(p). Let TE be the set of all
token elements. The state of a CP-net is given by its currentmarking Mwhich is a multi-set
overTE. A marking gives a distribution of tokens over the places. The sets of all markings
is denoted byM.

Let us consider an example. We assume a network of switches interconnected by point-to-
point links. The network contains data sources and sinks, which are senders and receivers
of cells, and are calledhosts. A host can be both a source and a sink. The network supports
permanent virtual circuits (PVCs). A PVC exists between two hosts, one with the source
role and the other with the sink role, and passes through at least one switch. Every cell
belongs to some PVC. All cells in the same PVC follow the same path through the network.
For simplicity, we consider simplex PVCs so that a communication actually consists of
two one-way PVCs connecting the same two hosts in opposite directions. Figure 1 shows
a simple network. Switches are represented by circles numbered from 0 to 4, hosts by
squares, and communication links by oriented edges.

SYNTHESIS OF CONTROLLERS 151

Figure 2. CP-net model of the network in Figure 1.

Each switch has two queues, an input queue and an output queue. The operation of a
switch consists of three tasks: receive and add a cell in the input queue, remove the front
cell from the input queue and either consume the cell (if destinated to the local host) or
add it in the output queue (otherwise), and transmit a cell on a link. Each point-to-point
link is also modeled as a queue of cells. Cells queued up for output are transmitted as
rapidly as possible. If cells arrive too fast for the switch to process them, the network runs
out of memory for arriving cells. When this saturation point is reached, the network is
congested.

We model the network operation as a CP-net. Figure 2 shows a CP-net that models the
network in Figure 1. Figure 3 shows declarations of token values, operators, functions,
and variables used in the model. The constantn represents the total number of switches in
the network. The constantbeginrepresents the initial contents of a place: a multi-set of
pairs, a queue contents and the number of the switch that owns the queue. Each switch is
represented by a numerical value of typeSwitch. A cell is represented by a numerical value
of typeCell that gives its destination switch. Each queue of cells is represented by a value
of typeQueuewhich is the Cartesian product of theQList andSwitchcolor sets, where the
QList color set represents a list ofCell tokens manipulated as a queue. The concatenation
operator “.” is used as a constructor of FIFO queues, that is,x.q is a queue with rear cellx
and restq, andq.x is a queue whose front cell isx and rest isq. The operator “⊕” denotes
modulon addition.

152 MAKUNGU ET AL.

Figure 3. Declaration of elements used in the CP-net model.

In Figure 2, switches, hosts, and links are represented by places (circles):Input Queue
for the switch input queues,Output Queuefor the switch output queues,Host for the host
output queues, andLink for the communication links. Every place contains token values
from the color setQueue. Each token value models a queue of a switch, host, or link.
The host (link) number corresponds to the switch to which the host is attached (link source
switch). For example, the token value(q,1) contained in placeOutput Queuemodels the
state of the output queue of switch 1 with contentsq. We assume that each queue has a
fixed capacity of five cells.

Actions are represented by transitions (rectangles). The transitionProducerepresents
production of cells by hosts. Consumption of cells is modeled as the transitionConsume.
The operations of a switch are represented by four transitions: the transitionReceivefor
receiving incoming cells from an adjacent switch through a communication link, transition
Transmitfor receiving incoming cells from an attached host, transitionRoutefor making
routing decisions, and transitionSendfor sending outgoing cells. We have the following
arc expressions:dest((q.x, i)) means that transitionConsumeis enabled if hosti is the
destination of cellx (i.e., i = x) andout((q.x, i))means that transitionRouteis enabled if
hosti is not the destination of cellx (i.e., i 6= x). In the latter case, cellx is in transit and
moved to the output queue. Initially, each place contains five empty queues represented
by the constantbegin; there are no cells in the network. This CP-net is represented as the
many-tuple of Figure 4.

The definition of the behavior of CP-nets is based on the concepts ofenablingand
occurrence(Jensen, 1992). For allt ∈ T , let Var(t) be the set ofvariablesappearing
on arcs that havet as source or destination. For instance,Var(Consume) = {i,q, x}.
The type of a variablev is denoted asType(v). Let the functionA(p, t) be the set of
arcs from placep to transitiont , that is, A(p, t) = {a ∈ A|N(a) = (p, t)}. For all
(p, t) ∈ P × T , let E(p, t) =∑a∈A(p,t) E(a) be the sum of the expressions on arcs from

SYNTHESIS OF CONTROLLERS 153

Figure 4. The CP-net of Figure 2 represented as a many-tuple.

placep to transitiont . In our example,A(p, t) = {(p, t)} if (p, t) ∈ A, because between
any given pair of nodes there is at most one arc in every direction. Hence, for instance,
E(Input Queue,Consume) = dest((q, x, i)). E(t, p) is defined in a similar fashion.

A binding bof a transitiont is a substitution,〈v1 = c1, . . . , vn = cn〉, that assigns a color
ci (also called token) to every variablevi ∈ Var(t) (1≤ i ≤ n). It is required thatci is of
the color set ofvi . The set of all bindings for a transitiont is denoted asB(t). A binding
elementis a pair(t,b), wheret ∈ T andb ∈ B(t). The set of all binding elements is
denoted asBE.

A step Y is a function that maps eacht ∈ T to a multi-set overB(t) such thatY(t)
is finite for all t ∈ T and non-empty for at least onet ∈ T . The expressionE(p, t)〈b〉
yields the multi-set of tokens removed from placep when transitiont occurs with the
binding b. Similarly, the expressionE(t, p)〈b〉 yields the multi-set of tokens inserted in
place p when transitiont occurs with the bindingb. For instance, when the transition
Receiveoccurs with the bindingb1 = 〈i = 2, p = ε,q = ε, x = 2〉, E(Link,Receive)〈b1〉
extracts token(ε.2,3) from placeLink while E(Input Queue,Receive)〈b1〉 extracts token
(ε,2) from placeInput QueueandE(Receive,Link)〈b1〉 deposits token(ε,3) in placeLink
while E(Receive, Input Queue)〈b1〉 deposits token(2.ε,2) in placeInput Queue.

A stepY is enabledin markingM if and only if∑
t∈T

∑
b∈Y(t)

E(p, t)〈b〉 ≤ M(p) for all p ∈ P (1)

The left term of the inequality yields the multi-set removed from placepwhen the transitions
in stepY occur. The multi-set removed is required to be less than or equal to the contents
of p. When a stepY is enabled in a markingM , it mayoccur. Occurrence changesM to
another markingM ′, defined by:

M ′(p) = (M(p)−
∑
t∈T

∑
b∈Y(t)

E(p, t)〈b〉)+
∑
t∈T

∑
b∈Y(t)

E(t, p)〈b〉 ∀p ∈ P (2)

The first sum defines the tokens removed from placep while the second specifies the
inserted tokens. We say thatM ′ is directly reachablefrom M by theoccurrenceof the

154 MAKUNGU ET AL.

stepY, which is also denoted byM [Y〉M ′. For instance, the stepY0 that maps transition
Produceto binding〈i = 0,q = ε, x = 0〉 and all other transitions to the empty multi-set
is enabled in a markingM0 where every place is marked with the expressionbegin (see
Figure 3). IfY0 occurs inM0, we get a markingM1 in which placeHost is marked with the
tokens(0,0)+ (ε,1)+ (ε,2)+ (ε,3)+ (ε,4) and every other place contains the expression
begin. Cell 0 has been inserted in the queue of Host 0. The concept ofoccurring stepis
extended to afinite occurrence sequenceof markings and steps as follows:

M1[Y1〉M2[Y2〉 . . .Mn[Yn〉Mn+1

wheren ∈ N is thenumber of stepsin the sequence andMi [Yi 〉Mi+1 for all i ∈ {1, . . . ,n}.
The abbreviated formM1[Y1Y2 . . .Yn〉Mn+1 is also used. A markingM ′ is reachablefrom a
markingM if and only if there exists a finite occurrence sequence havingM as start marking
andM ′ as end marking. A markingM is reachable if and only if it is reachable fromM0.
The set of markings that are reachable fromM is denoted as [M〉. By definition,M ∈ [M〉.
The marking directly reachable fromM when the stepY is enabled is represented by
M [Y〉. In this paper, we assume that every step maps one transition to one binding element,
while all other transitions are mapped to the empty multi-set, although a number of binding
elements can be concurrently enabled. Therefore,M [Y〉M ′ is written asM [(t,b)〉M ′ and
M1[Y1Y2 . . .Yn〉Mn+1 asM1[(t1,b1)(t2,b2) . . . (tn,bn)〉Mn+1.

Symmetry Specification

It is often the case that large systems have numerous interacting components with similar
behaviors. These components are so alike that we may abstract the differences between
them. As aforementioned, in the initial marking of Figure 2, Host 0 can produce Cell 0.
From M0, every other cell can be produced and every other host can produce a cell. In
this problem, we supervise the length of queues, not their actual contents. Hence, all the
immediate successors ofM0 are considered equivalent or symmetrical to each other. They
are symmetrical in the sense that any one of them can be obtained from any of the others
by a consistent exchange of colors (e.g., Host 1 for Host 0, Cell 1 for Cell 0).

The set of atomic color sets is denoted as6AT and the set of structured color sets is
denoted as6ST. Let SG be a function that maps each atomic color setS ∈ 6AT to a
subgroupSG(S)of the set of all permutations ofS. A permutation symmetry forSG is a
functionφ that maps each atomic color setS∈ 6AT to a permutationφS ∈ SG(S). The set
of all permutation symmetries forSGis denoted8SG and is called apermutation symmetry
specification(Jensen, 1995).

The domain of each permutation symmetryφ ∈ 8SG is extended from6AT to 6. For
each permutation symmetryφ ∈ 8SG and each structured color setS∈ 6ST, φS is defined
as follows:

1. if S= list A, φS(a1a2 . . .an) = φA(a1)φA(a2) . . . φA(an).

2. if S= product A1× A2, φS((a1,a2)) = (φA1(a1), φA2(a2)).

SYNTHESIS OF CONTROLLERS 155

Let a permutation symmetryφ ∈ 8SG, a markingM , a bindingb, and a binding element
(t,b); φ(M), φ(b), andφ((t,b)) are defined as follows:

1. for all p ∈ P, φ(M)(p) = φC(p)(M(p)).

2. for all v ∈ Var(t), φ(b)(v) = φT ype(v)(b(v)).

3. φ(t,b) = (t, φ(b)).
Note that(8SG, ◦) is an algebraic group, where◦ is the function composition operator

and the neutral element is the identity function. In order to capture the fact that two
symmetrical markings have similar properties, a permutation symmetry specification8SG

must be consistent with the behavior of the CP-net. A symmetry specification8SG is
consistentif and only if each permutation symmetry maps the initial marking to itself,
φ(M0) = M0, binding elements to binding elements, for allb ∈ B(t) φ(b) ∈ B(t),
and it does not matter whether the permutation symmetry is applied before or after the
evaluation of an arc expression, ifa is an arc andt the transition ofa, for all b ∈ B(t)
E(a)〈φ(b)〉 = φ(E(a)〈b〉) (Jensen, 1995). It is the responsibility of a person developing
a CP-net model to provide a permutation symmetry specification and to prove that it is
consistent. An alternative approach is to leave to a software tool the task of finding a
permutation symmetry specification. It is a topic of research (Jensen, 1995). In our example,
it is easy to see that arbitrary permutation of cell and host numbers yields a consistent
symmetry specification.

A consistent permutation symmetry specification8SG induces the equivalence relations
≈M and≈BE on markings and binding elements, respectively. We useM≈ and BE≈ to
denote the set of all equivalence classes for≈M and≈BE, respectively. The notation [X],
whereX ⊆M, represents all the markings equivalent to a marking fromX: [X] = {M ∈
M | (∃x ∈ X) M ≈M x}. The notation [{M}], where M ∈ M, is simplified to [M].
Hereafter,8SG is imply written as8 and called a symmetry specification.

Occurrence Graph

An occurrence graph (OS-graph) models the behavior of a CP-net. A part of an occurrence
graph for the CP-net of Figure 2 is shown in Figure 5. It has a set of nodes and a set
of arcs. Each node represents a reachable marking. The marking is inscribed within
the node. The node labeledM0 represents the initial marking. The rows indicate the
markings of placesHost, Output Queue, Link, and Input Queue. Each arc represents a
step. The arc is labeled with a binding element. For the sake of conciseness, we write
(P, ε,0,0) instead of(Produce, 〈q = ε, x = 0, i = 0〉) and(T,134, ε,0,0) instead of
(Transmit, 〈q = 134, p = ε, x = 0, i = 0〉), analogously for the other steps.

Figure 5 shows just some of the reachable markings. Let us compute the total number
of reachable markings. For each queue, there are

∑5
i=0 5i = 3906 token values. There are

five queues stored in each place. Hence, for each place there 39065 markings. There are
four places, it means that there are(39065)4 = 390620 ≈ 1072 different markings in the
OS-graph.

156 MAKUNGU ET AL.

Figure 5. Occurrence graph for the CP-net of Figure 2.

From a behavioral point of view, there is little difference between symmetrical markings
M1 and M2 in Figure 5 under the permutation symmetryφ in which Cell 0 is mapped to
Cell 4 and all other token values remain the same. Each occurrence sequence starting from
M1 as a symmetrical occurrence sequence starting fromM2, and vice versa. Occurrence
sequences can be obtained from each other by application ofφ. Hence, during behavior
analysis it makes sense to explore a single marking for each class of symmetrical markings.

More formally, an occurrence graph is a 4-tuple(V, A, N, v0), where

• V is the finite set of nodes{[M] ∈ M≈ | [M] ∩ [M0〉 6= ∅};
• A is the finite set of arcs{([M1], [(t,b)], [M2]) ∈ V × BE≈ × V | ∃(M ′1, (t,b′),M ′2)
∈ [M1] × [(t,b)] × [M2] such thatM ′1[(t,b′)〉M ′2};

• N is the node function fromA into V × V . If a = ([M1], [(t,b)], [M2]), thenN(a) =
([M1], [M2]);

• v0 ∈ V is the initial node (v0 = [M0]).

For the example of Figure 5, let us suppose that we explore just one marking in each class
of symmetrical markings. We make abstraction of the actual contents of queues. We just
retain their length. Every queue may have from zero to five elements. There are therefore

SYNTHESIS OF CONTROLLERS 157

six individual queue states. In every place there are five queues but we make also abstraction
of the actual owner of every queue. We distinguish 252 different states of five queues (this
figure corresponds to the number of multi-sets of cardinal five that can be constructed from
six different elements). Since there are four places, we have a total of 2524 ≈ 109.61

markings to explore. We have reduced the complexity of the problem for at least 62 orders
of magnitude. It is still, however, a lot of markings. Note, although, that synthesis of a
controller does not have to generate all these markings. Indeed, in the implementation of
our algorithm we construct the OS-graph of the process while we synthetize the controller,
on the fly. During synthesis many paths are cut off because they are outgoing from invalid
states. Hence, the controller itself is much smaller than the OS-graph. Construction on the
fly of reachability graphs is explained in (Barbeau et al., 1997).

3. CP-net Supervisory Design under Full Observation

The basic problem in supervisory control is to construct a controller that can turn off various
events of an uncontrolledDES, called aprocess(Pr), according to some requirements. The
processPr is defined as a triple(CPN,8, K), whereCPN is a CP-net with a consistent
symmetry specification8 andK : P→ N is acapacity functionbounding the contents of
every place. Therefore, we require that|M0(p)| ≤ K (p) and|M ′(p)| ≤ K (p) for all p ∈
P, in the enabling rule (1) (withM ′(p) defined by rule (2)).

Let 0 be the set of all functionsγ , calledcontrol patterns, that assign a subset ofB(t)
to every transitiont to T , that is,b ∈ γ (t) ⇒ b ∈ B(t). If b ∈ γ (t), then the controller
prevents the transitiont from occurring with the bindingb. Let Tc andTu be fixed disjoint
subsets ofT denoting the sets ofcontrollableanduncontrollabletransitions, respectively. A
controllable transition is one which occurrence can be disabled by the controller whereas an
uncontrollable transition cannot. The basic notion of activity in a CP-net is that of binding
element. For the applications we handled so far, we found more convenient to specify
controllability of transitions which by extension applies to bindings because the former are
not as numerous as the latter.

A controlled DES(CDES) is an ordered tuplePrc = (CPNc,8, K , 0). In a CPNc,
M [c(t,b)〉M ′ denotes that a markingM ′ is directly reachable fromM by the occurrence of
the binding element(t,b) under the control ofγ ∈ 0. This is defined as:

M [(t,b)〉M ′ if t ∈ Tu

M [(t,b)〉M ′,b 6∈ γ (t) if t ∈ Tc andγ ∈ 0
A controller is a pairS= (G, ϕ), whereG is a subgraph of an OS-graph with symmetries

andϕ is the feedback function.
The feedback functionϕ: V → 0 satisfies the following conditions (℘(B(t)) denotes

the power set ofB(t)):

ϕ(v)(t) = ∅ if t ∈ Tu

ϕ(v)(t) ∈ ℘(B(t)) if t ∈ Tc

The graphG can be interpreted as the transition graph of an automaton modeling the
behavior of a controller as in the original framework of Ramadge and Wonham. It is

158 MAKUNGU ET AL.

Figure 6. An execution step of the closed-loop system.

driven by a sequence of steps occurring inCPN. That is, after the firing of a transition,
the controller moves to a nodev which represents the marking reached byCPN. The role
of the feedback functionϕ is to provide, after each execution step of the process and the
controller, the control patternγ that represents the binding elements inhibited for the next
step.

The CDES and controller are then embodied in a closed-loop system to constitute a
supervised DES(SDES)S/Prc = (S, Prc). A state of aSDE Sis a pair(v,M) where
v ∈ V andM is a marking ofCPNc such thatM ∈ v. The behavior ofS/Prc is illustrated
in Figure 6. LetMi be the current marking of the process andvi = [M ′i] be a node ofG
such that there existsφ ∈ 8 with M ′i = φ(Mi), that is,Mi ∈ vi . Let (ti ,bi) be the next
step such thatMi [(ti ,bi)〉Mi+1 andbi /∈ γi (ti) with the current control patternγi . First, the
controllerSmoves to the next nodevi+1 = [M ′i+1] by executing the transition from nodevi

on the arc labeledl = [(ti ,b′i)]. The binding element(ti ,b′i) is the representative member
of binding elements equivalent to the process step(ti ,bi), that is,(ti ,b′i) = (ti , φ(bi)).
The controllerS includes, by construction, control patterns for a representative marking of
each equivalence class of reachable markings. Letγ ′i+1 = ϕ(vi+1) be the control pattern of
nodevi+1. To compute the control pattern corresponding to the next markingMi+1 of the
process, the controller uses the inverse of the permutation symmetryφ to map the control
patternγ ′i+1 to the control patternγi+1 = φ−1(γ ′i+1). Since(8, ◦) is a group,φ−1 always
exists. Formally, if(vi ,Mi) is the current state ofS/Prc, then a next state is(vi+1,Mi+1)

if and only if there exists a binding element(ti ,bi) such thatMi [(ti ,bi)〉Mi+1, bi 6∈ γi (ti)
with γi = φ−1(ϕ(vi)), and(vi , l , vi+1) ∈ A with Mi ∈ vi , Mi+1 ∈ vi+1 and(ti ,bi) ∈ l .
The control pattern ofMi+1 is φ−1(ϕ(vi+1)). The controllerS must becompletein the
sense that(vi , l , vi+1) ∈ A wheneverS/Prc is in state(vi ,Mi) with Mi [c(ti ,bi)〉Mi+1 and
bi 6∈ γi (ti).

SYNTHESIS OF CONTROLLERS 159

4. The Forbidden State Control Problem

In this paper, we consider the forbidden state control problem in which the control speci-
fication is expressed as a set of forbidden markingsMb ⊆M. If a marking is forbidden,
all its equivalent markings are also forbidden. Therefore, only one representative per each
equivalence class of forbidden markings is included inMb.

Inadmissible Marking

Given a set of forbidden markingsMb, there is, in general, a larger set of markings which
must be avoided, due to uncontrollable transition sequences. The markings from which the
process can uncontrollably reach forbidden markings are characterized by the following
predicate:

Inadmissible(M)⇔ (∃n ≥ 0)(∃t1, . . . , tn ∈ Tu)

(∃b1 ∈ B(t1)) . . . (∃bn ∈ B(tn))
M [(t1,b1) . . . (tn,bn)〉 ∈ [Mb]

(3)

A node with associated inadmissible markings is inadmissible. When the initial marking is
admissible, and steps contain only one binding element, the maximally permissive solution
to the forbidden state control problem exists and prevents the process from reaching any
inadmissible marking (Holloway and Krogh, 1990).

Problem

The problem is expressed as follows. Given a set of forbidden markingsMb, an uncontrolled
DESPr = (CPN,8, K), and an admissible initial markingM0 /∈ [Mb], derive amaximally
permissivecontrollerS, that is: (1) the closed-loop systemS/Prc is safe (Prc cannot reach
a forbidden marking under the control ofS); and (2) a reachable marking ofPr , which is an
unreachable marking ofPrc under the control ofS, is either forbidden, can uncontrollably
lead to a forbidden marking, or can only be reached from the initial marking by sequences
that pass through a forbidden or inadmissible marking. Before describing the synthesis
algorithm, let us introduce an admissibility assessment predicate and the notion of latest
controllable binding elements.

Latest Controllable Binding Elements

Let y denote a node in theOS-graph. The latest controllable binding elementsof y is a
set (denoted asLCBE) of all triples of the form(x, t,b) such that (the expressionsMx and
lcbex denote a representative markingM andLCBEof the nodex, respectively):

1. x is a node in theOS-graph;

2. (t,b) is a binding element, wheret is a controllable transition;

160 MAKUNGU ET AL.

Figure 7. Algorithm for synthesizing a compact controller.

3. (∃n ≥ 0) Mx[(t,b)(t1,b1) . . . (tn,bn)〉My with ti ∈ Tu, for i = 1, . . . ,n.

A triple (x, t,b) contained in theLCBEof y is interpreted as follows. The occurrence of the
step(t,b) from Mx is controllable whereas the sequence of steps(t1,b1) . . . (tn,bn) from
Mx[(t,b)〉 to My are uncontrollable. Therefore, to makeMy and its equivalent markings
unreachable in the process, it is necessary to disable the bindingb for t when the process is
in markingMx.

5. The Synthesis Algorithm

The basic idea behind our algorithm is to reduce the number of markings that must be exam-
ined by gathering the components that “behave in the same way” into the same equivalence
class. Therefore, the set of all markings and the set of all steps are partitioned into disjoint
nonempty equivalence classes. The algorithm, given in Figure 7, is based on the notion
of latest controllable binding elements, equivalent markings, andinadmissible markings.
It accepts as input a processPr , a consistent symmetry specification represented by the
equivalence relations≈M and≈BE, a set of forbidden markingsMb, and a set of con-
trollable transitionsTc. A maximally permissive controllerS= (G, ϕ) is computed from
representative members, one per class of equivalent markings and class of equivalent steps.

The algorithm uses many functions briefly described hereafter. FunctionNew Node
creates a new node, of the controller graphG, from a marking and anLCBE. The marking

SYNTHESIS OF CONTROLLERS 161

Figure 8. Procedure for determining inadmissible nodes.

associated to a node is a representative of its equivalence class. FunctionNew Marking
yields the marking reached after the occurrence of a binding element from a given marking.
The functionNew Arc creates a new arc from a source node, a binding element, and a
destination node. The functionFrom Nodes takes as argument a nodex and returns the
set of nodes inV from which x is directly reachable on occurrence of an uncontrollable
binding element.

Each node has a status indicating whether or not its associated marking isadmissible. A
new node has its status set toadmissible. The functionInadmissible , given in Figure 8,
fixes the status of a node toinadmissible(line 2), determines those that become inadmissible
among its predecessors (lines 3 and 4), and updates the feedback function by inserting, for
each (x′, t,b) in theLCBE of x, the bindingb in the set of forbidden bindings fort of x′

(lines 6 and 7). When a node becomes inadmissible, all its son nodes inV are removed
(including their bound arcs) by using the procedureRemove Sons (line 2). If theLCBE
of x is empty, then there are no solutions (line 8).

The algorithm works as follows. Initially, the sets of nodesV and arcsA of the graph are
both empty. The set of processed nodes is also empty. The nodev0 = (M0, {}) is created
and inserted into the set of unprocessed nodes (line 2). While there are unprocessed nodes,
a nodex is selected (line 4) and processed. The processing of a node starts with a test for
an equivalence between the markingMx and the markingMy of an already processed node
y (line 5). Only the first-picked node in each equivalence class is developed further. If
such a nodey exists, then the algorithm checks if it is an inadmissible node. If so, then
the Inadmissible function is called on nodex to disable the latest controllable binding
elements on the path leading tox (line 21). Otherwise, the contents oflcbex is inserted in
lcbey (line 21). If such a nodey does not exist, every binding element(t,b) enabled inMx

is analyzed (line 6). The markingM reached after the occurrence of the binding element
(t,b) is computed (line 7) and checked for an equivalence with some other markingM ′

included in the set of forbidden markings (line 8). If so, there are two cases: eithert is
controllable or not. If transitiont is controllable, the bindingb is inserted in the set of
forbidden bindings ofx (line 10). If t is uncontrollable, then the functionInadmissible
is called on nodex (line 12). If M is not equivalent to some forbidden marking inMb,
then the algorithm checks if markingM is equivalent to a markingMy wherey is a son
of x (line 14). If all the above conditions are not satisfied, it means that the markingM

162 MAKUNGU ET AL.

is not equivalent to a marking of a son ofx and not forbidden. In this case, a new node
z is created with the following attributes: the markingM and lcbez which is defined as
{(x, t,b)} if the transitiont is controllable; otherwise, it is thelcbex of its parent nodex
(lines 15 and 16). Furthermore, the set of unprocessed nodes is updated (line 17) and a new
arc is created from nodex to nodez and added toA (line 18). At the end of the analysis of
all binding elements(t,b) enabled inMx, if the status ofx is admissible, thenx is included
in V . Finally, the nodex is included in the set of processed nodes and removed from the
set of unprocessed nodes (lines 22 and 23).

In the implementation of the algorithm, testingM ≈M M ′ translates to finding a permu-
tation symmetryφ ∈ 8 such thatφ(M) = M ′. In our example, the permutation symmetry
specification is arbitrary permutation. Calculation of a permutation can be factorial in the
worst case. Jensen (1995) proposes, however, techniques to efficiently calculate symme-
tries. For instance, several cases can be eliminated by first testing ifM can be mapped to
M ′ by verifying if they have the same multi-set of positive coefficients.

The following theorem shows that the set of nodesV generated by our algorithm represents
the unique maximal set of markings that solves the forbidden state control problem with
respect to a set of forbidden markingsMb. The proof of the theorem is based on two
lemmas. Let us first introduce some properties of Jensen’s OS-graph (Jensen, 1995) that
are used in the proof. Hereafter, a node is identified to its representative marking.

PROPOSITION1 Let8 be a consistent symmetry specification and(W, A, N, v0) an OS-
graph. The following properties hold for all M1, . . . ,Mn+1 ∈ [M0〉 and allφ ∈ 8:

1. [M0〉 = [W]

2. M1[(t1,b1)〉 . . .Mn[(tn,bn) > Mn+1⇔
φ(M1)[(t1, φ(b1))〉 . . . φ(Mn)[(tn, φ(bn))〉φ(Mn+1)

3. M ∈ [M0〉 ⇔ φ(M) ∈ [M0〉

LEMMA 1 Let8 be a consistent symmetry specification. For all M∈ [M0〉 and allφ ∈ 8,
Inadmissible(M)⇔ Inadmissible(φ(M)).

Because of the definition of the predicateInadmissible, there exists a sequence of uncon-
trollable binding elements(t1,b1) . . . (tn,bn) with ti ∈ Tu and a markingM ′ ∈ M such
that M [(t1,b1) . . . (tn,bn)〉M ′ andM ′ ∈ [Mb]. From Proposition 1,φ(M)[(t1, φ(b1)) . . .

(tn, φ(bn))〉φ(M ′). By the definition ofMb, φ(M ′) ∈ [Mb]. Therefore, Inadmis-
sible(φ(M)) = true. The proof of the converse is similar, using the functionφ−1.

LEMMA 2 Let predicate Inadmissible be restricted to markings labeling nodes in the set
processednodes,v ∈ V iff Inadmissible([Mv]) = false.

Proof: We use induction on the numberk of times therepeat-until loop is executed.
Because of the initialization process in line 2, this loop will be executed at least one time.

SYNTHESIS OF CONTROLLERS 163

Basis. (k = 0) Trivially true sinceprocessednodes(the set of markings reachable form
M0) is empty.

Induction hypothesis.v ∈ V iff Inadmissible(Mv) = false.

Induction. (k > 0) We show that, if the hypothesis holds at the start of the loop, then it
holds at the end. Letx ∈ processednodesat the end of the loop. There are two cases:
whetherx ∈ processednodesat the start of the loop or not.

Case 1. Whenx /∈ processednodesat the start of the loop, suppose thatx is selected from
the setunprocessednodesby the current loop, yielding two subcases.

Subcase 1.1.The conditions of theif statement at line 5 is satisfied. Thefor loop at line 6
is entered, that is, all enabled markings atMx are examined. This loop is finite since the
color sets are finite. For each marking we have three subcases:

Subcase 1.1.1.The condition of theif statement at line 8 is satisfied and theif statement at
line 9 is not satisfied. The procedureInadmissible is called with the actual parameter
x (line 12). The nodex is not included inV (line 19) since its status has been set to
inadmissiblein procedureInadmissible (line 2, Figure 8). These conditions are trueiff
there exists a binding element (t,b) such thatMx[(t,b)〉M , t ∈ Tu, andM ∈ [M ′] for some
M ′ ∈ [Mb]. ThenInadmissible(Mx) = truebecause of (3).

Subcase 1.1.2. The conditions of theif statement at line 8 and line 9 are both satisfied.
Then Inadmissible(Mx) = falsebecause of (3) (withn = 0) andx ∈ V because of the
line 19.

Subcase 1.1.3.The condition of theif statement at line 8 is not satisfied, that is,Mx and its
equivalents are not prohibited. Therefore,Inadmissible(Mx) = falseandx ∈ V because of
the line 19. The condition of theif statement at line 14 is used for implementation purpose
only to avoid including enabled equivalent sons ofMx in the set of unprocessed nodes.

Subcase 1.2.The condition of theif statement at line 5 is not satisfied and the condition of
if statement at line 21 is satisfied. The procedureInadmissible is called with the actual
parameterx (line 21) and its status is set toinadmissible(line 2, Figure 8). These conditions
are trueiff there exists an inadmissible nodey ∈ processednodeswith a marking that is
equivalent toMx (∃φ ∈ 8 such thatMx = φ(My)). Therefore,Inadmissible(Mx) = true
because of Lemma 1. When the condition of theif statement at line 21 is not satisfied,Mx

and its equivalents are not prohibited. Therefore,Inadmissible(Mx) = false, by Lemma 1.

Case 2. x∈ processednodesat the start of the loop. At the start of the loop, either
x ∈ V or not. It can easily be checked that ifx /∈ V at the start of the loop, then the
algorithm never inserts a node with a marking equivalent toMx in V (because of line 5).
Let us consider the case wherex ∈ V at the start of the loop. The nodex is removed

164 MAKUNGU ET AL.

from V at the end of loopiff a nodex′ from unprocessednodeshas been selected and the
procedureInadmissible has been called with actual parameterx′ (lines 12 or 21). Then,
x′.statusreceived the valueinadmissibleand the recursive calls toInadmissible follow
backward all the paths incoming tox′, while transitions are uncontrollable. Furthermore,
every encountered inadmissible node in paths leading tox′ are removed, includingx (line 2,
Figure 8). The above is, however, possibleiff x ′ has been selected,Inadmissible(Mx′) =
true, in accordance with Case 1, and there is a sequence of uncontrollable stepsY1 . . .Yn

with Mx[Y1 . . .Yn〉Mx′ . These conditions are trueiff Inadmissible(Mx) = true at the end
of the loop because of (3).

THEOREM 1 The procedureSynthetize Controller always terminates and, if M0 /∈
[Mb] and Inadmissible(M0) = false, then it returns a controller S= (G, ϕ) that is the
unique maximal solution to the forbidden state control problem with respect to the set of
forbidden markingsMb.

Proof: Note that the procedureSynthetize Controller always terminates since the
color sets are finite andPr satisfies boundedness properties.

Let us assume thatM0 /∈ [Mb] and Inadmissible(M0) = false. Let S= (G, ϕ) be the
controller computed bySynthetize Controller . We can show the following by using
Lemma 2 and the definition of the predicateInadmissiblewhich expresses the converse of
controllability. For everyv ∈ V , Mv ∈ [M0〉 andInadmissible(Mv) = false. Furthermore,
for all t ∈ Tu andb ∈ B(t), if Mv[(t,b)〉 ∈ [M0〉 thenInadmissible(Mv[(t,b)〉) = false.
From Lemma 1, this property holds for all markings equivalent toMv. Therefore, the
controller is safe.

From Proposition 1, we know that a marking is reachableiff it belongs to [W], whereW is
the set of nodes of theOS-graphgenerated fromPr . Remark thatV ⊆ processednodes⊆
W. Letw ∈ W such thatInadmissible(Mw) = false, Mw is reachable under the control of
S, andw /∈ V . If w ∈ processednodes, then, from Lemma 2,Inadmissible(Mw) = true,
a contradiction. Ifw /∈ processednodes, then for all sequences of steps(t1,b1) . . . (tn,bn)

such that

M0[(t1,b1)〉M1 . . .Mn−1[(tn,bn)〉Mw,

there existi ∈ {1, . . . ,n − 1} andv ∈ processednodes, Inadmissible(Mv) = true (that
is v /∈ V), andMi ∈ [Mv]. Therefore, [W] are non reachable under the control ofS, a
contradiction. Hence, the controller is maximal.

6. An Example

Let us consider as an example, the network of Section 2.

SYNTHESIS OF CONTROLLERS 165

Congestion Control Specification

Congestion arises in a switch when the rate at which cells arrive and queue up exceeds the
rate at which cells can be transmitted. The queue size then grows without bound and cells
are lost. We call such states congestion states. A rule of thumb states that when the link
for which cells are queuing is 80% or more utilized, the queue length begins growing at
an alarming rate (Stallings, 1997). We use this rule to specify the congestion states in the
CP-net. That is, every CP-net marking in which at least one queue has four or five cells is
considered as forbidden marking.

When the network reaches a congestion state, one of the following two strategies can
be adopted: (i) a switch simply discards any incoming cell for which there is no available
memory space; (ii) a congested switch exercises some sort of flow control over its neighbors
and hosts so that the traffic flow remains manageable. In this paper, we adopt the second
strategy. In the CP-net model of Figure 2, transitionsProduce, Route, Send, andTransmit
are controllable.

It is clear that switch behaviors are similar and there is little difference in the way they
handle cells. For example, a marking in which all queues are empty except queue number 1
in placeHost with two cells (cell numbered 2 and 3) is equivalent to a marking in which
all queues are empty except queue number 2 in placeHostwith two cells (cell numbered 3
and 4). This equivalence is obtained by the permutation symmetryφ that mapsQueueto
φQueuedefined as:

φQueue(x) =
 2 if x = 1

1 if x = 2
x otherwise

andCell to φCell defined as:

φCell(x) =
 3 if x = 2

4 if x = 3
x otherwise

The congestion states are CP-net markings in which one place has at least one queue
with four or five cells. It should be noted that the forbidden markings are not all given
explicitly. We give one representative per equivalence class. Furthermore, in the im-
plementation forbiddeness can be tested by an user provided function, making forbidden
marking specification even simpler.

We compute the number of classes of forbidden markings as follows. First, let us compute
the number of classes of unforbidden markings. For each place, we distinguish 56 different
unforbidden states of five queues (this figure corresponds to the number of multi-sets of
cardinal five that can be constructed from four different elements, elements 0 to 3). Since
there are four places, we have a total of 564 ≈ 106.993 classes of unforbidden markings.
Hence, we have 109.606− 106.993≈ 109.605 classes of forbidden markings.

166 MAKUNGU ET AL.

Limitations of the Model

Before showing how the derived controller can be combined with the network to prevent
congestion, we first assess our model. This model deviates somewhat from the real world.
We assume that cell transfer is not affected by communication delays and that a centralized
controller can observe all network events. In the real world, cells are transmitted with
delays and some network events are unobservable.

Despite these unrealistic modeling assumptions, the model remains a good theoretical
first step toward application of supervisory design to the congestion control problem, for
two reasons. First, the effect of communication delays can be counteracted by imposing
additional constraints on the process model. In order words, we can, for example, model
communication links with more than one place. Second, the centralized scheme may be
approached by exchanging traffic statistics between switches. The original framework by
Ramadge and Wonham can handle a decentralized and partial observation scheme (Lin and
Wonham, 1988) and has also been extended to handle real-time constraints (Brandin and
Wonham, 1994; Barbeau et al., 1998). Similar extensions must to be done in our CP-net
framework.

Congestion Supervisory Control

Given a set of congestion states (CP-net forbidden markings)Mb, a network (uncontrolled
DES) modeled by a CP-net, and the network initial state (initial marking)M0, the congestion
control problem can be stated as the synthesis of a controllerS= (G, ϕ) that prevents the
network from reaching any congestion state.

The state space of the CP-net model of the network with five switches is approximatly
1071.835. It is clear that an automaton-based approach is impracticable. Comparison given
in Tables 1 and 2 show that our approach is very efficient relative to the automata approach.
In addition to the congestion problem discussed in this paper, we give data for two other
problems that we considered:

1. the circular railway example as the one introduced in (Makungu et al., 1994), but the
track is divided in ten sections and transitionsT1, T3, T5, T7, andT9 are controllable
and

2. the flexible assembly problem introduced in (Desrochers and Al-Jaar, 1995; Makungu
et al., 1996).

Tables 1 and 2 give the number of states (and transitions) in the process, the control
specification, and the controller when the automata is the formalism used. These tables give
also the number of places (and transitions) in the process, the number of forbidden markings
in the control specification, and the number of states (and transitions) in the controller
automaton when the colored Petri net is the formalism used in conjunction with a symmetry
specification (a number between brackets represents the number of states generated).

The numbers in the tables were obtained by experimentation, in part using the tool
SUCSEDES (Barbeau and St-Denis, 1995). The number of nodes in the graph of the con-

SYNTHESIS OF CONTROLLERS 167

Table 1. Comparison of the automata and CP-nets approaches—
Part 1.

Process Control specification

Automaton CP-net Automaton Mb

Trains
2 102 (2× 102) 10 (9) 70 (120) 20
3 103 (3× 103) 10 (9) 150 (300) 180
4 104 (4× 104) 10 (9) 100 (160) 1800

Robots
3 14(27) 4 (3) 13(24) 1

Congestion
5 ≈ 1072 4 (6) — ≈ 109.605

Table 2.Comparison of the automata and CP-
nets approaches—Part 2.

Controller

Automaton graph

Trains
2 60 (100) [70] 30 (50) [54]
3 90 (150) [135] 30 (50) [64]
4 40 (40) [75] 10 (10) [17]

Robots
3 13 (24) [13] 5 (7) [8]

Congestion
2 — ≈ 106.798

troller for the congestion problem has been computed as follows. For placeHost, queues
may contain from zero to three elements. The contents of placeHostcan be kept below 80%
by disabling its controllable transitionProduce. There are therefore 56 classes of admis-
sible equivalent markings for that place. The contents of placeOutput Queuecan be kept
below 80% by disabling its three input transitions (Route, Send, andTransmit). There are
therefore 56 classes of admissible equivalent markings for that place. TransitionReceiveis
uncontrollable. To keep below 80% the contents of placeInput Queue, the contents of link
queuei ⊕ 1 (i = 0, . . . ,4) must be controlled in accordance to the amount of empty space
in input queuei . For instance, when the input queuei contains one cell, the link queue
i ⊕1 may have either zero, one or two cells. In other words, the total contents of link queue
i ⊕ 1 and input queuei must always be less than or equal to three. Maintenance of that
condition is the task of the controller. There is a total of 2002 classes of admissible joint
markings for placesLink andInput Queue. Hence, there is a total of 562× 2002≈ 106.798

classes of admissible markings, a figure within the capabilities of current computers.

168 MAKUNGU ET AL.

7. Conclusion

In this paper, we have presented a colored Petri-net approach to the control of DESs. One of
the benefits of using CP-nets instead of equivalent PT-nets is the more compact and readable
representation of the system. The algorithm developed for synthesizing the controller avoids
an exhaustive search of the state space by the use of equivalence relations.

This work constitutes a first step towards the exploitation of the notion of symmetry with
the aim of reducing the complexity of the controller synthesis procedurere. We deliberately
unconstrained the structure of the Petri nets. At least two problems remain to be addressed.
Firstly, how can we integrate our approach and approaches that do take advantage of the
actual Petri net graphical structure, for example the approach in (Holloway and Krogh,
1990). Further complexity reduction could certainly be obtained. Secondly, how can we
synthesize a CP-net model for the supervisor instead of an automaton. This would have the
benefit of homogenizing the framework.

Acknowledgements

The research described in this paper was supported in part by the Natural Sciences and
Engineering Research Council of Canada and the Fonds pour la formation de chercheurs et
l’aide à la recherche (FCAR).

References

Barbeau, M. and St-Denis, R. 1995. Verification of discrete event systems with the SUCSEDES tool.Proc. of
AMAST Workshop on Real-Time Systems (Models and Proofs), Bordeaux.

Barbeau, M., Kabanza, F., and St-Denis, R. 1997. An efficient algorithm for controller synthesis under full
observation.Journal of Algorithms25(1): 144–161.

Barbeau, M., Kabanza, F., and St-Denis, R. 1998. A method for the synthesis of controllers to handle safety,
liveness, and real-time constraints.IEEE Trans. on Automatic Control43(11): 1543–1559.

Boel, R. K., Ben-Naoum, L., and Van Breusegem, V. 1995. On the forbidden state problems for a class of
controlled Petri nets.IEEE Trans. on Automatic Control40(10): 1717–1731.

Brandin, B. A. and Wonham, W. M. 1994. Supervisory control of timed discrete-event systems.IEEE Trans. on
Automatic Control39(2): 329–342.

Clarke, E. M., Grumberg, O., and Long, D. E. 1994. Model checking and abstraction.ACM Trans. Programming
Languages and Systems16(5): 1512–1542.

Denham, M. J. 1988. A Petri net approach to the control of discrete-event systems. InAdvanced Computing
Concepts and Techniques in Control Engineering, pp. 191–214, Springer-Verlag, NATO ASI Series, vol. F47.

Desrochers, A. A. and Al-Jaar, R. Y. 1995.Applications of Petri Nets in Manufacturing Systems: Modeling,
Control, and Performance Analysis, IEEE Press.

Giua, A. and DiCesare, F. 1991a. Supervisory design using Petri nets.Proc. 30th IEEE Conf. on Decision and
Control, Brighton, England, pp. 92–97.

Giua, A. and DiCesare, F. 1991b. Blocking and controllability of Petri nets in supervisory control.IEEE Trans.
on Automatic Control39(4): 818–823.

Giua, A. and DiCesare, F. 1995. Decidability and closure properties of weak Petri net languages in supervisory
control. IEEE Trans. on Automatic Control40(5): 906–910.

Holloway, L. E., Guan, X., and Zhang, L. 1996. A generalization of state avoidance policies for controlled Petri
nets.IEEE Trans. on Automatic Control41(6): 804–816.

SYNTHESIS OF CONTROLLERS 169

Holloway, L. E. and Krogh, B. H. 1990. Synthesis of feedback control logic for a class of controlled Petri nets.
IEEE Trans. on Automatic Control35(5): 514–523.

Holloway, L. E., Krogh, B. H., and Giua, A. 1997. A survey of Petri net methods for controlled discrete event
systems.Discrete Event Dynamic Systems: Theory and Applications7(2): 151–190.

Ichikawa, A. and Hiraishi, K. 1988. Analysis and control of discrete event systems represented by Petri nets.
Proc. of Discrete Event Systems: Models and Applications 1987, p. 115-134, Springer-Verlag, Lectures Notes
in Control and Information Sciences, vol. 103.

Jensen, K. 1992.Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use, volume 1, Springer-
Verlag.

Jensen, K. 1995.Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use, volume 2, Springer-
Verlag.

Krogh, B. H. 1987. Controlled Petri nets and maximally permissive feedback logic.Proc. 25th Annual Allerton
Conf. on Communication, Control, and Computing, Monticello, IL, pp. 317–326.

Kumar, R. and Holloway, L. E. 1992. Supervisory control of Petri net languages.Proc. 31st IEEE Conf. on
Decision and Control, Tucson, AZ, pp. 1190–1195.

Li, Y. and Wonham, W. M. 1993. Control of vector discrete-event systems I—The base model.IEEE Trans. on
Automatic Control38(8): 1214–1227.

Lin, F. and Wonham, W. M. 1988. Decentralized supervisory control of discrete-event systems.Information
Sciences44(3): 199–224.

Makungu, M., Barbeau, M., and St-Denis, R. 1994. Synthesis of controllers with colored Petri nets.Proc. 32th
Annual Allerton Conf. on Communication, Control, and Computing, Monticello, IL, pp. 709–718.

Makungu, M., St-Denis, R., and Barbeau, M. 1996. A colored Petri net-based approach to the design of controllers.
Proc. 35th IEEE Conf. on Decision and Control, Kobe, Japan, pp. 4425–4432.

Moody, J. O. and Antsaklis, P. J. 1995. Petri net supervisors for DES in the presence of uncontrollable and
unobservable transitions.Proc. 33rd Annual Allerton Conf. on Communication, Control, and Computing,
Monticello, IL, pp. 176–185.

Park, Y. and Chong, E. K. P. 1995. Distributed inversion in timed discrete event system.Discrete Event Dynamic
Systems5(2/3): 219–241.

Ramadge, P. J. and Wonham, W. M. 1987. Supervisory control of a class of discrete event processes.SIAM J.
Control and Optimization25(1): 206–230.

Ramadge, P. J. and Wonham, W. M. 1989. The control of discrete event systems.Proc. IEEE77(1): 81–98.
Sreenivas, R. S. 1993. Deterministicλ-free Petri net languages and their application to the supervisory control of

discrete event dynamic systems.Proc. Midwest Circuits and Systems Conf., Detroit, MI.
Sreenivas, R. S. 1997a. On supervisory policies that enforce global fairness and bounded fairness in partially

controlled Petri nets.Discrete Event Dynamic Systems: Theory and Applications7(2): 1–18.
Sreenivas, R. S. 1997b. On the existence of supervisory policies that enforce liveness in discrete-event dynamic

systems modeled by controlled Petri nets.IEEE Trans. on Automatic Control42(7): 928-945.
Sreenivas, R. S. and Krogh, B. H. 1992. On Petri net models of infinite state supervisors.IEEE Trans. on Automatic

Control 37(2): 274–277.
Sathaye, A. S. and Krogh, B. H. 1992. Logical analysis and control of time Petri nets.Proc. 31st IEEE Conf. on

Decision and Control, Tucson, AZ, pp. 1198–1203.
Stallings. W. 1997.Data and Computer Communications, Fifth Edition, Prentice-Hall.
Ushio, T. 1990. Maximally permissive feedback and modular control synthesis in Petri nets with external inputs

places.IEEE Trans. on Automatic Control35(7): 844–848.
Yamalidou, K., Moody, J., Lemmon, M., and Antsaklis, P. 1996. Feedback control of Petri nets based on place

invariants.Automatica32(1): 15–28.

