[EEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 6, DECEMBER 1996

951

Specification and Testing of the Behavior of
Network Management Agents Using SDL-92

Olaf Henniger, Michel Barbeau, Member, IEEE, and Behget Sarikaya, Senior Member, IEEE

Abstract— We develop a method for specifying the behavior
of network management agents for the Internet framework us-
ing SDL-92 which is object-oriented. The starting point is the
definition of a management information base (MIB) in ASN.1
with macros as well as the description of the simple network
management protocol version 2 (SNMPv2 protocol). The behavior
of an agent is defined in an SDL-92 process which dynamically
creates processes for the rows of the tables of the MIB and
in several procedures that process. variable bindings in proto-
col data units (PDU’s) and carry out specific operations on
conceptual rows such as creation, retrieval, and bulk retrieval.
Some reusable, MIB-independent process types and procedures
are identified. For large MIB’s, we first obtain a class diagram
representation of the MIB. From the class diagram, the classes
with behavior are mapped to process types representing concep-
tual rows of specific tabular objects. SNMPv2 protocol operations
on these tabular objects can be easily specified with the help of
MIB-independent procedures. Next, considered is the generation
of test cases. MIB test cases can be generated from the SDL-92
specification using specification analysis and behavior inversion
techniques. Many test cases for an example single-table MIB are
designed and specified in TTCN based on the specification in
SDL-92.

I. INTRODUCTION

HIS PAPER deals with the application of a systematic

test design methodology to the new field of conformance
testing of network management systems. The context of this
work is version 2 of the simple network management protocol
(SNMPv2) framework of the Internet engineering task force
(IETF) [12]. The paper is concerned with the specification
of managed node components, namely, network management '
agents and management information bases (MIB’s) as well
as with the problem of testing the conformance of managed
node implementations to network management standards, i.e.,
to requests for comments (RFC’s) [4]-[6] emitted by. the
IETF. The conformance testing problem is twofold. The first
issue is the development of test suites to be applied to the
implementations while the second issue is the development of
a test system that effectively exercises the implementations
with the test suites. This paper addresses solely the first

Manuscript received July 18, 1995; revised April 3, 1996; approved by
IEEE/ACM TrANSACTIONS ON NETWORKING Editor V. Sahin. O. Henniger
was supported in part by a scholarship granted by the German Academic
Exchange Service (DAAD).

O. Henniger is with GMD, the
Center - for Information Technology,
henniger @darmstadt.gmd.de).

M. Barbeau is with the University of Sherbrooke, Québec, Canada (email:
michel.barbeau@dmi.usherb.ca).

B. Sarikaya is with the University of Aizu, Aizu-Wakamatsu, Fukushima,

Japan (email: sarikaya@u-aizu.ac.jp).
Publisher Item Identifier S 1063-6692(96)07567-X.

German National Research
Darmstadt, Germany (email:

issue and discusses a test design approach specifically for that
purpose.

A systematic approach to the test design problem for man-
aged nodes, such as the one we propose, is relevant because
this is a means of obtaining high quality software. Quality
here means conformance to specifications, which is required
for interoperability of communicating system, and robustness.
Testing of managed nodes means examining their behavior,
i.e., their reaction to different inputs. The behavior of managed
nodes is far from being explicit in IETF RFC’s. Systematic
test generation should begin with a very clear picture of the
behavior to be tested. Therefore, our methodology consists of
two major activities, namely, formal modeling of behavior of
managed nodes and then test suite generation.

We advocate object-oriented modeling of the structure and
behavior of managed nodes. The input of this activity is the
content of the relevant IETF RFC’s, i.e., ASN.1 and natural
language descriptions of MIB’s and of agents. From these
descriptions, a more abstract représentation consisting of a
class diagram which uncovers the structural aspects and an
SDL-92 [10] model which encompasses the structure and
behavior are produced.

The test design activity follows ISO’s conformance testing
methodology and yields test suites precisely expressed in the
tree and tabular combined notation (TTCN) [9].

In Section II, we discuss formal modeling of the structure
and behavior of network management agents with a single-
table MIB using SDL-92. In Section III, the approach is
illustrated with a recently developed MIB for ATM virtual
links. In Section IV, the test suite development activity is
presented. Finally, we give our conclusions in Section V.

II. FORMAL MODELING OF AGENTS AND MIB’s

We develop a method for obtaining a specification in SDL-
92 of the behavior of an agent entity. There are reusable parts
that are independent of a specific. MIB. The data type defi-
nitions (PDU’s, rows in MIB tables, etc.) in the specification
are obtained from the ASN.1 definitions given in the relevant
REC’s. The behavior definition is obtained from the informal
prose descriptions given in [4]-[6]

There are several approaches for bringing together ASN.1
data type definitions and SDL: modeling of ASN.1 definitions
in the data type notation of SDL-92 [2], inclusion of ASN.1
definitions as external data description [7], combined use of
SDL-92 and ASN.1 as in the SDL dialect defined in [11].
We have opted for modeling the ASN.1 definitions in the
data type notation of SDL-92, ie., ASN.1 syntax is not

1063-6692/96$05.00 © 1996 IEEE

952

use ASN1;
use SNMPv2_SMI;
use SNMPv2_TC;

system marnagedNode

newtype PDUType struct : N [signal
requestld Integer32; GetRequestPDU(PDUType),
errorStatus PDUErior Type; GetNextRequestPDU(PDUType),
errorlndex IndexType;. - GetBulkRequestPDU(BulkPDUType),
varBindings VarBindList SetRequestPDUPDUType),

endnewtype PDUType; ResponsePDUPDUType);

signallist Requests =
GetRequestPDU,
GetNextRequestPDU,
GetBulkRequestPDU,
SetRequestPDU;

syntype PDUErrorType = Integer
constants noError ! inconsisteniName

endsyntype PDUErrorType;

synonym noError Integer = 0;

synonymn inconsistentName Integer = 18;

syntype IndexType = Integer
constants 0 :max_bindings
endsyntype IndexType;
syrionym fax_bindings Inieger = 2147483647;

newtype VarBindList String(VarBind, Empty)
endnewtype VarBindList; .

newtype VarBind struct
name ObjectName;
value ObjectSyntax;
errorStatus VarBindErmorType
endnewtype. VarBind;

syntype VarBindErmrorType - = Integer
constants unSpecified : endOfMibView

endsyntype VarBindErrorType;

synonym unSpecified Integer = 0;

s.;'nonym endOfMibView Integer = 2;

AgentBIType

agentBlock :
AgentBlType

networkGats

[(Requests)]

networkChannel

[ResponsesPDU]

Fig, 1..: System diagram. : :
used in the final specification of the network management
agent. This is justified because only a subset of ASN.1
containing only predefined | SDL-92 data and extended data
definition constructs like structure sorts is used in the SNMPv2
framework. Complicated ASNl abstract data types are not
requlred

Predefined ASN.1 types that are used in SMI (like OBJECT
IDENTIFIER, OCTET STRING, and BIT STRING) and that
do mnot have a direct counterpart in SDL-92 (for example,
INTEGER has) are mapped to SDL-92 data types. For in-
stance, "OBJECT IDENTIFIER “is modeled “as a string of
ObjldComponents which are positive integers. The SDL-92
package called ASNI contains all such types. We mapped the
types defined in the ASN.1 module SNMPv2-SMI [5] (e.g.,
ObjectName; Integer32, IpAddress, and Counter32) to SDL-

92 data types and included them in another SDL-92 package -

called SNMPv2_SMI.-We mapped the types defined in the
ASN.1 module SNMPv2-TC [6] (e.g., RowStatus) to SDL-92
data types and included them into the SDL-92 package called
SNMPv2_TC {(see Appendix).

A. Single Table MIB Example

A managed node stores a collection of managed objects (i.e.,
~an MIB) which are abstractions.of logical or physical resoutces
of the managed node. TETF has developed the structure of
management information (SMI) for modeling such data [5].

IEEE/ACM TRANSACTIONS ON NETWQRKING, VOL:-4, NO.-6, DECEMBER 1996

SMI is based on the abstract syntax.notation -one (ASN.1)

[8], {[15]. ASN.1 is used t(’\)f‘:de’ﬁhe. a template. for managed -

object types. The template demands the data'type of:the value
of a managed object, the allowed kind :of raccess: (reading,
writing, or creating), and a textual description. The data type
is either simple or at most a two-dimensional (2-D) array of
simple type elements. Each instance of the template, i.e., each
object type, has a unique identity, its object identifier, Wthh
is a sequence of nonnegatlve integers. We use -the following
example [14]: o

grokIndex OBJECT—TYPE ok

SYNTAX = INTEGER
MAX-ACCESS hot+ acce551b1e o
STATUS current '

DESCRI PTION

“The auxiliary Varlable used-to 1dent1fy
1nstances of tho.columnay cbjects . in the:
grok table.” : -

= { grokEntry 1 }

Objects of the grokindex type are of ‘the snnple data type
INTEGER Simple objects’ may be grouped 1nt0 a table as
follows:
grokEntry OBJECT—TYPE ST
GrokEntry

SYNTAX

MAX-ACCESS® not+ acce331ble

STATUS current~

DESCRIPTION : ol RN
“An entry (coﬁcepﬁuél rewy in the grok .
table.” : S : '

INDEX {grokIndex}

:=-{grokTable l}

GrokEntry ::- SEQUENCE{

grokIndexINTEGER "

grokIPAddprédress,
grokCountCounter32;\7
grokStatquwStatus‘}

grokTable OBJECT'TYPE ,

SYNTAX SEQUENCE OF GrokEntry
MAX-ACCESHEOL- acc9531ble

STATUS current" ‘ ; i
DESCRIPTI@Nhe(Qoﬁceptﬁal)grok table.””'
e { adhocGroup 2‘}1" ‘ :

The definition of GrokEntry describes the contents of a table
row. Bach row consists of ﬁn'index value grokfndex, an: P
address grokIPAddress, a counter grokCount of the number of
packets sent to that IP address:grokIPAddress; and a row status
grokSté:ztus (used in'the process of row ‘creation and deletion).

B. Structuml Aspects

In SDL 92, the top level: entlty is:d system Fig:1 shows
a dlagram of a'system called managedNode The uppet rec-
tangle contains imports of -packages. The largest rectangle
represents the structure -of managedNode. itself. It-is made

of data type declarations (upper ‘left rectangle) “signals "and
signal ihst declarations (upper right rectangle), a block type.

HENNIGER e7'al.: BEHAVIOR OF NETWORK MANAGEMENT AGENTS

named AgentBIType, and an instance of it named agentBlock.
The instance agentBlock is connected to the environment
through a channel, named retworkChannel and labeled with a
signal (ResponsePDU) and a list of signals (Requests) flowing
through- it.

The block type diagram of AgentBlType is shown in Fig. 2.
The block type contains the abstract process types Agent-
PrType, modeling the SNMPv2 protocol operations, and Row-
Type, modeling the behavior of a generalized row. Agent-
PrType is. specialized for the specific MIB of our example
in the process type GrokMIBAgentPrType. RowType is spe-
cialized into GrokEntryType for rows of the table grokTuble
of the specific MIB.

When the system is initialized, one instance, named agent,
of process type GrokMIBAgentPrIype is created. Initially,
there are no instances of the process type GrokEntryType.
They are created dynamically by the agent (dashed arrow
relation in Fig. 2). The agent receives SNMP PDU’s via its
gate networkGate, carries out error checking, and distributes
signals to the rows via its gate queryGate. The agent can
activate, deactivate, or destroy conceptual rows as well as read
or write the values of the elements contained in the rows.

C. Modeling of PDU’s
In [4], the SNMP PDU’s are defined in an ASN.1 module.

All PDU types, except for GetBulkRequest-PDU, have the
same simple structure:

SEQUENCE {
request-id Integer32,
error-status INTEGER{

noError(0),

PDU ::=

inconsistentName(18)}
error-index INTEGER
variable-bindings VarBindList}
max-bindings INTEGER ::= 2147483647
VarBindList : : = SEQUENCE
(SIZE (0..max-bindings))
VarBind ::= SEQUENCE {
name ObjectName,
CHOICE {
value ObjectSyntax,
unsSpecified NULL,
~ noSuchObject[0] IMPLICIT NULL,
noSuchInstance[1] IMPLICIT NULL,
endOfMibview[2] TMPLICIT NULL}}

(0. .max-bindings),

OF VarBind

Each PDU carries a list of variable bindings VarBindList.
Each variable binding VarBind is made up of an object
name name which may be paired with a value value (may
be unspecified) or an error indication, either noSuchObject,
noSuchlnstance, or endOfMibView.

PDU’s in SDL-92 are modeled as the type PDUTIype, see
upper left box in Fig. 1. The mapping is straightforward. A
variable binding list in SDL-92 is a one-dimensional (1-D)
array of structures of sort VarBind consisting of an object name
name, an object value value, and an error status errorStatus.

9353

block type AgentBIType

signal
Activate, SetNotInService, Destroy,

Write(VarBindList), Read(VarBindList), Result(VarBindList);
signallist RowCtrl =
Activate, SetNotInService, Destroy, Write, Read;

synonym
| grokEntryName ObjectName = MkString(1) // MkString(3) // ... // MkString(2) // MkString(1); B]

o) o) o) (o)

query_ grokEntryQuery query_
agent (1, 1) : Gate [[Result] KRowCHDT | Gate oroppniry (0,) ¢
GrokMIBAgentPrType GrokEntryType
seworkGate S

[(Requests)]

network

[ResponsePDU]

networkGate

Fig. 2. Block type diagram for the example.

D. Modeling of Managed Objects

There are different types of managed objects: simple man-
aged objects (e.g., grokStatus), rows (e.g., grokEntry), and
tables (e.g., grokTuble). A behavior is specified in terms of
states and transitions only for rows. Simple objects and tables
do not have a behavior.

Rows are mapped to SDL-92 process types, see Fig. 3.
Columnar objects are mapped to SDL.-92 variables of the typcé
provided in the ASN.1 definitions. Access to the managed
objects and their default values are modeled in the SDL-
92 procedures for accessing and initializing conceptual row
process instances.

Tables are not explicitly mapped to SDL-92 constructs. They
correspond to sets of row processes. For example, grokTable
is represented by a set of grokEntry processes in the block of
type GrokEntrylype (Fig. 2).

E. Modeling of Conceptual Rows

The process type RowType models the behavior of a gener-
alized row. Tts diagram is pictured in Fig. 3.

Rows represent dynamic entities. In SMI, the states which
a row goes through are coded in a field of type RowStatus
(see Section II-A). The values of RowStatus are interpreted as
in Table 1. Some of these values represent states of instances,
some represent actions on instances; and others represent both
states and actions.

Conceptual rows can be created and destroyed upon the
request of a manager. Creation of a conceptual row is initiated
by a SetRequest-PDU carrying the value createAndGo or cre-
ateAndWait for a conceptual row’s variable of type RowStatus.
Value createAndGo is used for single step creation, i.e., all
the values of the fields of the row are provided in a single
set-request operation. Value createAndWait is for negotiated
creation during which values of components are written one
after the other, thus allowing detailed error checking. Destroy-
ing a conceptual row is initiated by a SetRequest-PDU carrying
the value destroy for the variable of type RowStatus.

In the process type diagram RowType (Fig. 3), there are
three states: notReady, notInService, and activated. Initially, an

954

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL' 4, NO: 6, DECEMBER 1996

process type RowType

| virtual procedure Initialization

process type AgentPrType
Virtual procedure Setileq

virtuel procedure GetReq

| virtual procedure SetValues fpar in/out varBindings VarBindList

| virtual procedure GetValues fpar infout varBindings VarBindList

virtual procedure GetNextReq-

Virtual procedure GetBulkReq

del PDU PDUType; | Fewtype PIdSet PowersoW(PId) adding TR
del resBDU PDUType: operators

I virtual procedure InfoSufficient fpar injout result Boolean

|
<| SetNotlnService <[Wnbe(vaerdmgs) <
¥
SelValues
- - (varBindings)
InfoSufﬁCicm(resuh) I
*

< I Read(varBindings)

dcl rowStatus RowStatus;

del regult Boolean;
del varBindings VarBindList;

1 X Activafe

true

towStatusivalue :=
notInService
) (notinService)

| Destroy

j< GetValues
(vaerdmgs)

Result(varBindings)

: - =
) < ' ‘SetNotIiService <I Write(varBindings) <
T

l Activate

. \ SetVﬂ]ues
(activated >(< notlnService) (varBindings) H
queryGate I
Fig. 3. Process type diagram RowType.

TABLE -1

INTERPRETATION OF ROW STATUS VALUES
Value Name Interpretation

1 active state and action
2 notInService state and action
3 notReady state

4 createAndGo action

5 createAndWait action

6 destroy action’

object is created and putinto the norReady state. All objects for
which no default value is defined have to be set in a set-request
operation before ‘the- state norlnService-can be reached. If all
required values are present, then the procedure InfoSufficient
returns frue. In the state notInService/activared, the conceptual
row can be activated/deactivated. In any state, the conceptual
row can be destroyed ‘and values can be read or written.

As shown ‘in Figs. 9 and 10, the process type RowType
1§ inherited by process -types -defining” specific tows. In the
subtypes, the virtual procedures Initialization, SetValues, Get-
Values, and- InfoSufficient are redefined to adapt the process
type definition tothe ‘specific ‘rows. Furthermore, a’ formal
parameter index of type Integer32 is added to pass the index
value to the row. The index cannot be set directly by a
SetRequest-PDU because the allowed kind of access is nonac-
cessible. The index value is part of the object name for the
column-instances. of row. Wheén a row is created, the index

axioms
“take(empty) == Erroft;.

T taKS(PIASEL) == Lak PXdSct nuu)

takel(empty, Pld) .

alce HPIASet; Pl

clse take! (PIdS

FPAA fn PLaSer then BIA
quel (PEd)) i

défavlt orapty:
endriewiypeRIds et

take: PldSet - PIS;
{ idle) -

take! PIdSet, PId --> PId;
Sc\‘Reques‘PDU < Ge\‘.‘chncsv_PDU
. FD

- [BeBRIKREQueRPIU 7

GofNextRequestE 0,
: S (PDU)

- (PDUY

l SetReq ” U GetReq ... H |¢ GetNex(Réq ”” GerBulkReq | ||
3 k') 2
(idle) N (idle) Y idle. B (Jidle)

nerworkGate] TqueryGate

Fig. 4. Process type diagram AgentPrType.

value is retrieved from the obJect name’ and used -as actual ,

parameter for the created process 1nstance s+

F. Modeling of the'SNMPVZ"Protocol-Opemtio‘n’s'

SNMPvZ protocol operatrons are modeled in"the process
type dragram AgentPrType (Frg 4) Accordlng to the’ recelved
input srgnal a procedure for the correspondmg protocol. op-
eration is invoked.

As shown in Figs. 11 and 12, the process type Agent-
Priype is inherited -and specialized by MIB-specific process

types. Process type GrokMiBAgentPriype, a part of which

is shown in Fig. 11, inherits and specializes AgentPrType
to adapt it to the grokTable example. For instance, the be-
havior | of the procedure SerReg is redefined ‘inthe process
type GrokMIBAgentPrType The procedure SetReq invokes the
procedure GrokEntrySetReq, Whrch is a specialization of the
procedure RowSetReq defined in Fig. 5.

The ﬁrst step in processing an SNMP PDU is to find sublists
in the variable- -binding list that are destined for the same table
and the same row. PDU’s received from a manager have to
be relayed to the managed objects -addressed by the PDU. A
simple method of dynamic process creation is-adopted: A new
process is created for each row. The process-id values (PId’s)
of the row process instances belonging to the sameé table are
stored ‘in a set of type PldSef; €.g., ‘in the set grokEniries
defined in Fig. 11 for our grokTable example. Before creating
a new row process instance, the procedure FindPId is called

which returns in its in/out-parameter either a null PId (if the
oW hafs not yet been created) or the PId of the row process.
After creation, the process identifiet of the newly created

process instance is included into-the set grokEntries: v
The procedure FindPld provides the "connecting link ‘be-
tween 'the Pldsets and the index values (Fig. 13) In this
procedirre, the index values given in the PDU are compared
with the index values of the existing conceptual row process
1nstances The index values are visible via view expressrons
Processmg of PDU variable blndmgs is done’ as follows:
the procedure FindRowStatus returns 4 pointer ‘to the next
row ‘status -and’ row name. (Fig."13): It is assumed that the

row status occurs first inithe variable brndrngs list in order,

to srmphfy the search. For single-table MIB’s, there is only
one roW name, e.g., grokTable FindRowStatus can be called

repeatedly to’ completely process the variable' bindings- and -

HENNIGER et al.: BEHAVIOR OF NETWORK MANAGEMENT AGENTS

procedure RowSetReq fpar infout subList VarBindType

SeiReq_ SctReq_. SetRoq_ Set.Req SetReq SetReq_
e dGo AndWait Destroy Any

[virtual procedurs FindRowStatus fpar in subList VarBindList, injout TndexType

[virtual procedure FindPid fpar in subList VarBindList, injout existingRow PId |
I virtual procedure Validation fpar infout subList VarBindList, in/out errorStatus VarBindError’I‘ypeJ

virtual procedure CreateRow fpas
in subList VarBindList, m/oul Rows PidSet, infout newRow PId
a D dol rowStatusindex IndexType; lﬁ

FindRowStatus
(subL.ist, rowStatusIndex}

else

IntegerValue

subl

value)

Tnbulu-

Traffic Description
Parameters

Index:Integer;

ﬁ

Virtuad
veL
(Chanmel Cross Connect

No CLP SCR CLP No Tegging SCR

Sustained_rase

CLP_O_Snsumed_nle
CLP_Q_peak_rate Mmbm'-ﬂ" CLP_O_Mux_bursLsin

Virtual VPL
Path Link Cross Connect

Classof
objects

& e
A i

e Association

955

P
creutm.\ndGa createA.ndWaix acﬁ:late notInS‘crvice des!.roy ar
SetReq_ SetReq_ SetReq.. SetReq_, SetReq_ SetReq_
CreateAndGo CreateAndWait Activate NotEnService; Destroy Any
(subList) (subList) (subList) (sublList) (subList) (subList)
® Fig. 7. Class diagram of ATM MIB.
Fig. 5. Processing of a SetRequestPDU.
block type AgentBIType
edure SetReqCreateAndGo fpar infout subList VarBindList signal
procecu e o fpar infout subList VarBindLis — Activate, SetNotInService, Destroy,
del existingRow, newRow PId; Write(VarBindList, IndexType), Read(VarBindList, IndexType),
@ dcl errorStatus, errorlndex Integer; Result(VarBindList);
signallist RowCtrl =

l | FindPId(subList, existingRow) l I

. else
existingRow 1
resPDU!errorStatus := inconsistentValue,

mllll resPDUerrorIndex := index - Length(subList)

l I Validation(subList, errorStatus) u

else
errorStatus
resPDUlerrorStatus := errorStatus,

noError resPDU!errorIndex := index - Length(subList)
1

CreateRow
{subList, grokEntries, newRow)

‘Write(subList),
Activate to newRow

waitForResult

Result(subList)

/ (Requests) /

_/__
P | ——

®

Fig. 6. Processing of a SetRequestPDU with rowStatus set to createAndGo.

prepare a response PDU. When there are no more variable

bindings the response PDU is sent (Fig. 11).

Processing of a SetRequestPDU (Fig. 5) depends on the row
status value. Fig. 6 shows the procedure diagram for process-
ing a SerRequestPDU with rowStatus set to createAndGo. In
Fig. 6, FindPId is called first. An error occurs. if it does not
return a null PId. Otherwise the procedure Validation checks
whether the values given in the PDU are consistent and returns
noError if so. If the values are consistent, a new conceptual
row is created by the CreateRow procedure which is defined
in Fig. 13; its process identifier is saved, and an Activate and

a Write signal are sent to the newly created process.

The Write signal works as follows on the row process
(Fig. 3): the procedures SerValues and InfoSufficient defined in
Fig. 9 are invoked. The procedure SetValues sets the values in
a given row according to the access restrictions. For grokTable,
grokIpAddress and RowStatus can be set, but grokCount can
only be read using the GetValues procedure. The procedure

. InfoSufficient checks if the required values are present. For

grokTable, the grokIPAddress is the only required value.

Activate, SetNotInService, Destroy,

Write, Read;

synonym

TDPName ObjectName = ... // MkString(37) // MkString(1) // MkString(5) // MkString(1),
VPLName ObjectName = ... /f MkString(37) // MkString(1) // MkString(6) // MkString(1),
VCLName ObjectName = ... // MkSiring(37) // MkString(1) // MkString(7) // MkString(1),
VPCCName ObjectName = ... // MkString(37) // MkString(1) // MkString(9) // MkString(1),
VCCCName ObjectName = ... // MkString(37) // MkString(1) // MkString(11) // MkString(1);

VCLQuery

AgentPrType ATM_
AgentPrType
RowT DeseiParam VPL_ VCL_ veee_ ||ff veee.
o . E EntryT:
EntryType E""YTYPU ntryType ntry yﬂ EntryType
VPLQuery Query
e -~ TDP(,):
! é?'w [Resuld) (RowCirD] TrafﬁcDZ:crllaram_

query,_
Gate

EntryType

VPL(®,):
VPLEntryType

agent(l, 1) Reoul] [(RowCHD] | ome - VCL(O,)
* : al ,)t
ATMAgentPrType N VCLEntryType
VCCCQuery ‘query_
[Result] [(RowCtrl)] | Gate VPCC(0,) :
I VPCCEntryType
TDPQuery Query._
[Result] [RowCtr])] | Gate VCCC(©,):
_________________ VCCCEntryType
networkGate
[(Requests)]
network
[ResponsePDU]
networkGate

Fig. 8. Block diagram of a subset of ATM MIB.

Depending on the value of RowStatus in the variable binding
list, RowSetReq calls one of the functions SetRegCreateAndGo,
SetReqCreateAndWait, etc. As an example the definition of
SetRegCreateAndGo is shown in Fig. 6.

III. ADVANCED MODELING OF MIB’S

MIB’s used in practice contain several managed -objects
which are organized into groups corresponding to differ-
ent functional aspects of the managed system. In case of a

956

[EEE/ACM TRANSACTIONS ON NETWORKING, VOL: 4, NO.'6, DECEMBER 1996

process type GrokEntryType inheritssRowType adding fpar index Integer

del revealed grokindex Integer; del grokIpAddressFlag Boolean; AN
del groklpAddress IpAddress; .

del grokCount Counter32;

synonym j N

grokIpAddressName ObjectName = grokEntryName 1/ MkString(2),
grokConntName ObjectName = grokEntryName // MkString(3),
rowStatusName ObjectName = grokEntryName // MkString(4);

redefined procedure Initialization

grokIndex :=index,
grokIpAddressFlag := false,
grokCount =0,

rowStatus ;= noiReady

®

redefined procedure SetValues fpar in/oiit varBindings VarBindList 1

del i IndexType;,

false

varBindings(i)lname

rowStatusName
.

groklpAddressName
L
grokIpAddress =
IpAddressValue{varBindings(i}!value),
groklpAddressFlag i= true

rowStatus :=
IntegerValue(varBindings(i) value)

T

redefined procedure GetValues fpar " -
in/out varBindings VarBindList

D

| result := grokIpAddressFlag |

redefined procedure InfoSufficient
fpar infout result Boolgan

Fig. 9. Process type diagram GrokEntryType.

large, complex MIB, we use class diagrams [3] to model
the conceptual structure ‘of the MIB: Using class diagrams,
we can show common aspects of objects and specializations
of these common aspects. Common aspects are represented
in. superclasses and the specmhzatlons are represented as
subclasses.

We first shortly introduce the asynchronous transfer mode
MIB (ATM MIB) which will be used as an example in this
section. Next; various steps of the modeling are explained.

A. ATM MIB

ATM is a networking technology to be used over fiber optic
transmission lines to transmit short packets called cells in a
connection-oriented manner. -In an ATM network, there are
" two kinds of virtual connections, namely, switched virtual
connections and permanent virtual connections. The purpose of
the ATM MIB is primarily to manage permanent bidirectional
virtual connections. Segments of virtial connections inside
ATM networks: or switches are managed. There are two
categories of permanent virtual connections, i.e., permanent
virtual channel connections (VCC’s) and permanent virtual
path connections (VPC’s). A VCC is carried by a VPC.
Conversely, a - VPC can carry -several VCC’s. A VCC/VPC
is"'made of virtual channel/path l1nks (VCL/VPL’s) cross
connected ‘together.

process type TrafficDescrParamEntry Type mherlts RowType addmg fp e inidex IﬁtegerBZ G :

del revealed trafficDescrParamIndex Imeger32
det trafficDescrType OBJECT_IDENTIFIER;
del trafficDescrParam1 . Integer32;

dcl trafficDescrParam?2 Integer32;

del trafficDescrParam3 Integer32;

del trafficDescrParam4 Integer32;

del trafficDescrParams Integer32;

del trafficQoSClass Integer; >

dcl rowStatus RowStatus;

synonym 2 o T N
nafficDescrTypeName ObjectName = TDPName // MkString(2), y .

rowSthtusName ObjeciNamie = TDPName J/ MkStiing(9):
synonym 5 . ST
noTrafficDescriptor OBJECT_IDENTIFIER = ...; “i

redefined procedure Initialization

trafficDescrParamIndex —mdex, :
LrafﬁcDescl’I‘ype —noTrafﬁcDescnptor o
trafﬁcDescharaml —0 B

rowStams = ‘active’;

redefined procedure SetValues fpar in/out varBindings. VarBindList |~

dcl i IndexType; i

varBindings(i)!narne

trafficDesciParamiName

traffficDeserParaml. i= i A
IntegerValue(vaerdmgs 1)'value) L SR i

trafﬁchscr,’I‘ypeName

trafficDescrType := :
ObjectldValue(varBindings(i)!value)
|

redefinéd procedure InfoSufficient
fpar infout result Boolean

I fesult’= true o] ;

%

Fig. 10. o

vl

Process type diagram TraﬁicDesch’afahil di

B. Detivation of a Class Diagram from anMIB s

A class diagram is a graphic notation for object-oriented
analysis and design. A class diagram shows the classes of
objects; subtyping relationships among classes (e, inheri-

tance), containment relationships (i.e., aggregation), and other

associations among objects:
Row object types defined in'a MIB are mapped to classes.

The components in a row aré modeled e1ther as attributes (for -

components of simple types such as INTEGER) or as relations
among objects (for components representing indexes in other

The derivation of a class diagram takes two steps. In the first
step, the MIB definition and ‘addifional information about ‘the
system to be managed are inspected: Classes,‘ attributes, and
associations are extracted and represented!in graphical fén'n,
The second step is a repeated refinemen usirig inheritance
relations among classes to ellrmnate cominon deﬁn1t10ns of
attributes and relations.

The class diagram for the ATM MIB (mc ludmg only groups
related to the ‘ATM layer is given in Fig. 7). Bandwidth
requirements of VCL’s and VPL’s are given by the users.and
described in terms of ‘traffi¢ description parameters. In Fig. 7,
the class Virtual Link has an-association 1o the class Traffic
Description Parameters. The' cardmahty of this association is

one-to-two because two parameters are- requlred to characterize

each trafﬁc flow direction on'a vn“tual l1nk An mstance of ¢lass

HENNIGER ef al.: BEHAVIOR OF NETWORK MANAGEMENT AGENTS

957

process type GrokMIBAgentPrType inherits AgentPrType adding
del grokEntries P1dSet;]H [vnewad grokindex Integer;

RowSetReq GrokEntrySetReq

del i IndexType;

dcl index, resindex IndexType;

del tableName, rowIndex ObjectName;
del subList VarBindList;

redefined procedure SetReq

resPDUlerrorStatus := noError,
resPDUlerrorIndex := 0

PDU!
varBindings(index) =
Empty

false
L

ResponsePDU(resPDU
<
"ad

i=1,
tableName =

ings(index)!name, 1,
l.zngv.h(PDU'vanmdmgs(mdex)lnune) 2
rowlndex :=
Last(PDU!varBindings(index)!name)

(SubString
(PDUtvarBindings(index)!pame, 17
ngth(PDUlvarBindings(index)!name) - 2) =
tableName) and (Last(PDU!
varBindings(index)!name) = else
rowindex)

false

1

resPDUlerrorStatus :=
noSuchObject,

resPDUlerrorIndex :=
resIndex

RcsponsePDU(msPDU>

true g;okEnu'yNaxnc

GrokEnirySetReq
. (subList)

subList(i) :=
PDUlvarBindings(index),

P=i+],

index ;= index + 1

L

resPDUvarBindings(resIndex) ;=]
sublist(i),

i=itl,

resindex := resIndex + 1

P ———— |

Fig. 11. Processing type diagram GrokMIBAgentPrType.

Traffic Description Parameters has two attributes, namely,
Index and QoSClass. The attribute Index serves to identify the
instance whereas the attribute QoSClass indicates the quality
of service required by the connections.

Class Traffic Description Parameters is defined as a tabular
object in the ASN.1 definition of the ATM MIB [1]. One of
the fields in the rows of that table is of data type OBJECT
IDENTIFIER. Tts values identify seven possible ATM traffic
descriptor types. This is modeled as a class with subclasses
and an aggregation relation. That is, an instance of the class
Traffic Description Parameters contains also an instance of the
class Traffic Descriptor which has seven subclasses. In Fig. 7,
CLP denotes cell loss priority and SCR denotes sustained cell
rate.

C. Derivation of SDL-92 Process Type
Definitions from the Class Diagram

The classes that correspond to rows of tabular objects are
mapped to SDL-92 process types. These process types inherit
the behavior of RowType and are specialized to model their
corresponding objects. Component classes of a composite class
corresponding to a row are mapped to data in the process type
of the composite class.

The ATM MIB system diagram is the same as in Fig. 1,
as introduced in Section II. The ATM MIB is encapsulated
into the SDL-92 block pictured .in Fig. 8. Most classes from
the class diagram of Fig. 7 are mapped to SDL-92 process

process type ATMAgentPrType inherits AgentPrType adding
del trafficDescrParamEntries PIdSet;

del VPLEntries P1dSet;

del VCLEntries PldSet;

del VPCCEntries PldSet;

dcl VCCCEntries PIdSet;

viewed trafficDescrParamIndex Integerd2; 1N
viewed VPLVPI Integer;
viewed VCLVPI Integer;

redefined procedure SetReq)
Traffic.
-~ VCL_ VPCC_ veeC,
Row. Dcscharam«
I SetReq l | Eanemeq EnhySelReq EntrySefReq EntrySetReq EntrySetReq

resindex ;'= 1, _
-] eesPDU := PDU, dcT1 TndexType: 7

PDU Status ;= noError, dcl index, resindex IndexType;
::PDU!:xlndexs = (l)1 oeor dcl ableName, rowIndex ObjectName;
del subList VarBindList;

ResponscPDU(resPDU),

L X

— SubString(PDU! 0 dingsCiades)t

i=1,

1, Length(PDU'vanmdmgs(umlex)‘n&me) 2),
rowlndex := Index(PDU!varBindings(index)iname)

(SubString
(PDU!varBindings(index)Iname,
1, Length(TDPName)) = tableName) and
(Index(PDUtvarBindings(index)!name) =
rowIndex)

false

subList(i) := PDU!varBindings(index),
i=is+ 1,
index :=index + 1

! N N TosPDUlororStaios ==
TDPName VPLNamc noSuchObject,
Loy i =
TrafficDescrParam. ! mrils’ggcfmﬂndex
EntrySetReq VPLEntrySetReq v
(subList) (subList) "
ResponsePDU(resPDU),
3

msPDU'vaerdmgs(reslmlex)
=i+,

xcslndex = rewslndex + 1
e

subList(i),

Fig. 12. Process type diagram of ATMAgentPrType.

types. Class Traffic Descriptor is mapped to data in the
process type TrafficDescrParamEntryType for the composite
class Traffic Description Parameters. Note that Fig. 8 resem-
bles Fig. 2.

The process type of the agent process is given in Fig. 12.
This process inherits from the process type AgentPrType given
in Fig. 4 and its behavior is a generalization of GrokMIBAgent-
PrType given in Fig. 11.

SNMPv2 protocol operations on the ATM MIB objects can
easily be specified based on Section II above. An example on
a SetRequestPDU with createAndGo as the row status is given
in Fig. 14 which directly follows from Fig. 13.

IV. MIB TEST CASE GENERATION

This section presents the second activity of our methodol-
ogy, 1.e., test suite design from SDL-92 models of managed
nodes. The process of obtaining a test suite from a formal
specification can be viewed as obtaining the behavior of
an entity, called its conformance tester, exhibiting an in-
verse behavior. That is, inputs (outputs) to (from) the IUT
are inverted to become the outputs (inputs) from (to) the
tester. We call this process behavior inversion [13]. We first
develop our method of MIB test case generation and then
show an application of it through the design of several test
cases.

958

IEEE/ACM TRANSACTIONS' ON NETWORKING; VOL:4, NO.6; DECEMBER" 1996

procedure GrokEntrySetReq inherits RowSetReq adding
FindRo fpar in'subList VarBindList, in/out index IndexType,

D

| index 1= 1 |
. x = :

subList(index) e Empty

T

3 T .
P

(subList(iridéx)!name,
Length(grokEntryName)+1,
1

else
i

- . t
| ‘index := index + 1 |
T

redefined procedure FindPId fpar in subList VarBindList, in/out row PId

Q:D | del rows PIdSet; Bl

I rows :=grokEntries |

Tows Eripty

| TOW :; nult |

else
X

L Tow := take(rows) !

Last
(subLisi(1)!name) = true.

~iew(grokIndex, row;

fa}se

rows = Del{Tow, Tows) |
T

C.D

grokEntry(@Last(subList(1)Iname))

redefined procedure CreateRow fpar
in subList VarBindList,
infout Rows PIdSet,
in/out newRow Rowld

P)
i 1
l newRow ;= offspring]

Rows := Inci(newRow, Rows)

®

Fig. 13. “Specialized:procedures for the grokTable example.

A. Testing Static and Dynamic Control and
Data Flow in a Specification

- Test cases are selected such ‘that all static and dynamic
control ‘and data flow paths in an-SDL-92 specification are
covered. The model of an SDI.-92 specification is an extended
finite-state machine. The testing strategy for the control flow
aspect is state and transition coverage. Every distinct path,
consisting' of one or 'several transitions in the extended firiite-
state machine, is exercised by test cases. Each test case is
assigned “a - distinct -purpose, ‘i.e.; ‘test of a given behavior
following a certain path. Parameter values of input and out-
. put signals of the test case are selected according to the
test purpose and such that predicates of the transitions in
the test case are satisfied (in order to make the test case
executable). The testing strategy for the data flow aspect is
variation of paramcter values . and combmanon of parameter
“values: g : : :
Process creation, used in the specrﬁcatlon to model rows
that can be created and' destroyed dynamically by the man-
ager, brings another dimension to the control and: data flow
coverage.. Test ‘cases ‘must be designed to exercise ‘creation
and destruction of these processes as well as the control and
data flow aspects ‘of them.

We' use TTCN, ISO’s language for specrfyrng protocol
‘conformance test cases :[9]." A test case in TTCN is made
of events, namely, inpits, outputs, and time-outs.. “?” and
“1” are the prefix input and output events, respectively,

procedur TrafficDescrParamEntrySetReq inherits RowSetReq addmg e
redefined procedure FdeowStalus fpar jn-subList VarBindList, in/out mdex IndexTyper

. D

| inde)f:=l |

(subList(index)!name;
Length(grokEntryNamie)+1,
- 1) i

else
L

I index = index +1 I !

redefined procedure FindPld fpar in subList Va.erdLlst m/out oW PId

G:])]dcl Tows PIdSel e %

' rows := trafficDescrParamiEntries l
ST

rows — CEmpty-

I e j_'rjbw:‘:null I 4

else |
L

| row = take(rows). |

Last X

(subLlsl(l)‘name) =
'ew(trafﬁcDescharamInde
TOW)

fallse

rows := Del(row; rows) |
T -

TOPLast(eubList(Diname))

redefined procedure CreateRow fpar
in subliist VarBindList,
in/ont Rows PIdSet,
in/out newRow Rowld

s :I k'neWRov’v =offspting

‘Rows = Incl{newRow, Rows)

2

Fig. 14. | Specialized procedures for: the Traffic D'escriptionuP'ammeter table
of the ATM MIB.

from the point of view of the tester. Apart from a header
section, providing identification and general 1nforrnat10n a
TTCN test case behavior table has five columns: 11ne number
(Nr), label, behavior descrrptron Constraint reference (Cref)
and verdrct (V) The label column provrdes branchrng la—

bels for gotos. The general form of 'a ‘goto ‘statement is -

“—> (Label)” TTCN 1ncorporates ASN: lasa data deéfinition
language The constraints reference column serves to describe
particular ASN.1 values o use. in 1nput and “output events.
Verchcts are associated to events termlnatlng branches of the
behavror tree. The verdict can'be either Pass (the purpose

of the 'test is successfully achieved), Fail (a nonconform- -

ing behavror is detectéd) or Inconcluszve (nerther Pass nor
Fail).

B. Test Case Genemtlon Examples

We 111ustrate our. test ‘design method on the SDL 92 spec—
ification of the grokTable: agent described: in Section II.. First
AgentPrType defined in Fig. 4 is considered. In thig process
type, the behavior corresponding to ‘different SNMP PDU’s

coming from the rhanagement station is defined. A set of .

test cases is defined by the analysis- of what ‘happens - after
a SetRequestPDU i received: The mput of SetRequestPDU
definesithe first external event in the test case. Next, the SetReq

HENNIGER ef al.: BEHAVIOR OF NETWORK MANAGEMENT AGENTS

959

TABLE 11 TABLE V
TEST CASE 1 POSTAMBLE FOR TEST CASE 1
Nr Label . Behavior description Cref v Nr- Label Behavior Cref . v
1 1SetRequestPDU SetRequestPDU1 description
2 START transmissionTimer 1 1GetRequestPDU GetRequestPDU1
3 LB 7ResponsePDU ResponsePDU1 (PASS) 2 START trans-
4 CANCEL transmissionTimer missionTimer .
5 +POSTAMBLE1 3 LB ResponsePDU ResponsePDU2 (PASS)
6 2TrapPDU 4 CANCEL ftrans-
7 —> 1B missionTimer
8 ITIMEOUT transmissionTimer INCONC =~ 3 ?TrapPDU
9 20THERWISE FAIL 6 —->LB
ITIMEOUT INCONC
transmission-
Timer
TABLE III 8 20THERWISE FAIL
SETREQUEST-PDU SEND CONSTRAINT FOR TEST CASE 1
ASN.1 PDU Constraint Declaration
Constraint Name: SetRequestPDU1
TABLE VI

PDU Type: SNMPPDU
Derivation Path:
Comments: Send Constraint

Constraint Value
{

request_id 0, error_status noError, error_index 0,
variable_bindings {
{name {grokIPAddress 1}, value address_A},

" {name {grokStatus 1}, value createAndGo} }

}

TABLE IV
RESPONSE-PDU. RECEIVE CONSTRAINT FOR TEST CASE 1

ASN.1 PDU Constraint Declaration

Constraint Name: ResponsePDU1 '
PDU Type: SNMPPDU
Derivation Path:
Comments: Receive Constraint

Constraint Value
{ .
request-id 0, error_status noError, error_index 0,
variable_bindings {
{name {grokIPAddress 1}, valuc address_A},
{name {grokStatus 1}, value ceateAndGo}}

}

procedure which is defined in Fig. 11 is considered. In this
procedure, the varBindings parameter of the SetRequestPDU
is processed. The sublist referring to grokEntryName is pro-
cessed and a corresponding sublist is created and sent in a
ResponsePDU, thereby defining the second external event in
the test case.

We will next elaborate the specification in TTCN of the
behavior of the above test case called Test Case 1. In line 1
of Table 11, a SetRequestPDU is sent by the tester to the IUT.
The constraint. SetRequestPDUI (Table III) defines the values
of the PDU fields. Line 3 represents the expected response
from the IUT, i.e., a ResponsePDU. The constraint of this
response is ResponsePDUI, instantiated with parameter values
(Table IV). A subtree called POSTAMBLE] is attached in line
5. Lines 6-9 of Table III define the other events that can occur
instead of a ResponsePDU.

GETREQUEST-PDU SEND CONSTRAINT FOR POSTAMBLE 1

ASN.1 PDU Constraint Declaration
Constraint Name: GetRequestPDU1
PDU Type: SNMPPDU
Derivation Path:
Comments: Send Constraint
Constraint Value

{

request_id 1, error_status noError, error_index 0,
variable_bindings { .
{name {grokIPAddress 1}, value unSpecified},
{name {grokCount 1}, value unSpecified} }
{name {grokStatus 1}, value unSpecified} }

}

TABLE VII .
ResponsE-PDU RecEIVE CONSTRAINT FOR POSTAMBLE 1

ASN.1 PDU Constraint Declaration
Constraint Name: ResponsePDU2
PDU Type: SNMPPDU
Derivation Path:
Comments: Receive Constraint
Constraint Value

{

request_id 1, error.status noError, error_index 0,
variable_bindings {

{name {grokIPAddress 1}, value address A},
{name {grokCount 1}, value 7},

{name {grokStatus 1}, value activated} }

}

The purpose of the postamble given in Table V is to
check if the set operation has really been performed in
the MIB. In line 1 a GetRequestPDU is sent to the IUT.
Its constraint is GetRequestPDUI defined in Table VI. Line
3 is for handling a response to the GetRequestPDU from
the IUT. If the ResponsePDU matches the constraint de-
fined in Table VII, i.e., if the MIB really holds the value
previously set, the verdict PASS is assigned. Lines 5-8 de-
fine the other events that can occur instead of a Respon-
sePDU.

960

TABLE VIII
SETREQUEST-PDU CONSTRAINT FOR TEST CASE 2

ASN.1 PDU Constraint Declaration
Constraint Name: SetRequestPDU2
PDU Type: SNMPPDU
Dérivation Path:
Comments: Send. Constraint
.Constraint Value
q - ;

request.id 0, error_status noError, error-index 0,
variable_bindings {

{name {grokIPAddress 1}, value address_A},
{name {grokStatus 1}, value createAndGo} }
{name {grokIPAddress 2}, value: address B},
{name {grokStatus 2}, value createAndGo}}

}

TABLE IX

POSTAMBLE; FOR TEST CASE 2

Nr Label Behavior description Cref v
1 . 1GetRequestPDU GetRequestPDU1
2 START transmissionTimer :
3 LB ResponsePDU ResponsePDU2
4 CANCEL transmissionTimer
5 IGetRequestPDU GetRequestPDU2
6 START. transmissionTimer
7 ResponsePDU ResponsePDU3 (PASS)
g CANCEL. transmissionTimer
9 TrapPDU
10 —>LC
11 ITIMEOUT transmissionTimer INCONC
12 ‘ 70THERWISE FAIL
13 TrapPDU
14 -> LB
15 ITIMEOUT transmissionTimer INCONC
16 ?20THERWISE ‘ . . Fail

TABLE X
SETREQUEST-PDU CONSTRAINT FOR TEST CASE .'3

ASN.1 PDU Constraint Declaration

Constraint Name: SetRequestPDU3
PDU Type: SNMPPDU

Derivation Path:

Comments: Send Constraint

Constraint Value
{

request_id 0, error.status noError, error.index 0,
variable_bindings-{

{name {grokIPAddress 1}, value address_ A},
{name {grokStatus 1}, value destroy} }

{name {grokIPAddress 2}, value address.B},
{nare {grokStatus 2}, value destroy} }

1

Testing of dynamic creation of processes is discussed here-
- after. In Fig. 11, grokEntries is defined as a set of process
identifiers keeping track of dynamically created conceptual
row processes. This set is initially empty, i.e., no conceptual
rows exist. When a row is created by a SetRequestPDU, the
procedure CreateRow is invoked (see Fig. 6). This procedure

IEEE/ACM TRANSACTIONS ‘ON NETWORKING, VYOI 4, NO.'6, DECEMBER 1996

(Fig. 13) adds the PId of the new process to the PldSet
grokEntries. Before a new process is created it is checked
by the; procedure FindPId (Fig. 13) whether the conceptual
oW has already been created A test case (Test Case 2)
whose | behavior description is the same as in. Table 11 is

deﬁned to create two grokTable rows (for address_A and

addres.‘s;B). The constraint. for SetReguestPDU. is defined as
shown| in Table VII. The postamble part ‘of Test Case 2
requires reading the first and second rows Wrth two ' con-
secutive GetRequeszPDUs and" verrfyrng the responses (see
Table IX)

Another test case " (Test Case 3) is ‘needed to cover. the
destroy transition in Fig. 3 in-the state activated. In this test
case, the two processes created in Test Case 2 are destroyed.
The behavior of Test Case .3 is the same as Test Case
1; however, the data is different again: The constraint of

SetRequestPDU for Test Case 3 is defined in Table X. The

postamble to Test Case 3 requires the verification of the fact

that grokTable now contains no rovvs - details of the postamble,

are ormtted

V.. “CONCLUSION :

Thrs paper addressed a new-applicatien field for the formal

description technique SDL-92: network management systems,
in particular, SNMPv2 of the-Intérnet framework. We have
developed reusable parts that specrﬁcatrons of -agents. with
different MIB’s have in common. and showed a way how to
obtain isuch specifications. -For- large MIB’s, a class-diagram

representrng classes of objects and their relatlon is developed :

to exploit common propertles Classes of the class diagram are
mapped to SDL-92 process types. - S R R

Specrﬁcatrons of the behavior of network management
agents;in SDL-92 can be used, for instance, as a starting

point for the generation of test cases for network man-

agement agents. Other possible uses are in agent imple-
mentation and in management protocol. analysis - and situla-
tion. :
MIB implementations of managed nodes can be tested for
conformance to the MIB and SNMPv2 standards. The test

“cases can be designed based on an SDL<92 spemﬁcatron of

the MIB using specrﬁcatron analysis and behavior inversion.
These ‘techniques have been demonstrated on the grokTable
MIB example.

Syntax and static semantics of our speorﬁcatrons in SDL/PR
and TTCN.MP have been checked by means of SDL TTCN
CASE tools [16].

More research needs to be ‘done in’ 1mprov1ng “the “test

case design method for ‘testing the behavior of an agent"

managing certain network resources. Theoretical 1nvest1gat10ns
are needed to algonthrmcally deﬁne the varrous steps of our
method.

ISO’s network management’framework GDMO and its
related protocol CMIP present-a more powerful network

" management framework than the - Internet framework. The

method described in this paper needs to be extended to model

‘ GDMO and CMIP.

HENNIGER -et al.: BEHAVIOR OF NETWORK MANAGEMENT AGENTS 961

APPENDIX REFERENCES
MODELING OF PREDEFINED ASN.1 DATA TYPES AND OF DATA [1] M. Ahmed and K. Tesink, Definitions of Managed Objects for ATM
TYPES FROM THE SNMPv2-SMI AND SNMPv2-TC MODULES Management Version 8.0 using SMIv2. TETE-REC 1695, Aug. 1994,
. 1-73. ’

[21 pGp V. Bochmann and M. Deslauriers, “Combining ASN.1 support with
package ASN1; the LOTOS language,” in Protocol Specification, Testing, and Verifica-
syntype ObjIdComponent’ = Natural tion, IX, E. Brinksma, G. Scollo, and C.A. Vissers, Eds. - Amsterdam,

endsyntype ObjIdComponent; The Netherlands: Elsevier, 1989, pp. 175-186.
newtype OBJECT.IDENTIFIER [31 G. Booch, Object Oriented Design with Applications. New York:

String (ObjIdComponent, Empty) Benjamin/Cummings, 1994.

endnewtype OBJECT-IDENTIFIER; [4] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, ‘“Protocol op-

erations for version 2 of the simple network management protocol
(SNMPv2). Network Working Group Request for Comments: 1448,

endpackage ASNI; Apr. 1993.
[51 , “Structure of management information for version 2 of the
package SNMPv2_SMI; simple network management protocol (SNMPv2). Network Working
syntype Integer32 = Integer Group Request for Comments: 1442,” Apr. 1993.
constants —2 147483648 : 2147483647 [6] , “Textual conveniions for version 2 of the simple network
endsyntype Integer3z; management protocol (SNMPv2). Network Working Group Request for
syntype Counter32 = Integer Comments: 1443,” Apr. 1993.
constants 0 : 4294967295 [71 J. Fischer and R. Schroder, “Combined specification using SDL and
endsyntype Counter32; ASN.1,” in 6th SDL Forum, O. Fergemand and A. Sarma, Eds. Am-
newtype IpAddress Array(IpIndex, Octet) sterdam, The Netherlands: Elsevier, 1993, pp. 293-304.
endnewtype IpAddress; [8] Information technology—Open Systems Interconnection—Specification
syntype IpIndex = Integer : of Abstract Syntax Notation One (ASN.1), International Standard
constants 1 : 4 ISO/MEC 8824, 1990.
endsyntype IpIndex; [91 Information technology—Open Systems Interconnection—Conformance
© syntype Octet = Integer testing methodology and framework, International Standard ISO/IEC
constants 0 : 255 : 9646, 1991.
endsyntype Octet; [10] Specification and description language SDL 92, ITU-T Recommenda-
syntype ObjectName = OBJECT.IDENTIFIER tion Z.100, 1992,
endsyntype ObjectName; [11] SDL combined with ASN.1, ITU-T Recommendation Z.105, 1994.
newtype ObjectSyntax [12] M. T. Rose, The Simple Book: An Introduction to Internet Management,
operators 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1994.
Integervalue : [13] B. Sarikaya, Principles of Protocol Engineering and Conformance Test-
ObjectSyntax —>> Integer; ing. New York: Simon & Schuster, Sept. 1993.
ObjectIdvalue : [14] W. Stqlllngs, Data and Computer Communications, 4th ed. New York:
ObjectSyntax —>> OBJECT_IDENTIFIER; ° Macmillan, 1994.

IpAddressvalue : [15] Il?.fSteedmanLAbgtrac]tE Sy;ltajlc]Yrota;ior; One A(ASN'J)i- 7["{1::1 Tultg;gal and
. _ Add ; eference.. London, England: Technology Appraisals Ltd., .
umeeTEmRaX > IpAddress [16] Telelogic, Gerting Started with SDT 3.0, Malm, Sweden: Telelogic

ountervalue :
AB, Feb. 1995.

ObjectSyntax — > Counter32;

ObjectSyntaxInteger :
Integer — > ObjectSyntax;
ObjectSyntaxObjectIdvalue :
OBJECT.IDENTIFIER — > ObjectSyntax;
ObjectSyntaxIpAddress :
" Ipaddress — > ObjectSyntax;
ObjectSyntaxCounter :
Counter32 —> ObjectSyntax

Olaf Henniger received the Diplom-Ingenieur
degree in automation engineering from the Otto-
von-Guericke University Magdeburg, Germany, in
1991.

Until 1994, he was a Research Fellow at the Otto-
von-Guericke University Magdeburg, Germany.
Currently, he is a Research Staff Member at
GMD, the German National Research Center for

alternative ASNI; Information Technology. He continues to work

ObjectSyntax ::= on his doctoral thesis dealing with testing of
CHOICE communicating systems.
endalternative;

endnewtype ObjectSyntax;

Michel Barbeau (S’89-M’'91) received the B.Sc.
degree from University of Sherbrooke, Canada, in
1985, and the M.Sc. and Ph.D. degrees in computer
science from the University of Montreal, Canada, in
1987 and 1991, respectively.

Since 1991, he has been Professor of Computer
Science at the Department of Mathematics and
Computer Science at the University of Sherbrooke,
Canada. He was also a Visiting Member of the

syntype RowStatus = Integer Computer Communications Lab of The University

constants activate : destroy) of Aizu, Japan. His current research interests include
endsyntype RowStatus; telecommunications and real-time systems software engineering.
Dr. Barbeau was awarded the Gold Medal of the Governor General of
) Canada in 1991; this is awarded to students’ who graduate with highest
endpackage SNMPvV2_TC;) : standing, for study at the Master and Doctorate level, in their institution.

endpackage SNMPv2_SMT;

package SNMPv2_TC;
synonym activate RowStatus = 1;
synonym notInService RowStatus = 2;
synonym notReady RowStatus = 3;
synonym createAndGo RowStatus = 4;
synonym createAndWait RowStatus = 5;
synonym destroy RowStatus = 6;

962 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO.'6, DECEMBER 1996

Behcet Sarikaya (SM’91) received the B.S.E.E. and ;
the M.Sc. degrees from the Middle East Techni- 0
cal University (METU), Ankara, Turkey, in 1973
and 1976, respectively, and the Ph.D. degree from
McGill Utiversity, Montréal, Québec, Canada in
1984,"all in- computer science.

Presently; He works in the University of Aizu in
Aizu-Wakamatsu, Fukushima, Japan, as a Professor.
Previously, hie has held full-time faculty positions
in the Universities of Sherbrooke, Concordia, and
Montréal in Canada and Bilkent in Turkey. His cur-
rent research interests lie’in multimedia networking, personal communication
systems, and integrated network management. He has been Co-Chairman of
IFIP PSTV VI held in Montréal in 1986 and Program Chair of MmNet’95 held
in Aizu-Wakamatsu in 1995. Since 1987, he has continuously served in the
program committees of several international conferences. He is the author
of the book Principles of Protocol Engineering and Conformance Testing
(Englewood Cliffs, NJ: Prentice-Hall, 1993).)

